Write a proportional that relates the corresponding sides. You must use all of the sides for both triangles in your statement.

Write A Proportional That Relates The Corresponding Sides. You Must Use All Of The Sides For Both Triangles

Answers

Answer 1

Given

Answer

[tex]\Delta HGF\approx\Delta HKL[/tex]

GF is proportional to KL

HG is proportional to HK

HF is proportional to HL

Write A Proportional That Relates The Corresponding Sides. You Must Use All Of The Sides For Both Triangles

Related Questions

The beginning mean weekly wage in a certain industry is $789.35. If the mean weekly wage grows by 5.125%, what is the new mean annual wage? (1 point)O $829.80O $1,659.60O $41,046.20$43,149.82

Answers

Given:

The initial mean weekly wage is $ 789.35.

The growth rate is 5.125 %.

Aim:

We need to find a new annual wage.

Explanation:

Consider the equation

[tex]A=PT(1+R)[/tex]

Let A be the new annual wage.

Here R is the growth rate and P is the initial mean weekly wage and T is the number of weeks in a year.

The number of weeks in a year = 52 weeks.

Substitute P=789.35 , R =5.125 % =0.05125 and T =52 in the equation.

[tex]A=789.35\times52(1+0.05125)[/tex]

[tex]A=43149.817[/tex]

[tex]A=43149.82[/tex]

The new mean annual wage is $ 43,149.82.

Final answer:

The new mean annual wage is $ 43,149.82.

I need help with part b, c ii, and d

Answers

Recall that:

[tex]\text{average speed=}\frac{total\text{ distance}}{total\text{ time}}.[/tex]

(b) Since Marcos traveled for 2 hours and 17 minutes a distance of 155 miles, then Marco's average speed for the 155 miles trip is:

[tex]\frac{155mi}{(2+\frac{17}{60})h}=\frac{155mi}{\frac{137}{60}h}=\frac{9300}{137}miles\text{ per hour}\approx67.89miles\text{ per hour.}[/tex]

(c ii) Since Devon also traveled the 155 miles in 2hours and 17 minutes but at a constant speed, then the constant speed at which he traveled is equal to his average speed, which is equal to:

[tex]\frac{155mi}{(2+\frac{17}{60})h}=\frac{155mi}{\frac{137}{60}h}=\frac{9300}{137}miles\text{ per hour}\approx67.89miles\text{ per hour.}[/tex]

(d) Marco needs to drive 2 miles in 5 minutes to be able to complete the 155 miles trip in 2 hours and 17 minutes, then he must drive at a constant speed of:

[tex]\frac{2mi}{5\min }=\frac{2mi}{\frac{5}{60}h}=\frac{120mi}{5h}=24\text{miles per hour.}[/tex]

Answer:

(b) 67.89 miles per hour.

(c ii) 67.89 miles per hour.

(d) 24 miles per hour.

triangle HXI can be mapped onto troangle PSL by a reflection If m angle H = 157 find m angle S

Answers

From the information provided, the triangle HXI can be mapped onto triangle PSL. This means the vertices of the reflected image would now have the following as same measure angles;

[tex]\begin{gathered} \angle H\cong\angle P \\ \angle X\cong\angle S \\ \angle I\cong\angle L \end{gathered}[/tex]

Measure of angle S cannot be determined from the information provided because there is insufficient information given to determine the measure of angle X, hence the angle congruent to it (angle S) likewise cannot be determined.

f(x) = x2 + 4 and g(x) = -x + 2Step 2 of 4: Find g(d) - f(d). Simplify your answer.Answer8(d) - f(d) =

Answers

Answer:

[tex]\begin{equation*} g(d)-f(d)=-d^2-d-2 \end{equation*}[/tex]

Explanation:

Given:

[tex]\begin{gathered} f(x)=x^2+4 \\ g(x)=-x+2 \end{gathered}[/tex]

To find:

