The nominal interest rate compounded quarterly is 1.33%.
Given,
If an investment grew to $13,500 in 2 years.
and, the interest amount earned was $1,150.
To find the nominal interest rate compounded quarterly.
What is nominal interest rate?
The interest rate before inflation is referred to as the nominal interest rate.
Nominal can also refer to the advertised or stated interest rate on a loan, excluding any fees or interest compounding.
Now, According to the question:
Here given ,
P = $13500
i = ?
A = $1150
t = 2 yrs
n = 4 x 2 = 8
Formula of compound interest ,
A = P( 1 + I )ⁿ
$1150 = $13500 ( 1 + i ) ⁸
$1150 / $13500 = (1 + i)⁸
0.0851 = (1+ i) ⁸
1 +i = 8√.0851
1 + i = 2.33
i = 2.33 -1
i = 1.33 %
Hence, The nominal interest rate compounded quarterly is 1.33%.
Learn more about Nominal Interest at:
https://brainly.com/question/13324776
#SPJ1
A circle has a diameter of 12 inches. Find its exact and approximate circumference and area.
STEP 1:
We write out the formulas and the necessary values
[tex]\begin{gathered} \text{Area of circle =}\pi r^2 \\ \text{circumference of circle = 2}\pi r \\ \text{radius =}\frac{diameter}{2}=\frac{12}{2}=6\text{ inches} \end{gathered}[/tex]STEP 2
We substitute the values into the formula
[tex]\begin{gathered} \text{Area of the circle = 3.14 x 6 x 6} \\ Exactvalue=113.04\text{ square inches and Approx}imate\text{ value =113} \\ \text{circumference of the circle= 2 x 3.14 x6} \\ Exactvalue=37.68\text{ inches and approx}imate\text{ value = 38inches} \\ \end{gathered}[/tex]12 = - 2/5 yI got -30 I want to see if I did the correct steps
Solution
[tex]12=-\frac{2}{5}y[/tex]Step 1: Simplify the expression
[tex]\begin{gathered} 12=-\frac{2}{5}y \\ \text{cross multiply} \\ 12(5)=-2y \\ 60=-2y \end{gathered}[/tex]Step 2: Divide the both side by -2
[tex]\begin{gathered} 60=-2y \\ \frac{60}{-2}=-\frac{2y}{-2} \\ y=-30 \end{gathered}[/tex]Therefore the correct value of y = - 30
Hi. Been out due to medical issues trying to catch-up and learn my work. Thank you in advance
The break even point is where cost is equal to revenue
cost : y = 25.96x + 22752
Revenue : y = 57.56x
Set the two equations equal to determine x
25.96x + 22752 = 57.56x
Subtract 25.96x from each side
25.96x-25.96x + 22752 = 57.56x-25.96x
22752 = 31.6x
Divide each side by 31.6
22752/31.6 = 31.6x/31.6
720 =x
Now find the value of y
y = 57.56x
y = 57.56 (720)
y = 41443.20
( 720, 41443.20)
Answer: ( 720, 41443.20)
Which of the following statements must be true based on the diagram below!(Diagram is not to scale)O JL is a segment bisector.JL is a perpendicular bisector.OJT is an angle bisectora Lis the vertex of a right angle,Jis the midpoint of a segment in the diagramNone of the above.
