Imagine you asked students to draw an area model for the expression 5+4x2.
Walking around the room, you see the following three area models.

First, briefly explain the student thinking process you think might be behind each answer.

Answer Describe the thinking process

Which order would you call students A, B and C to present their work to the class and how would you guide the discussion?

Imagine You Asked Students To Draw An Area Model For The Expression 5+4x2.Walking Around The Room, You

Answers

Answer 1

Answer:

area 1

Step-by-step explanation:


Related Questions

Help me please what is the probability of all the letters?

Answers

Given:

• Number of male who survived = 338

,

• Number if female sho survived = 316

,

• Number f children who survived = 57

,

• Number of male who died = 1352

,

• Number of female who died = 109

,

• Number of children who died = 52

,

• Total number of people = 2224

Let's solve for the following:

(a). Probability of the passenger that survived:

[tex]P(\text{survived)}=\frac{nu\text{mber who survived}}{total\text{ number if people }}=\frac{711}{2224}=0.320[/tex]

(b). Probability of the female.

We have:

[tex]P(\text{female)}=\frac{\text{ number of females}}{total\text{ number }}=\frac{425}{2224}=0.191[/tex]

(c). Probability the passenger was female or a child/

[tex]P(\text{female or child)}=\frac{425}{2224}+\frac{109}{2224}=\frac{425+109}{2224}=0.240[/tex]

(d). Probability that the passenger is female and survived:

[tex]P(femaleandsurvived)=\frac{316}{2224}=0.142[/tex]

(e). Probability the passenger is female and a child:

[tex]P(\text{female and child)=}\frac{425}{2224}\times\frac{109}{2224}=0.009[/tex]

(f). Probability the passenger is male or died.

[tex]P(male\text{ or died) = P(male) + }P(died)-P(male\text{ and died)}[/tex]

Thus, we have:

[tex]P(\text{male or died)}=\frac{1690}{2224}+\frac{1513}{2224}-\frac{1352}{2224}=0.832[/tex]

(g). If a female passenger is selected, what is the probability that she survived.

[tex]P(\text{survived}|\text{female)}=\frac{316}{425}=0.744[/tex]

(h). If a child is slelected at random, what is the probability the child died.

[tex]P(died|\text{ child)=}\frac{52}{109}=0.477[/tex]

(i). What is the probability the passenger is survived given that the passenger is male.

[tex]=\frac{338}{1690}=0.2[/tex]

ANSWER:

• (a). 0.320

,

• (b). 0.191

,

• (c). 0.240

,

• (d). 0.142

,

• (e). 0.009

,

• (f). 0.832

,

• (g) 0.744

,

• (h). 0.477

,

• (i) 0.2

Simplify the expression using order of operation 9/g + 2h + 5, when g = 3 and h = 6

Answers

9/g + 2h + 5

When g = 3 and h = 6

First, replace the values of g and h by the ones given:

9/(3) + 2(6) + 5

9/3 + 2(6)+5

Then, divide and multiply:

3+12+5

Finally, add

20



Solve.(3.3 × 10³) (2 × 10²)

Answers

Here are the steps in multiplying scientific notations:

1. Multiply the coefficients first.

[tex]3.3\times2=6.6[/tex]

2. Multiply the base 10 by adding their exponents.

[tex]10^3\times10^2=10^{3+2}=10^5[/tex]

3. Connect the result in steps 1 and 2 by the symbol for multiplication.

[tex]6.6\times10^5[/tex]

Hence, the result is 6.6 x 10⁵.

Adding mixed fractions (A)1 1/14 + 3 1/14 =

Answers

Explanation:

To add mixed fractions we have to follow these steps:

[tex]1\frac{1}{14}+3\frac{1}{14}=[/tex]

1. Add the whole numbers together

[tex]1+3=4[/tex]

2. Add the fractions

[tex]\frac{1}{14}+\frac{1}{14}=\frac{2}{14}=\frac{1}{7}[/tex]

3. If the sum of the fractions is an improper fraction then we change it to a mixed number and add the whole part to the whole number we got in step 1.

In this case the sum of the fractions results in a proper fraction, so we can skip this step.