[tex]g(d)-f(d)[/tex]

We can find g(d) by substituting x in g(x) with d, so we'll have;

[tex]g(d)=-d+2[/tex]

We can find f(d) by substituting x in f(x) with d, so we'll have;

[tex]f(d)=d^2+4[/tex]

We can now go ahead and subtract f(d) from g(d) and simplify as seen below;

[tex]\begin{gathered} g(d)-f(d)=(-d+2)-(d^2+4)=-d+2-d^2-4=-d^2-d+2-4 \\ =-d^2-d-2 \\ \therefore g(d)-f(d)=-d^2-d-2 \end{gathered}[/tex]

Therefore, g(d) - f(d) = -d^2 - d -2

What is the solution set of x over 4 less than or equal to 9 over x?

Answers

we have

[tex]\frac{x}{4}\leq\text{ }\frac{9}{x}[/tex]

Multiply in cross

[tex]x^2\leq36[/tex]

square root both sides

[tex](\pm)x\leq6[/tex]

see the attached figure to better understand the problem

the solution is the interval {-6,6}

the solution in the number line is the shaded area at right of x=-6 (close circle) and the shaded area at left of x=6 (close circle)

Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza fora total cost of $12.50. Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $8.50. What is the cost of one slice of mushroom pizza?

Answers

c = price of a slice of Cheese pizza

m= price of a slice of mushroom pizza

Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza fora total cost of $12.50

3c + 4 m = 12.50

Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $8.50.

3c + 2m = 8.50

We have the system of equations:

3c + 4 m = 12.50 (a)

3c + 2m = 8.50 (b)

Subtract (b) to (a) to eliminate c

3c + 4m = 12.50

-

3c + 2m = 8.50

_____________

2m = 4

Solve for m:

m = 4/2

m=2

The cost of one slice of mushroom pizza is $2

I'm attempting to solve and linear equation out of ordered pairs in slopes attached

Answers

Line equationInitial explanation

We know that the equation of a line is given by

y = mx + b,

where m and b are numbers: m is its slope (shows its inclination) and b is its y-intercept.

In order to find the equation we must find m and b.

In all cases, m is given, so we must find b.

We use the equation to find b:

y = mx + b,

↓ taking mx to the left side

y - mx = b

We use this equation to find b.

1

We have that the line passes through

(x, y) = (-10, 8)

and m = -1/2

Using this information we replace in the equation we found:

y - mx = b

↓ replacing x = -10, y = 8 and m = -1/2

[tex]\begin{gathered} 8-(-\frac{1}{2})\mleft(-10\mright)=b \\ \downarrow(-\frac{1}{2})(-10)=5 \\ 8-5=b \\ 3=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = -1/2x + 3

Equation 1: y = -1/2x + 3

2

Similarly as before, we have that the line passes through

(x, y) = (-1, -10)

and m = 0

we replace in the equation for b,

y - mx = b

↓ replacing x = -1, y = -10 and m = 0

-10 - 0 · (-1) = b

↓ 0 · (-1) = 0

-10 - 0 = b

-10 = b

Then, the equation of this line is:

y = mx + b,

y = 0x - 10

y = -10

Equation 2: y = -10

3

Similarly as before, we have that the line passes through

(x, y) = (-6, -9)

and m = 7/6

we replace in the equation for b,

y - mx = b

↓ replacing x = -6, y = -9 and m = 7/6

[tex]\begin{gathered} -9-\frac{7}{6}(-6)=b \\ \downarrow\frac{7}{6}(-6)=-7 \\ -9-(-7)=b \\ -9+7=b \\ -2=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = 7/6x - 2