From the diagram, we notice that the line JL bisects the angle J into two equal angles. Hence, we can conclude that the correct statement is this:
JL is an angle bisector
An angle bisector are
For p(2) = 7 + 10x - 12x^2 - 10x^3 + 2x^4 + 3x^5, use synthetic substitution to evaluate
Answer:
p(-3) = -428
Explanations:Given the polynomial function expressed as:
[tex]p(x)=7+10x-12x^2-10x^3+2x^4+3x^5[/tex]Determine the value of p(-3)
[tex]\begin{gathered} p(-3)=7+10(-3)-12(-3)_^2-10(-3)^3+2(-3)^4+3(-3)^5 \\ p(-3)=7-30-12(9)-10(-27)+2(81)+3(-243) \\ p(-3)=-23-108+270+162-729 \\ p(-3)=-428 \end{gathered}[/tex]Hence the value of p(-3) is -428
What is the first step for finding the quotient of 3x^3 z^5/5y * x^2 z^6/20y^3
The initial expression is:
[tex]\frac{3x^3z^5}{5y}\text{ / }\frac{x^2z^6}{20y^3}[/tex]So the first step is to multiply the numerator of the second fraction with the denominator of the first franction and the denominator of the second fraction by the numerator of the first fraction so:
[tex]\frac{3x^3z^6}{5y}(\frac{20y^3}{x^2z^6})[/tex]So is option C)
the length of a rectangle is 13 centimeters less then four times it’s width it’s area is 35 centimeters find the dimensions of the rectangle
Solution:
The area of a recatngle is expressed as
[tex]\begin{gathered} \text{Area of rectangle = L}\times W \\ \text{where} \\ L\Rightarrow\text{length of the rectangle} \\ W\Rightarrow\text{ width of the rectangle } \end{gathered}[/tex]Given that the length of the rectangle is 13 centimeters less than four times its width, this implies that
[tex]L=4W-13\text{ ---- equation 1}[/tex]Tha area of the rectangle is 35 square centimeters. This implies that
[tex]36=L\times W\text{ --- equation 2}[/tex]Substitute equation 1 into equation 2. Thus,
[tex]\begin{gathered} 36=L\times W \\ \text{where} \\ L=4W-13 \\ \text{thus,} \\ 36=W(4W-13) \\ open\text{ parentheses} \\ 36=4W^2-13W \\ \Rightarrow4W^2-13W-36=0\text{ ---- equation 3} \\ \end{gathered}[/tex]Solve equation 3 by using the quadratic formula expressed as
[tex]\begin{gathered} W=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}_{} \\ \text{where} \\ a=4 \\ b=-13 \\ c=-36 \end{gathered}[/tex]thus, we have
[tex]\begin{gathered} W=\frac{-(-13)\pm\sqrt[]{(-13)^2-(4\times4\times-36)}}{2\times4}_{} \\ =\frac{13\pm\sqrt[]{169+576}}{8} \\ =\frac{13\pm\sqrt[]{745}}{8} \\ =\frac{13}{8}\pm\frac{\sqrt[]{745}}{8} \\ =1.625\pm3.411836016 \\ \text{thus,} \\ W=5.036836016\text{ or W=}-1.786836016 \end{gathered}[/tex]but the width cannot be negative. thus, the width of the recangle is
[tex]W=5.036836016[/tex]From equation 1,
[tex]\begin{gathered} L=4W-13 \\ \end{gathered}[/tex]substitute the obtained value of W into equation 1.
Thus, we have
[tex]\begin{gathered} L=4W-13 \\ =4(5.036836016)-13 \\ =20.14734-13 \\ \Rightarrow L=7.14734 \end{gathered}[/tex]Hence:
The width is
[tex]5.036836016cm[/tex]The length is
[tex]7.14734cm[/tex]Which of the following is a proportion?8/10=6/83/4=12/154/6=9/126/9=8/12
To be able to determine which among the choices is a proportion, you check if each side has the same common ratio.
A. 8/10 = 6/8
Ratio: 0.80 = 0.75 (Not Proportional)
B. 3/4 = 12/15
Ratio: 0.75 = 0.80 (Not Proportional)
C. 4/6 = 9/12
Ratio: 0.67 = 0.75 (Not Proportional)
D. 6/9 = 8/12
Ratio: 0.67 = 0.67 (Proportional)
Since the ratio of each side of letter D is equal, Letter D is the one that is in Proportion.
What the answer to this to solve the problem
Answer:
25
Step-by-step explanation:
180-88=92
92+61=123
123+30+x=180
153+x=180
x=25
you own a pet store that sells fish tank you brought a fish tank for $35 and are going to mark it up 20% what is the selling price going to be on the fish tank
If you're marking the fish tank up by 20%, it means you're looking to sell it at 120% of its original value.