Answer:

The result is:

[tex]4\frac{1}{7}[/tex]

Use the definition of the derivative to find the derivative of the function with respect to x. Show steps

Answers

The derivative of the function f(x) = √x-5 is 1/2√(x-5)

Given f(x) = √x-5

from the formula d/dx (√x) = 1/2√x

hence d/dx √x-5 = 1/2√x-5

or

d/dx √x-5 = 1/2 (x-5)¹/²

The formula for the derivative of root x is d(x)/dx = (1/2) x-1/2 or 1/(2x). The exponential function with x as the variable and base equal to 1/2 is the root x provided by x. Utilizing the Power Rule and the First Principle of Derivatives, we can get the derivative of root x.

Hence we get the value as 1/2 (x-5)¹/²

Learn more about Derivatives here:

brainly.com/question/28376218

#SPJ1

When a projectile is launched at an initial height of H feet above the ground at an angle of theta with the horizontal and initial velocity is Vo feet per second. the path of the projectile...

Answers

Given,

The initial height of H feet.

The initial velocity of the object is Vo.

The equation of the path of projectile is,

[tex]y=h+x\text{ tan }\theta-\frac{x^2}{2V_0\cos ^2\theta}_{}\text{ }[/tex]

This is the expression of the projectle path.

Hence, the path of the projectile object is y = h + xtan(theta) - x²/2V₀²cos²(theta)

A 12 -inch ruler is closest in length to which one of the following Metric units of measure? 0.030 Kilometers30,000 millimeters30 centimeters30 meters

Answers

Inch is one of the units of measuring length.

Converting from inch to meters,

[tex]1inch=0.0254m[/tex]

A 12-inch ruler converted to meters will be;

[tex]12\times0.0254=0.3048m[/tex]

Converting the meter equivalent of the ruler into the sub-units of meters measurement,

[tex]\begin{gathered} 0.3048m \\ To\text{ kilometer} \\ 1000m=1\operatorname{km} \\ 0.3048m=\frac{0.3048}{1000}=0.0003048\operatorname{km} \\ \\ To\text{ millimeter} \\ 1m=1000\operatorname{mm} \\ 0.3048m=0.3048\times1000=304.8\operatorname{mm} \\ \\ \\ To\text{ centimeters} \\ \text{1m =100cm} \\ 0.3048m\text{ =0.3048}\times100=30.48\operatorname{cm} \\ \\ \\ To\text{ meters } \\ 12\text{ inch = 0.3048m} \end{gathered}[/tex]

From the conversions of metric units of length above, the 12-inch ruler measures 30.48cm which is closest to 30cm

Therefore, the ruler is closest to 30 centimeters

classify given equation as rational or irrational:2 root 3 + 3 root 2 - 4 root 3 + 7 root 2

Answers

Irrational

Explanation

[tex]2\sqrt{3}+3\sqrt{2}-4\sqrt{3}+7\sqrt{2}[/tex]

Step 1

simplify

[tex]\begin{gathered} 2\sqrt{3}+3\sqrt{2}-4\sqrt{3}+7\sqrt{2} \\ \lparen2-4)\sqrt{3}+\left(3+7\right)\sqrt{2} \\ -2\sqrt{3}+4\sqrt{2} \\ \end{gathered}[/tex]

Step 2

the square root of 2 is an irrational number,because there is not number such that

[tex]\sqrt{2}=\frac{a}{b}[/tex]

and

The square root of 3 is an irrational number √3 cannot be expressed in the form of p/q

hence

the sum of 2 irrational numbers gives a irrational result,Sum of two irrational numbers is always irrational.

so, the answer is

Irrational

I hope this helps you

I think of a number.
I add 5 to it and then double the result.
I then subtract 10 from this answer.
I then subtract the original number I thought of.
Using algebra and a pronumeral to represent the number I think of, explain
why I get back to the number I started with.

Answers

Answer: [2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x

Step-by-step explanation:

I think of a number, represented by the variable/pronumeral x.

I add 5 to it: x + 5

then double the result: 2(x + 5)

I then subtract 10 from this answer: [2(x + 5)] - 10

I then subtract the original number I thought of: [2(x + 5)] - 10 - x

Simplifying the expression will explain why you get the original number.

[2(x + 5)] - 10 - x = 2x+10-10-x = 2x-x = x.  

provide evidence that this function is not one to one. explain how your evidence supports that g(x) is not one to one

Answers

we have the function

g(x)=(x/3)+2 ---------> interval (-infinite, 1)

g(x)=4x-2 ------> interval [1, infinite)

the given function is not one-to -one function, because don't pass the Horizontal Line Test.