Equation 3: y = 7/6x - 2

4

The line passes through

(x, y) = (6, -4)

and m = does not exist

When m does not exist it means that the line is vertical, and the equation looks like:

x = c

In this case

(x, y) = (6, -4)

then x = 6

Then

Equation 4: x = 6

5

The line passes through

(x, y) = (6, -6)

and m = 1/6

we replace in the equation for b,

y - mx = b

↓ replacing x = 6, y = -6 and m = 1/6

[tex]\begin{gathered} -6-\frac{1}{6}(6)=b \\ \downarrow\frac{1}{6}(6)=1 \\ -6-(1)=b \\ -7=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = 1/6x - 7

Equation 5: y = 1/6x - 7

factoring out: 25m + 10

Answers

Answer:

5(5m + 2)

Explanation:

To factor out the expression, we first need to find the greatest common factor between 25m and 10, so the factors if these terms are:

25m: 1, 5, m, 5m, 25m

10: 1, 2, 5, 10

Then, the common factors are 1 and 5. So, the greatest common factor is 5.

Now, we need to divide each term by the greatest common factor 5 as:

25m/5 = 5m

10/5 = 2

So, the factorization of the expression is:

25m + 10 = 5(5m + 2)

4) What is perimeter of this shape? * 4 cm 2 cm

Answers

the perimeter is the sum of the outside sides. So in this case is 4+4+2+2+2+2=16

so the answer is 16cm

what times what equals 38

Answers

1 2 and 19 equal to 38

The data for numbers of times per week 20 students at Stackamole High eat vegetables are shown below. A dotplot shows 4 points above 1, 4 points above 3, 5 points above 2, 3 points above 4, 3 points above 5, and 1 point above 9.

Answers

Considering the given dot plot for the distribution, it is found that:

a) The distribution is right skewed.

b) There is an outlier at 9.

c) Since there is an outlier, the best measure of center is the median.

Dot plot

A dot plot shows the number of times that each measure appears in the data-set, hence the data-set is given as follows:

1, 1, 1, 1, 2, 2, 2, 2, 2 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 9.

To find the skewness of the data-set, we need to find the mean and the median.

The mean is the sum of all values divided by the number of values of 20, hence:

Mean = (4 x 1 + 5 x 2 + 4 x 3 + 3 x 4 + 3 x 5 + 9)/20 = 3.1.

The median is the mean of the 9th and the 10th elements(even cardinality) of the data-set, hence:

Median = (2 + 3)/2 = 2.5.

The mean is greater than the median, hence the distribution is right skewed.

To identity outliers, we need to look at the quartiles, as follows:

First quartile: 0.25 x 20 = 5th element = 2.Third quartile: 0.75 x 20 = 15th element = 4.

The interquartile range is:

IQR = 4 - 2 = 2.

Outliers are more than IQR from the quartiles, hence:

4 + 1.5 x 2 = 4 + 3 = 7 < 9, hence 9 is an outlier in the data-set, and hence the median will be the best measure of center.

Missing information


The questions are as follows:

Part A: Describe the dotplot. (4 points)

Part B: What, if any, are the outliers in these data? Show your work. (3 points)

Part C: What is the best measure of center for these data? Explain your reasoning. (3 points) (10 points)

More can be learned about dot plots at https://brainly.com/question/24726408

#SPJ1

Use the distance formula to find the distance between the points given.(-9,3), (7, -6)

Answers

Given the points:

[tex](-9,3),(7,-6)[/tex]

You need to use the formula for calculating the distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1^})^2[/tex]

Where the points are:

[tex]\begin{gathered} (x_1,y_1) \\ (x_2,y_2) \end{gathered}[/tex]

In this case, you can set up that:

[tex]\begin{gathered} x_2=7 \\ x_1=-9 \\ y_2=-6 \\ y_1=3 \end{gathered}[/tex]

Then, you can substitute values into the formula and evaluate:

[tex]d=\sqrt{(7-(-9))^2+(-6-3)^2}[/tex][tex]d=\sqrt{(7+9)^2+(-9)^2}[/tex][tex]d=\sqrt{(16)^2+(-9)^2}[/tex][tex]d=\sqrt{256+81}[/tex][tex]d=\sqrt{337}[/tex][tex]d\approx18.36[/tex]

Hence, the answer is:

[tex]d\approx18.36[/tex]

the inside diameter (I.D.) and outside diameter (O.D.) of a pope are shown in the figure. The wall thickness of the pope is the dimension labeled t. Calculate the wall thickness of the pipe if its I.D. is 0.599 in. and its O.D. is 1.315 in.