Now, let's use a rule of three to calculate such percentage:
Thereby,
[tex]x=\frac{120\cdot35}{100}\rightarrow x=42[/tex]The selling price would be $42
A recipe uses 6 cups of flour to 1 1/10 cups of milk. If you have 2 cups of flour, how much milk should you use?
We were told that the recipe uses 6 cups of flour to 1 1/10 cups of milk. Converting 1 1/10 to improper fraction, it becomes 11/10
Let x represent the number of cups of milk that would be used for 2 cups of flour. The equations would be as shown below
11/10 = 6
x = 2
By cross multiplying, we have
2 * 11/10 = 6 * x
6x = 22/10 = 11/5
x = (11/5) / 6
If we flip 6 such that it becomes 1/6, the division sign changes to multiplication. Thus, we have
x = 11/5 * 1/6 = 11/30
Thus, 11/30 cup of milk should be used
A window washer drops a tool from their platform 155ft high. The polynomial -16t^2+155 tells us the height, in feet, of the tool t seconds after it was dropped. Find the height, in feet, after t= 1.5 seconds.
A rectangle is bounded by the x-axis and the semicircle
y = 49 − x2 What length and width should the rectangle have so that its area is a maximum?
The length and width of the rectangle are 4.04 and 32.67 respectively for which the area is a maximum.
What is mean by Rectangle?
A rectangle is a two dimension figure with 4 sides, 4 corners and 4 right angles. The opposite sides of the rectangle are equal and parallel to each other.
Given that;
The rectangle is bounded by the x - axis and the semicircle y = 49 - x².
Since,
The area of rectangle with sides x and y is,
Area = x × y
A = xy
Since, The equation of the semicircle is;
y = 49 - x².
Substitute the values of y in equation (i), we get;
A = x (49 - x²)
A = 49x - x³
Now, Find the derivative and equate into zero,
A' = 49 - 3x²
A' = 0
49 - 3x² = 0
49 = 3x²
x² = 49/3
x = 7/√3
x = 7/1.73
x = 4.04
Hence, y = 49 - x²
y = 49 - (4.04)²
y = 49 - 16.3
y = 32.67
Since, The area is maximum when we can multiply x by y as;
Maximum area = 4.04 x 32.67
Maximum area = 132
Hence, The length and width of the rectangle are 4.04 and 32.67 respectively for which the area is a maximum.
Learn more about the rectangle visit:
https://brainly.com/question/25292087
#SPJ1
A single die is rolled twiceFind the probability of rolling a 6 the first time and a 1 the second time.
Answer:
1/36
Explanation:
In a single die, the total number of outcomes = 6
• The probability of rolling a 6 the first time = 1/6
,• The probability of rolling a 1 the second time = 1/6
Thus, the probability of rolling a 6 the first time and a 1 the second time is:
[tex]\begin{gathered} =\frac{1}{6}\times\frac{1}{6} \\ =\frac{1}{36} \end{gathered}[/tex]The graph of f(x) is shown in black.Write an equation in terms of f(x) to match the redgraph.For example, try something like this:f(x)+3, f (x - 2), or 4f(x).
Notice that the red function is similar to the black function, which means the transformation applied was a translation.
The transformation is 5 units to the right, exactly.
Therefore, the function that represents the red figure is
[tex]f(x-5)[/tex]Need help !! Geometry unit 3 parallel and perpendicular lines
ANSWER;
Converse; Exterior alternate angles are equal
[tex]x\text{ = 3}[/tex]EXPLANATION;
Here, we want to get the value of x given that the lines l and m are parallel
From the diagram given, we can see that;
[tex]15x\text{ +29 = 26x-4}[/tex]The reason for this is that they are a pair of exterior alternate angles
Mathematically, exterior alternate angles are equal
From here, we can proceed to solve for the value of x;
[tex]\begin{gathered} 26x-15x\text{ = 29+4} \\ 11x=33 \\ x\text{ = }\frac{33}{11} \\ x\text{ = 3} \end{gathered}[/tex]Find a polynomial f (x) of degree 3 that has the following zeros.6 (multiplicity 2), -7Leave your answer in factored form.