Example

For the horizontal line

y=2

we have the values of

x=0 ---------> g(x)=(x/3)+2

and

x=1 -----------> g(x)=4x-2

that means

two elements in the domain of g(x) correspond to the same element in the range of g(x)

therefore

the function is not one to one

help meeeee pleaseeeee!!!





thank you

Answers

The values of f(4) , f(0) and f(-5) are 16/7, -12 and -7/11 respectively.

We are given the function:-

f(x) = (x + 12)/(2x - 1)

We have to find the values of  f(4) , f(0) and f(-5).

Putting x = 4 in the given function, we can write,

f(4) = (4+12)/(2*4-1) = 16/7

Putting x = 0 in the given function, we can write,

f(0) = (0 + 12)/(2*0 - 1) = 12/(-1) = -12

Putting x = -5 in the given function, we can write,

f(-5) = (-5 + 12)/(2*(-5) - 1) = 7/(-10-1) = 7/(-11) = -7/11

To learn more about function, here:-

https://brainly.com/question/12431044

#SPJ1

The number of bottles a machine fills is proportional to the number of minutes the machine operates. The machine
fills 250 bottles every 20 minutes. Create a graph that shows the number of bottles, y, the machine fills in a minutes.
To graph a line, select the line tool. Click on a point on the coordinate plane that lies on the line. Drag your mouse to
another point on the coordinate plane and a line will be drawn through the two points

Answers

It is to be noted that the correct graph is graph A. This is because it shows the coordinates (2, 25). See the explanation below.

What is the calculation justifying the above answer?

It is information given is the rate of change of the linear relationship between the stated variable variables:

Number of Bottles; andTime.

The ratio given is depicted as:

r = [250 bottles]/ [20 mintures]

r = 25/2 bottles per min

By inference, we know that our starting point coordinates (0,0), because zero bottles were filled at zero minutes.

Thus, we must use the point-slope form to arrive at the equation that exhibits or represents the relationship of the linear graph.

The point-slope form is given as:

y-y₁ = m(x-x₁)

Recall that our initial coordinates are (0, 0,) where x₁ = 0 and y₁ = 0. Hence

⇒ y - 0 = 25/2(x-0)

= y = 25x/2

Hence, if x = 2, then y must = 25

Proof: y = 25(2)/2

y = 50/2

y = 25.

Hence, using the principle of linear relationships, the first graph is the right answer, because it shows the points (2,25) which are part of the relation.

Learn more about graphs:
https://brainly.com/question/25184007
#SPJ1

CRITICAL THINKING Describe two different sequences of transformations in which the blue figure is the image of the red figi 1 1 2 B I y ET

Answers

1) rotation 90° clockwise over the origin and a reflection over the x-axis

2) rotation 90° counter clockwise over the origin and reflection over y-axis

The rotation of the smaller wheel in the figure causes the larger wheel to rotate. Find the radius of the largerwheel in the figure if the smaller wheel rotates 70.0° when the larger wheel rotates 40.0°The radius of the large wheel is approximately ____ cm.

Answers

Let's begin by listing out the information given to us:

r (1) = 11.4 cm, θ (1) = 70°, θ (2) = 40°, r(2) = ?

The arc length is the same for the 2 circles

r (1) * θ (1) = r (2) * θ (2)

11.4 * 70° = r (2) * 40°

r (2) = 11.4 * 70 ÷ 40

r (2) = 19.95 cm

Hence, the radius of the larger circle is 19.95 cm

A beach ball rolls off a cliff and onto the beach. The height, in feet, of the beach ball can be modeled by the function h(t)=64−16t2, where t represents time, in seconds.What is the average rate of change in the height, in feet per second, during the first 1.25 seconds that the beach ball is in the air?Enter your answer as a number, like this: 42

Answers

STEP - BY - STEP EXPLANATION

What to find?

The average rate of change in the height, in feet per second, during the first 1.25 seconds that the beach ball is in the air.

Given:

[tex]h(t)=64-16t^2[/tex]

Step 1

Differentiate the heigh with reospect to t.

The rate of change of height is the differentiation of the height.

[tex]\frac{dh(t)}{dt}=-32t[/tex]

Step 2

Substitute t= 1.25

[tex]h^{\prime}(t)=-32(1.25)[/tex][tex]=-40ft\text{ /s}[/tex]

ANSWER

Average rate = -40 ft / s

A certain species of deer is to be introduced into a forest, and wildlife experts estimate the population will grow to P(t) = (944)3 t/3, where t represents the number ofyears from the time of introduction.What is the tripling-time for this population of deer?