Answers

Given:

The inside diameter of the pope, I.D.=0.599 in.

The outside diameter of the pope, O.D.=1.315 in.

The inside radius of the pope is,

[tex]IR=\frac{ID}{2}=\frac{0.599}{2}=0.2995\text{ in}[/tex]

The outside radius of the pope is,

[tex]OR=\frac{OD}{2}=\frac{1.315}{2}=0.6575\text{ in}[/tex]

The wall thickness of the pope can be calculated as,

[tex]t=OR-IR=0.6575-0.2995=0.358\text{ in}[/tex]

Therefore, the wall thickness of the pope is t=0.358 in.

Rearrange the formula 5w-3y +7=0 to make w the subject.

Answers

5w = -7 + 3y (after adding 3y on both sides.)

Which function has the greatest average rate of change on the interval [1,5]

Answers

Answer:

Explanation:

Given: interval [1,5]

Based on the given functions, we start by computing the function values at each endpoint of the interval.

For:

[tex]\begin{gathered} y=4x^2 \\ f(1)=4(1)^2 \\ =4 \\ f(5)=4(5)^2 \\ =100 \\ \end{gathered}[/tex]

Now we compute the average rate of change.

[tex]\begin{gathered} \text{Average rate of change = }\frac{f(5)-f(1)}{5-1} \\ =\frac{100-4}{5-1} \\ \text{Calculate} \\ =24 \end{gathered}[/tex]

For:

[tex]\begin{gathered} y=4x^3 \\ f(1)=4(1)^3 \\ =4 \\ f(5)=4(5)^3 \\ =500 \end{gathered}[/tex][tex]\begin{gathered} \text{Average rate of change = }\frac{f(5)-f(1)}{5-1} \\ =\frac{500-4}{5-1} \\ =124 \end{gathered}[/tex]

For:

[tex]\begin{gathered} y=4^x \\ f(1)=4^1 \\ =4 \\ f(5)=4^5 \\ =1024 \end{gathered}[/tex][tex]\begin{gathered} \text{Average rate of change = }\frac{f(5)-f(1)}{5-1} \\ =\frac{1024-4}{5-1} \\ =255 \end{gathered}[/tex]

For:

[tex]\begin{gathered} y=4\sqrt[]{x} \\ f(1)=4\sqrt[]{1} \\ =4 \\ f(5)\text{ = 4}\sqrt[]{5} \\ \end{gathered}[/tex][tex]\begin{gathered} \text{Average rate of change = }\frac{f(5)-f(1)}{5-1} \\ =\frac{(4\sqrt[]{5\text{ }})\text{ -4}}{5-1}\text{ } \\ =1.24 \end{gathered}[/tex]

Therefore, the function that has the greatest average rate is

[tex]y=4^x[/tex]

A chemist has 30% and 60% solutions of acid available. How many liters of each solution should be mixed to obtain 570 liters of 31% acid solution? Work area number of liters | acid strength | Amount of acid 30% acid solution 60% acid solution 31% acid solution liters of 30% acid liters of 60% acid

Answers

Let the amount of 30% acid solution be a

Let the amount of 60% acid solution be b

Given, "a" and "b" mixed together gives 570 liters of 31% acid. We can write:

[tex]0.3a+0.6b=0.31(570)[/tex]

Also, we know 30% acid and 60% acid amounts to 570 liters, thus:

[tex]a+b=570[/tex]

The first equation becomes:

[tex]0.3a+0.6b=176.7[/tex]