If a polynomial has a zero of "a" with multilicity b, the factor would be:
[tex](x-a)^b[/tex]So, accordingly the factors would be:
[tex]\begin{gathered} (x-6)^2 \\ (x-(-7))^1 \end{gathered}[/tex]They are
[tex]\begin{gathered} (x-6)^2 \\ (x+7) \end{gathered}[/tex]We can write out the polynomial, f(x), as:
[tex]f(x)=(x-6)^2(x+7)[/tex]helppppppppppppppppppp
what is the minimum surface area that such a box can have
Given a rectangular box with an open top and square base, the dimensions of the box are:
[tex]a\times a\times b[/tex]The volume can be calculated as:
[tex]V=a\cdot a\cdot b=a^2\cdot b[/tex]The area of the sides is:
[tex]A_L=a\cdot b[/tex]The area of the base:
[tex]A_B=a^2[/tex]There are 4 lateral sides and 1 base (the top is open), so the total surface area is:
[tex]A_{\text{total}}=4\cdot A_L+A_B=4\cdot a\cdot b+a^2[/tex]We have a fixed volume of 2048 in³, then:
[tex]\begin{gathered} a^2\cdot b=2048 \\ b=\frac{2048}{a^2} \end{gathered}[/tex]Using this result on A_total:
[tex]A_{\text{total}}=4\cdot a\cdot\frac{2048}{a^2}+a^2=\frac{8192}{a}+a^2[/tex]To find the minimum surface area, we take the derivative:
[tex]\begin{gathered} \frac{dA_{total}}{da}=-\frac{8192}{a^2}+2a=0 \\ a^3=4096 \\ a=16 \end{gathered}[/tex]Now, we calculate the minimum total area using a:
[tex]A_{\text{total}}=\frac{8192}{16}+16^2=768in^2[/tex]The radius, R, of a sphere is 5.7 cm. Calculate the sphere's volume, V.Use the value 3.14 for r, and round your answer to the nearest tenth. (Do not round any intermediate computations.)
The volume formula of a sphere is :
[tex]V=\frac{4}{3}\pi r^3[/tex]From the problem, the radius of the sphere is r = 5.7 cm
Using the formula above :
[tex]\begin{gathered} V=\frac{4}{3}(3.14)(5.7)^3 \\ V=775.3 \end{gathered}[/tex]ANSWER :
775.3 cm^3
Perform a DuPont analysis on Healthy Body Nursing Home, Inc. Assume that the industry average ratios are as follows: Total margin: 3.9%
Total asset turnover: 0.5
Equity multiplier: 2.8
Return on equity: %
Using the DuPont analysis the return on equity is 5.46%.
What is the return on equity?
Return on equity is the ratio of net income to average total equity. Return on equity is an example of a profitability ratio. Profitability ratios measure the ability of a firm to generate profits using available resources.
Return on equity = net income / average total equity
Using the Dupont formula, return on equity can be determined using:
Return on equity = total margin x asset turnover x equity multiplier
Return on equity = (Net income / Sales) x (Sales/Total Assets) x (total asset / common equity)
3.9% x 0.5 x 2.8 = 5.46%
To learn more about return on equity, please check: https://brainly.com/question/27821130
#SPJ1
Need help with this question
Given: a quadratic function with vertex (2,3) opening upward .
Find: the given statement is true or false.
Explanation: if parabola has a vertex at (2,3) and opens upward, it has one real solution., (2,3) will be a lowest point. The vertex will be at lowest point, it will be minimum.
that means graph has no one real solution. hence it will never going to intersect. so this statement is false.
Final answer: the given statement is FALSE.
A movie aspect ratio of 2.15:1 is shown as a letterboxed image on a TV with a width of 62.72in and a height of 35.28in what is the % of image shown on the TV
You have that the movie aspect ratio is 2.15 : 1, that is, you have following relation between width and height:
2.15/1 = 2.15 = 215%
that is, the widht is 2.15 times the height, or the width is 215% longer than height.