Answers

Ok, so

Here we have the function:

[tex]P(t)=944(3)^{\frac{t}{3}}[/tex]

Now we want to find the tripling-time for this population of deer.

If we make t=0, we will find the initial population of deer. This is:

[tex]P(0)=944(3)^{\frac{0}{3}}=944[/tex]

Now, we want to find the time "t" such that this population is the triple.

This is:

[tex]\begin{gathered} 944(3)=944(3)^{\frac{t}{3}} \\ 2832=944(3)^{\frac{t}{3}} \\ \frac{2832}{944}=3^{\frac{t}{3}} \\ 3=3^{\frac{t}{3}} \end{gathered}[/tex]

We got this exponential equation:

[tex]3=3^{\frac{t}{3}}[/tex]

As the base is the same, we could equal the exponents:

[tex]\begin{gathered} 1=\frac{t}{3} \\ t=3 \end{gathered}[/tex]

Therefore, tripling-time for this population of deer are 3 years.

Kepler's third law of planetary motion states that the square of the time required for a planet to make one revolution about the sun varies directly as the cube of the average distance of the planet from the sun. If you assume that Jupiter is 5.2 times as far from the sun as is the earth, find the approximate revolution time for Jupiter in years.

Show work pls ;-;

Answers

By applying Kepler's third law of planetary motion, the approximate revolution time for Jupiter is equal to 12 years.

What is Kepler's third law?

Mathematically, Kepler's third law of planetary motion is given by this mathematical expression:

T² = a³

Where:

T represents the orbital period.a represents the semi-major axis.

Note: Earth has 1 astronomical unit (AU) in 1 year of time.

For this direct variation, the value of the constant of proportionality (k) is given by:

T² = ka³

k = T²/a³

k = 1²/1³

k = 1.

When the semi-major axis or the distance of Jupiter from Sun is 5.2, we have;

T² = ka³

T² = 1 × 5.2³

T² = 140.608

T = √140.608

T = 11.858 ≈ 12 years.

Read more on Kepler's third law here: https://brainly.com/question/15691974

#SPJ1

pls help. i dont get it​

Answers

Is there a picture??

Answer:

hey what don't u get? u didn't show the question

Show the steps needed to Evaluate (2)^-2

Answers

Answer:

[tex]\dfrac{1}{4}[/tex]

Step-by-step explanation:

Given expression:

[tex]2^{-2}[/tex]

[tex]\boxed{\textsf{Exponent rule}: \quad a^{-n}=\dfrac{1}{a^n}}[/tex]

Apply the exponent rule to the given expression:

[tex]\implies 2^{-2}=\dfrac{1}{2^2}[/tex]

Two squared is the same as multiplying 2 by itself, therefore:

[tex]\begin{aligned}\implies 2^{-2}&=\dfrac{1}{2^2}\\\\&=\dfrac{1}{2 \times 2}\\\\&=\dfrac{1}{4}\end{aligned}[/tex]

Solution

[tex]2^{-2}=\dfrac{1}{4}[/tex]

Answer:

1/4

Step-by-step explanation:

Now we have to,

→ find the required value of (2)^-2.

Let's solve the problem,

→ (2)^-2

→ (1/2)² = 1/4

Therefore, the value is 1/4.

A water tank holds 276 gallons but is leaking at a rate of 3 gallons per week. A second water tank holds414 gallons but is leaking at a rate of 5 gallons per week. After how many weeks will the amount of waterin the two tanks be the same?The amount of water in the two tanks will be the same inweeks.

Answers

In order to solve the problem we will first create equations to represent the volume of water on the gallons through the weeks. The output of the functions will be the volume of each and the entry will be the number of weeks passed.

For the first one:

[tex]\text{vol(week) = 276 -3}\cdot week[/tex]

While on the second one:

[tex]\text{vol(week) = 414 -5}\cdot week[/tex]

In order to calculate the number of weeks it'll take until they have the same volume of water we need to find the "week" which would make them equal. So we will equate both expressions and solve for that variable.

[tex]\begin{gathered} 276\text{ - 3}\cdot week\text{ = 414 - 5}\cdot week \\ 5\cdot\text{week - 3}\cdot week\text{ = 414 - 276} \\ 2\cdot\text{week = }138 \\ \text{week = }\frac{138}{2}\text{ = }69 \end{gathered}[/tex]

It'll take 69 weeks for the tanks to have the same volume.