We can solve the second equation for a:

[tex]\begin{gathered} a+b=570 \\ a=570-b \end{gathered}[/tex]

Putting this into the first equation, we can solve for b. The steps are shown below:

[tex]\begin{gathered} 0.3a+0.6b=176.7 \\ 0.3(570-b)+0.6b=176.7 \\ 171-0.3b+0.6b=176.7 \\ 0.3b=176.7-171 \\ 0.3b=5.7 \\ b=\frac{5.7}{0.3} \\ b=19 \end{gathered}[/tex]

So, a will be:

a = 570 - b

a = 570 - 19

a = 551

Thus,

551 Liters of 30% acid solution and 19 Liters of 60% acid solution need to be mixed.

Please help me with this problem so my son can better understand I have attached an image of the problem

Answers

We have to solve for c:

[tex](c+9)^2=64[/tex]

When we have quadratic expressions, we have to take into account that each number has two possible square roots: one positive and one negative.

We can see it in this example: the square root of 4 can be 2 or -2. This is beacuse both (-2)² and 2² are equal to 4.

Then, taking that into account, we can solve this expression as:

[tex]\begin{gathered} (c+9)^2=64 \\ c+9=\pm\sqrt[]{64} \\ c+9=\pm8 \end{gathered}[/tex]

We then calculate the first solution for the negative value -8:

[tex]\begin{gathered} c+9=-8 \\ c=-8-9 \\ c=-17 \end{gathered}[/tex]

And the second solution for the positive value 8:

[tex]\begin{gathered} c+9=8 \\ c=8-9 \\ c=-1 \end{gathered}[/tex]

Then, the two solutions are c = -17 and c = -1.

We can check them replacing c with the corresponding values we have found:

[tex]\begin{gathered} (-17+9)^2=64 \\ (-8)^2=64 \\ 64=64 \end{gathered}[/tex][tex]\begin{gathered} (-1+9)^2=64 \\ (8)^2=64 \\ 64=64 \end{gathered}[/tex]

Both solutions check the equality, so they are valid solutions.

Answer: -17 and -1.

If the given is -3x+20=8 What should the subtraction property of equality be?

Answers

Given the equation

[tex]-3x+20=8[/tex]

To apply the subtraction property of equality, we subtract 20 from both sides.

[tex]-3x+20-20=8-20[/tex]

Question 34: Find the polar coordinates that do NOT describe the point on the graph. (Lesson 9.1)

Answers

Notice that the polar coordinates of the point on the simplest form are (2,30). Then, the only option that does not match a proper transformation of coordinates is the point (-2,30)

Select the correct answer from each drop-down menu.
Given: Kite ABDC with diagonals AD and BC intersecting at E
Prove: AD L BC
A
C
E
LU
D
B
Determine the missing reasons in the proof.

Answers

The missing reasons are

ΔCDA ≅ ΔBDA  by SSS [side side side]

ΔCED ≅ ΔBED by SAS [side angle side]

What is Kite?

A kite is a quadrilateral having reflection symmetry across a diagonal in Euclidean geometry. A kite has two equal angles and two pairs of adjacent equal-length sides as a result of its symmetry.

Given,

ABCD is a kite, with the diagonal AD and BC

We have,

               AC = AB

and

               CD = BD                [Property of Kite]

In ΔACD and ΔABD

                AC = AB

and

               CD = BD               [Property of Kite]        

               AD = AD               [Common]

By rule SSS Criteria [Side Side Side ]

              ΔACD ≅ ΔABD

 ∴           ∠CDA = ∠BDA         [CPCT]

Now,

         In ΔCDE and ΔBDA

                 CD = BD

            ∠CDE = ∠BDE

                 DE = DE                [Common]

By rule SAS Criteria [Side Angle Side]  

            ΔCDE ≅ ΔBDA

∴                CE = BE                [CPCT]  