In order to determine what is the percentage of the image shown, you calculate the percentage that widht is more longer than height. You have a TV of 62.72 width and 35.28 in height:
62.72/35.28 = 1.77 = 177%
that is, width of TV is 1.77 times longer than height, or width is 177% longer.
Hence, on TV will be not possible to watch the complete image. And the percentage shown is of 177%.
you bought a car for $5000. each year it depreciates by 8.5%. Which equation can be used to find the value, v, of the car, x years after it was purchased?
We have the following:
In this case, we have the following formula:
[tex]v=C\cdot(1-r)^x[/tex]Where C is the original value of the car, r is the depreciation rate and x is the time in years
Angle RQT is a straight angle. What are m angle RQS and m angle TQS? Show your work.
11x + 5 + 8x + 4 = 180
Simplifying like terms
11x + 8x = 180 - 5 - 4
19x = 171
x = 171/19
x = 9
RQS = 11(9) + 5
= 99 + 5
= 104°
TQS = 8(9) + 4
= 72 + 4
= 76°
Use the cross Products Property to solve the proportions.1. 3/4 = v/142. 5/n = 16/32
1) 3/4 = v/14
v = (3 x 14) / 4
v = 42/4
v = 10.5
2) 5/n = 16/32
5(32) = n(16)
n = 5(32) / 16
n = 160/16
n = 10
find the LCD of the list of fractions 7/20, 5/15
Explanation:
First we have to find multiples of each of the denominators:
[tex]\begin{cases}20\rightarrow20,40,60,80,100\ldots \\ 15\rightarrow15,30,45,60,75,90\ldots\end{cases}[/tex]From those multiples we have to find which one is the least that is in both lists. In this case, the least number that's in both lists is 60
Answer:
LCD = 60
Write 3.25% as a fraction in simplest form. Can you explain step by step please?
From the problem, we have 3.25% to convert into fraction.
Note that percentage a% can be written as a/100
So 3.25% will be :
[tex]3.25\%=\frac{3.25}{100}[/tex]From here, we can multiply the numerator and the denominator by 100 to make 3.25 a whole number.
[tex]\frac{3.25\times100}{100\times100}=\frac{325}{10000}[/tex]Next step is to simplify the fraction by getting the factors of the numerator and the denominator.
325 = 25 x 13
10000 = 25 x 400
Rewriting it again :
[tex]\frac{325}{10000}=\frac{25\times13}{25\times400}[/tex]Cancel the common factor (25)
[tex]\frac{\cancel{25}\times13}{\cancel{25}\times400}=\frac{13}{400}[/tex]The answer is 13/400
Evaluate theexpression belowwhen x = = 3.<54 : 2.3 - 22Enter your answer inthe box below.
The given expression is
[tex]54\frac{.}{.}2\times3-x^2[/tex]where x=3
the dot in the expression means multiplication
substitute into the expression above we have
[tex]\begin{gathered} 54\frac{.}{.}2\times3-3^2 \\ \end{gathered}[/tex]Applying BODMAS
[tex]27\times3-3^2[/tex][tex]\begin{gathered} 81-3^2 \\ 81-9 \\ 72 \end{gathered}[/tex]Therefore the value of the expression is 72
#8 iOrder the figures described below according to their volumes from least (on top) to greatest (on bottom).= a cylinder with 2-inch radius and 6-inch height= a cube with side length 4 inches= a rectangular prism with a length of 2 inches, a width of 3 inches, and a height of 6 inches
step 1
Find out the volume of each figure
Cylinder
The volume of a cylinder is given by
[tex]\begin{gathered} V=\pi r^2h \\ V=(3.14)(2)^2(6) \\ V=75.36\text{ in}^3 \end{gathered}[/tex]Cube
The volume of the cube is given by
[tex]\begin{gathered} V=b^3 \\ V=4^3 \\ V=64\text{ in}^3 \end{gathered}[/tex]Rectangular prism
The volume of the prism is given by the formula
[tex]\begin{gathered} V=L*W*H \\ V=(2)(3)(6) \\ V=36\text{ in}^3 \end{gathered}[/tex]therefore
The answer is
rectangular prismcubecylinder