In the diagram, MN is parallel to KL. What is the length of MN? K M 24 cm 6 cm 2 12 cm L O A. 6 cm O B. 18 cm O c. 12 cm D. 8 cm

Answers

[tex]MN\text{ = 8 CM}[/tex]

To solve this question, we shall be using the principle of similar triangles

Firstly, we identify the triamgles

These are JKL and JMN

JKL being the bigger and JMN being the smaller

Mathematically, when two triangles are similar, the ratio of two of their corresponding sides are equal

Thus, we have it that;

[tex]\begin{gathered} \frac{JN}{MN}\text{ = }\frac{JL}{KL} \\ \\ \frac{6}{MN}=\text{ }\frac{18}{24} \\ \\ MN\text{ = }\frac{24\times6}{18} \\ MN\text{ = 8 cm} \end{gathered}[/tex]

A popcorn stand offers buttered or unbuttered popcorn in three sizes: small, medium, and large. What is the P(buttered)

Answers

The popcorn we can order is either buttered or unbuttered.

Therefore, the probability of choosing buttered popcorn is 1/2

This probability distribution shows thetypical grade distribution for a Geometrycourse with 35 students.GradeEnter a decimal rounded to the nearest hundredth.Enter

Answers

Explanation:

The total number of students is

[tex]n(S)=35[/tex]

Concept:

To figure out the probability that a student earns grade A,B or C

Will be calculated below as

[tex]P(A,BorC)=P(A)+P(B)+P(C)[/tex]

The Probability of A is

[tex]P(A)=\frac{n(A)}{n(S)}=\frac{5}{35}[/tex]

The probabaility of B is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{10}{35}[/tex]

The probabaility of C is

[tex]P(B)=\frac{n(B)}{n(S)}=\frac{15}{35}[/tex]

Hence,

By substituting the values in the concept, we will have

[tex]\begin{gathered} P(A,BorC)=P(A)+P(B)+P(C) \\ P(A,BorC)=\frac{5}{35}+\frac{10}{35}+\frac{15}{35}=\frac{30}{35} \\ P(A,BorC)=0.857 \\ P(A,BorC)\approx0.86(nearest\text{ }hundredth) \end{gathered}[/tex]

Hence,

The final answer is

[tex]0.86[/tex]

-1/2 (2/5y - 2) (1/10y-4)

Answers

[tex]-\frac{1}{2}(\frac{2}{5}y-2)(\frac{1}{10}y-4)[/tex]

we multiply the first parenthesis by its coefficient

[tex]\begin{gathered} ((-\frac{1}{2}\times\frac{2}{5}y)+(-\frac{1}{2}\times-2))(\frac{1}{10}y-4) \\ \\ (-\frac{2}{10}y+\frac{2}{2})(\frac{1}{10}y-4) \\ \\ (-\frac{1}{5}y+1)(\frac{1}{10}y-4) \end{gathered}[/tex]

now multiply each value and add the solutions

[tex]\begin{gathered} (-\frac{1}{5}y\times\frac{1}{10}y)+(-\frac{1}{5}y\times-4)+(1\times\frac{1}{10}y)+(1\times-4) \\ \\ (-\frac{1}{50}y^2)+(\frac{4}{5}y)+(\frac{1}{10}y)+(-4) \\ \\ -\frac{1}{50}y^2+(\frac{4}{5}y+\frac{1}{10}y)-4 \\ \\ -\frac{1}{50}y^2+\frac{9}{10}y-4 \end{gathered}[/tex]

Look at the expression below.2h + y 4h^2_______ - _____9h^2-y^2 3h+yWhich of the following is the least common denominator for the expression?

Answers

Answer:

(3h+y)*(3h-y)

Step-by-step explanation:

We are given the following expression:

[tex]\frac{2h+y}{9h^2-y^2}-\frac{4h^2}{3h+y}[/tex]

We want to find the LCD for:

9h²-y² and 3h + y.

3h+y is already in it's most simplified way.

9h²-y² , according to the notable product of (a²-b²) = (a-b)*(a+b), can be factored as:

(3h-y)*(3h+y).

The factors of each polynomial is:

3h + y and (3h-y)*(3h+y)

The LCD uses all unique factors(If a factor is present in more than one polynomial, it only appears once).

So the LCD is:

(3h+y)*(3h-y)

Which is option B.