Hence, AD bisects BC into equal parts

The missing reasons are

ΔCDA ≅ ΔBDA  by SSS [side side side]

ΔCED ≅ ΔBED by SAS [side angle side]

To learn more about Kite click on the link

https://brainly.com/question/23279609

#SPJ13

Simplify 17(z-4x)+2(x+3z)

Answers

Answer:

23z-66x

Step-by-step explanation:

Look at the attachment please :D

If b is a positive real number and m and n are positive integers, then.A.TrueB.False

Answers

we have that

[tex](\sqrt[n]{b})^m=(b^{\frac{1}{n}})^m=b^{\frac{m}{n}}[/tex]

therefore

If b is a positive real number

then

The answer is true

The number of algae in a tub in a labratory increases by 10% each hour. The initial population, i.e. the population at t = 0, is 500 algae.(a) Determine a function f(t), which describes the number of algae at a given time t, t in hours.(b) What is the population at t = 2 hours?(c) What is the population at t = 4 hours?

Answers

a) Let's say initial population is po and p = p(t) is the function that describes that population at time t. If it increases 10% each hour then we can write:

t = 0

p = po

t = 1

p = po + 0.1 . po

p = (1.1)¹ . po

t = 2

p = 1.1 . (1.1 . po)

p = (1.1)² . po

t = 3

p = (1.1)³ . po

and so on

So it has an exponential growth and we can write the function as follows:

p(t) = po . (1.1)^t

p(t) = 500 . (1.1)^t

Answer: p(t) = 500 . (1.1)^t

b)

We want the population for t = 2 hours, then:

p(t) = 500 . (1.1)^t

p(2) = 500 . (1.1)^2

p(2) = 500 . (1.21)

p(2) = 605

Answer: the population at t = 2 hours is 605 algae.

c)

Let's plug t = 4 in our function again:

p(t) = 500 . (1.1)^t

p(4) = 500 . (1.1)^4

p(4) = 500 . (1.1)² . (1.1)²

p(4) = 500 . (1.21) . (1.21)

p(4) = 500 . (1.21)²

p(4) = 732.05

Answer: the population at t = 4 hours is 732 algae.

andrew went to the store to buy some walnuts. the price pee walnut is $4 per pound and he has a coupon for $1 off the final amount. with the coupon, how much would andrew have to pay to buy 4 pounds of walnuts? what is the expression for the cost to buy p pounds of walnuts , assuming at least one pound is purchased.

Answers

The amount Andrew have to pay to buy 4 pounds of walnuts = $19

The expression for the cost to buy p pounds of walnuts= 4p - 1

Explanation:

Amount per pound of walnut = $4

Amount of coupon = $1

The cost of 4 pounds of walnuts:

[tex]\text{Cost = 4 }\times5=\text{ \$20}[/tex]

The amount Andrew have to pay to buy 4 pounds of walnuts:

Amount = cost - coupon

Amount = $20 - $1

The amount Andrew have to pay to buy 4 pounds of walnuts = $19

The expression for the cost to buy p pounds of walnuts:

let number of pounds = p

Cost for p pounds of walnut = Amount per walnut * number of walnut

Cost for p pounds of walnut = $4 * p

= $4p

The expression for the cost to buy p pounds of walnuts= cost for p - coupon

= 4p - 1

The width of a rectangle measures (5v-w)(5v−w) centimeters, and its length measures (6v+8w)(6v+8w) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?

Answers

The most appropriate choice for perimeter of rectangle will be given by -

Perimeter of rectangle = (22v + 14w) cm

What is perimeter of rectangle?

At first it is important to know about rectangle.

Rectangle is a parallelogram in which every angle of the parallelogram is 90°.

Perimeter of rectangle is the length of the boundary of the rectangle.