Find the slope of the line through the given points . If the slope of the line is undefined state so (13,1) and (1,4)

Answers

ANSWER:

A. The slope of the line is -1/4

STEP-BY-STEP EXPLANATION:

Given:

(13,1) and (1,4)

The slope can be calculated using the following formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

We substitute each value and calculate the slope:

[tex]m=\frac{1-4}{13-1}=\frac{-3}{12}=-\frac{1}{4}[/tex]

Therefore, the correct answer would be:

A. The slope of the line is -1/4

find the value of x for which r parallels s. then find the measures of angles 1 and 2 measure angle 1= 80-2xmeasure angle 2= 93-3xthe value of x for which r parallels s is....measure of angle 1 is.....°measure of angle 2 is.....°

Answers

Since the lines r and s are parallel the angles 1 and 2 must be equal

write an equation

[tex]80-2x=93-3x[/tex]

solve the equation for x

[tex]\begin{gathered} 80-2x=93-3x \\ -2x+3x=93-80 \\ x=13 \end{gathered}[/tex]

the value for x in which r and s are parallel must be 14

measure of angle 1 and 2 must be 54°

Count the unit squares, and Ind the surface area of the shape represented byeach net. One cube = 1 ft^2

Answers

The surface area of the figure is the sum of the area of the squares. Since they're all equal, is the amount of squares times the area of one square. We have a total of six squares, with a side length equal to 4 units. The area of a square is given by the product of its side length by itself, therefore, the total surface area of this figure is

[tex]6\cdot(4^2)=6(16)=96[/tex]

The area of this figure is 96 ft².

Answer: 72 Square Meters sorry super late

Step-by-step explanation:

an equation that shows that two ratios are equal is a(n)

Answers

An equation that shows that two ratios are equal is referred to as a true proportion.

What is an Equation?

This refers to as a mathematical term which is used to show or depict that two expressions are equal and is  usually indicated by the sign = .

In the case in which the equation shows that two ratios are equal is referred to as a true proportion and an example is:

10/5 = 4/2 which when expressed will give the same value which is 2 as the value which makes them equal and is thereby the reason why it was chosen as the correct choice.

Read more about Equation here https://brainly.com/question/13763238

#SPJ1

A biologist just discovered a new strain of bacteria that helps defend the human body against the flu virus. To know the dosage that should be given to someone, the doctor must first know if the bacteria can multiply fast enough to combat the virus. To find the rate at which the bacteria multiplies, she puts 10 cells in a petri dish. In an hour, she comes back to find that there are now 12 cells in the dish.

Answers

Part 3

An exponential growth function has the general form:

[tex]f(t)=a\cdot(1+r)^t[/tex]

where r is the rate of growth, t is the time, and a is a constant. Notice that if calculate f(t) for t = 0, we have (1 + r)º = 1 (any number with exponent 0 equals 1). So, we obtain:

[tex]f(0)=a(1+r)^0=a\cdot1=a[/tex]

Thus, the constant a is the initial value of the function.

Now, the rate at which a bacteria grows is exponential. So, the function C(h) is given by:

[tex]C(h)=C(0)\cdot(1+r)^h[/tex]

Notice that we represented the time by the letter h instead of t.

Since C(0) = 10 and C(1) = 12, we can replace h by 1 to find:

[tex]\begin{gathered} C(1)=10\cdot(1+r)^1 \\ \\ 12=10+10r \\ \\ 12-10=10r \\ \\ 10r=2 \\ \\ r=0.2 \end{gathered}[/tex]

Thus, the number of cells C(h) is given by:

[tex]C(h)=10\cdot(1.2)^h[/tex]

Notice that this is valid for C(15) = 154:

[tex]C(15)=10\cdot(1.2)^{15}\cong154.07\cong154_{}[/tex]

Part 1

Then, using this formula, we find:

[tex]\begin{gathered} C(2)=10(1.2)^2\cong14 \\ \\ C(3)=10(1.2)^3\cong17.3\cong17 \\ \\ C(4)=10(1.2)^4\cong20.7\cong21 \\ \\ C(5)=10(1.2)^5\cong24.9\cong25 \\ \\ C(6)=10(1.2)^6\cong29.9\cong30 \\ \\ C(7)=10(1.2)^7\cong35.8\cong36 \\ \\ C(8)=10(1.2)^8\cong43 \\ \\ C(9)=10(1.2)^9\cong51.6\cong52 \\ \\ C(10)=10(1.2)^{10}\cong61.9\cong62 \\ \\ C(11)=10(1.2)^{11}\cong74.3\cong74 \\ \\ C(12)=10(1.2)^{12}\cong89.2\cong89 \\ \\ C(13)=10(1.2)^{13}\cong107 \\ \\ C(14)=10(1.2)^{14}\cong128.4\cong128 \end{gathered}[/tex]

Part 2

Now, plotting the points, rounded to the nearest whole cell, on the graph, we obtain:

Part 4

Using a calculator, we obtain the following graph of the function C(h):

Comparing the graph to the plot of the data, we see that they match.