If l is the length of the rectangle and b is the breadth of the rectangle, then perimeter of the rectangle is given by

Perimeter of rectangle = [tex]2(l + b)[/tex]

Length of rectangle = (5v - w) cm

Breadth of rectangle = (6v + 8w) cm

Perimeter of rectangle = 2[(5v - w) + (6v + 8w)]

                                      = 2(11v + 7w)

                                      = (22v + 14w) cm

To learn more about perimeter of rectangle, refer to the link -

https://brainly.com/question/19819849

#SPJ9

Complete Question

The width of a rectangle measures (5v−w) centimeters, and its length measures(6v+8w) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?

The function h (t) = -4.9t² + 19t + 1.5 describes the height in meters of a basketball t secondsafter it has been thrown vertically into the air. What is the maximum height of the basketball?Round your answer to the nearest tenth.1.9 metersO 19.9 meters16.9 metersO 1.5 meters

Answers

Since the function describing the height is a quadratic function with negative leading coefficient this means that this is a parabola that opens down. This also means that the maximum height will be given as the y component of the vertex of the parabola, then if we want to find the maximum height, we need to write the function in vertex form so let's do that:

[tex]\begin{gathered} h(t)=-4.9t^2+19t+1.5 \\ =-4.9(t^2+\frac{19}{4.9}t)+1.5 \\ =-4.9(t^2+\frac{19}{4.9}t+(\frac{19}{9.8})^2)+1.5+4.9(\frac{19}{9.8})^2 \\ =-4.9(t+\frac{19}{9.8})^2+19.9 \end{gathered}[/tex]

Hence the function can be written as:

[tex]h(t)=-4.9(t+1.9)^2+19.9[/tex]

and its vertex is at (1.9,19.9) which means that the maximum height of the ball is 19.9 m

А ВC D0 2 4 68 10 12Which point best represents V15?-0,1)A)point AB)point Bpoint CD)point D

Answers

We have to select a point that is the best representative of the square root of 15.

We can calculate the square root of 15 with a calculator, but we can aproximate with the following reasoning.

We know that 15 is the product of 3 and 5. If we average them, we have 4.

If we multiply 4 by 4, we get 16, that is a little higher than 15.

If we go to the previous number (3) and calculate 3 by 3 we get 9, that is far from 15 than 16.

So we can conclude that the square root of 15 is a number a little less than 4.

In the graph, the point B is the one that satisfy our conclusion, as it is a point in the scale that is between 3 and 4, and closer to 4.

The answer is Point B

Help me please Circle describe and correct each error -2=-3+x/4-2(4)-3+x/4•48=-3+x+3X=11

Answers

Answer

The error in the solution is circled (red) in the picture below.

The equation can be solved correctly as follows

[tex]\begin{gathered} -2=\frac{-3+x}{4} \\ \\ Multiply\text{ }both\text{ }sides\text{ }by\text{ }4 \\ \\ -2(4)=\frac{-3+x}{4}\cdot4 \\ \\ -8=-3+x \\ \\ Add\text{ }3\text{ }to\text{ }both\text{ }sides \\ \\ -8+3=-3+x+3 \\ \\ x=-5 \end{gathered}[/tex]

Please help me on #1 Please show your work so I can follow and understand

Answers

Answer:

Between markers 3 and 4.

Explanation:

We know that each student runs 2 / 11 miles. Given this, how many miles do the first two students run?

The answer is

[tex]\frac{2}{11}\cdot2=\frac{4}{11}\text{miles}[/tex]

Now, we know that the course has markers every 0.1 miles. How many markers are ther in 4 /11 miles?

The answer is

[tex]\frac{2}{11}\text{miles}\times\frac{1\text{marker}}{0.1\; miles}[/tex][tex]=3.6\text{ markers}[/tex]

This is between markers 3 and 4. Meaning that the second student finishes between markers 3 and 4.