Part 5

After a full day, it has passed 24 hours. So, we need to use h = 24 in the function C(h):

[tex]C(24)=10(1.2)^{24}\cong795[/tex]

Therefore, the answer is 795 cells.

Other Questions
Why would the North/New England, South, and the West disagree with parts of the American System? The image shows street lights powered by solar panels. Which sequence shows the energy transformations taking place in these lights?Picture of three solar panels street light on a sunny day with blue background A. gravitational potential energy vibrational energy chemical potential energy B. radiant energy chemical potential energy motion energy C. radiant energy electric energy radiant energy D. sound energy chemical potential energy radiant energy E. gravitational potential energy motion energy radiant energyReset Next Explain how to make one liter of a 1.25 N sodium hydroxide solution. Translate the triangle.Then enter the new coordinates.A (3,4)C(-5,0)B(-12)A' ([?], [])B'([ ], [ ])C'([ ], []) A study is done on the number of bacteria cells in a petri dish. Suppose that the population size P(1) after t hours is given by the following exponential function.P (1) = 2000(1.09)Find the initial population size.Does the function represent growth or decay?By what percent does the population size change each hour? Andre and Elena are each saving money, Andre starts with 100 dollars in his savings account and adds 5 dollars per week, Elena starts with 10 dollars in her savings account and adds 20 dollars each week.After 4 weeks who has more money in their savings account?? Explain how you know.After how many weeks will Elena and Andre have the same amount of money in their savings account? How do you know? What are the importance of computer in electronics engineering number of invoices is most appropriate cost driver for which of the following types of activity costs? a. purchasing b. payroll c. assembly d. machining what is the volume (in L) in a cylinder filled with 23.0 g of N2 gas at a temperature of 65 C and a pressure of 2.37 atm? true or false: deviations in the quality of income ratio resulting from rapid growth is usually cause for alarm as it is a signal that the company is not financially equipped to support the growth. 2x^3-16x^2-40x=0 factor Taylor and Emily are painting banners for their Halloween Party. Taylors banner is 8 inches tall and 564 inches wide. The area of Emilys banner is 10 times as large as the area of Taylors banner. What is the area of Emilys banner, in square inches? The combustion of glucose is represented by the following balanced equation: food and shelter are examples of a need. Explain the various factors that contributed to the American victory in the Revolution HELP ASAP!!What has more momentum in a collision, a fly or a Corvette? According to Newtons third law, the force of a fly on the windshield of a Corvette is equal to the force of the Corvettes windshield on the fly, only in the opposite direction. Why then does the fly get crushed and the Corvette doesn't even feel the collision? This is where momentum comes into play. Momentum of an object is its mass in kilograms times its velocity in m/s. The mass of the fly is 0.2 kilograms and its flying at a velocity of 11 meters per second. The Corvette has a mass of 1,518 kilograms and is driving with a velocity of 27 m/s in the opposite direction. During the collision, the Corvettes mass times velocity will equal a greater momentum because it has significantly more mass and a much greater velocity than the fly. ANSWER BELOW USING THE RACES STRATEGY activity 1:search the defition of the following natures problemsnoise pollutionillegal miningsoil erosion cyanide fishingcoral reef degraduation oil spoil A bowling ball is rolling down a lane at a bowling alley. How can you know that a force has acted on the bowling ball?A. by determining a change in the direction of the bowling ball as it rolls down the alley B. by determining the direction of the bowling ball C. by timing how long the bowling ball takes to reach the end of the lane D .by measuring the mass of the bowling ball a simple pendulum has a period t on the earth. if it were used on planet x, where the acceleration due to gravity is 3 times what it is on earth, its period would be Which equation is balanced?O 2Fe +02 2Fe2O3O 3Fe +302 3Fe2O3O 4Fe +302 2Fe2O3O Fe +0 FeO3