According to projections through the year 2030, the population y of the given state in year x is approximated byState A: - 5x + y = 11,700State B: - 144x + y = 9,000where x = 0 corresponds to the year 2000 and y is in thousands. In what year do the two states have the same population?The two states will have the same population in the year

Answers

The x variable represents the year in question. The year 2000 is represented by x = 0, 2001 would be repreented by x = 1, and so on.

The year in which both states would have the same population can be determined by the value of x which satisfies both equations.

We would now solve these system of equations as follows;

[tex]\begin{gathered} -5x+y=11700---(1) \\ -144x+y=9000---(2) \\ \text{Subtract equation (2) from equation (1);} \\ -5x-\lbrack-144x\rbrack=11700-9000 \\ -5x+144x=2700 \\ 139x=2700 \\ \text{Divide both sides by 139} \\ x=19.4244 \\ x\approx19\text{ (rounded to the nearest whole number)} \end{gathered}[/tex]

Note that x = 19 represents the year 2019

ANSWER:

The two states will have the same population in the year 2019

Other Questions
Looking to receive assistance on the following problem, thank you! The points (-6, -10) and (23, 6) form a line segment.Write down the midpoint of the line segment. 6th grade math, Please Help) 2 people pls answer so i can make brainliest! and you will get 20 points :)Evaluate the Algebraic expression; j+2h= when f=6, g=8, h=12, j=2OA) 14OB)18OC)26OD)30 find the area of the composite figures by either adding and subtracting regions The table shows the cost for a clothing store to buy jeans and khakis. The total cost for Saturday's shipment, $1,800, is represented by the equation 15x + 20y = 1,800. Use the x- and y-intercepts to graph the equation. Then interpret the x- and y-intercepts. Short Answer: Where did the Zoot Suit style originate from? Tell me what ethnicityand style of music? Use the table to find the slope of the line.Round your answer out to two decimal places 3.1. in pam encoding, the general rule is that we need to sample at twice the bandwidth. in addition, if we use n bits for each sample, we can represent 2n loudness (amplitude) levels. what transmission speed would you need if you wanted to encode and transmit, in real time and without compression, two-channel music with a bandwidth of 22 khz and 1000 loudness levels? (10 points) note: the sampling size, in bits, must be an integer. to minimize quantizing errors, it is customary to select a sampling rate that is twice as much as the signal bandwidth. 3.2. how much disk space would you require to store 1 minutes of digital music as you calculated above? (10 points) 10-9x24/8x6 (pemdas) buying new-car purchase data by zip code from the polk company is an example of which type of secondary data? question 14 options: commercial source media source tradr association source A radio tower is located 250 feet from a building. From a window in the building, a person determines that the angle of elevation to the top of the tower is 31 and that the angle of depression to the bottom of the tower is 29 How tall is the tower? ____________ feet. I'm trying to simplify negative 5/8 divided by negative 3/4 how do I do that? Determine the functions value when x= -1?a. g(-1) = -3b. g(-1) = 0c. g(-1) = 1d. g(-1) = 27 Determine which expression is equivalent to the expression 3 over 4 times g minus 6 minus 7 over 8 times g minus the expression one over 2 times g plus 13. negative 5 over 8 times g plus negative 19 3 over 8 times g plus negative 19 negative 5 over 8 times g plus negative 7 5 over 8 times g plus negative 7 Here are the exam scores for the 15 students in Mr. Kirk's statistics class:72 75 75 78 81 83 85 89 90 90 90 91 95 95 98Karen was at the 20th percentile of the distribution. What score did Karen earn on the exam?(A) 75(B) 78(C) 81(D) 83 Pls help with my hw pls Whats the correct answer answer asap for brainlist I have a practice problem that I need help on.These are included in the problem as well Where did Arjun make errors?Explain his errors and the properties of logarithms that leads to the answer. State the correct answer. Who discovered respiratory infections and the pathogen of respiratory infections? Which equation shows a proportional relationship? options: O y = x O y + 1 = 7x O y - 2 = x + 8 O x = y + 5