the coefficient is the number that accompanies the variable, so:
[tex]3+7D[/tex]The coefficient is 7
Evaluate each expression for the given value of the variable. #9 and #10
Part 9
we have
(c+2)(c-2)^2
If c=8
substitute the value of c in the expression
so
(8+2)(8-2)^2
(10)(6)^2
(10(36)
360
Part 10
we have
7(3x-2)^2
If x=4
substitute the value of x in the expression
7(3(4)-2)^2
7(10)^2
7(100)
700
Choose the correctdomain for thequadratic function.А-00 > X < 0B-00 < x < 0
The function given in the graph stretches from negative to positive infinity.
Hence the domain of the function is given by:
[tex]-\inftyOption B is correct.Which of these is a simplified form of the equation 8y + 4 = 6 + 2y + 1y? 5y = 25y = 1011y = 211y = 10
Explanation:
The equation is given below as
[tex]8y+4=6+2y+1y[/tex]Step 1:
Collect similar terms, we will have
[tex]\begin{gathered} 8y+4=6+2y+1y \\ 8y+4=6+3y \\ 8y-3y=6-4 \\ 5y=2 \end{gathered}[/tex]Hence,
The simplified form of the equation will be
[tex]\Rightarrow5y=2[/tex]Line k contains the points (-9,4) and (9,-8) in the xy-coordinate plane. What are the two other points that lie on line k?
Answer
D. (-3, 0) and (3, -4)
Explanation
Let the coordinate of the points be A(-9, 4) and B(9, -8).
We shall look for the gradient m of line using
m = (y₂ - y₁)/(x₂ - x₁)
Substitute for x₁ = -9, y₁ = 4, x₂ = 9 and y₂ = -8
m = (-8 - 4)/(9 - -9) = -12/18 = -2/3
From option A - D given, only C and D would have the same gradient of -2/3 as line AB
To know the correct option, we shall look for the equation of the line AB, that is,
(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)
(y - 4)/(x - -9) = (-8 - 4)/(9 - -9)
(y -4)/(x + 9) = -12/18
(y - 4)/(x + 9) = -2/3 -----------*
Between option C and D, only D satisfies the equation *
That is, using (-3, 0), we have (0 - 4)/(-3 + 9) = -4/6 = -2/3
Also, using (3, -4), we have (-4 - 4)/(3 + 9) = -8/12 = -2/3
We have a box with a circular base (diameter 20 cm) and height 4 cm.Calculate the volume.
We can calculate the volume as the product of the area of the base and the height.
The area of the base is function of the square of the diameter, so we can write:
[tex]\begin{gathered} V=A_b\cdot h \\ V=\frac{\pi D^2}{4}\cdot h \\ V\approx\frac{3.14\cdot(20\operatorname{cm})^2}{4}\cdot4\operatorname{cm} \\ V\approx\frac{3.14\cdot400\operatorname{cm}\cdot4\operatorname{cm}}{4} \\ V\approx1256\operatorname{cm}^3 \end{gathered}[/tex]Answer: the volume of the box is 1256 cm^2.
Leila triples her recipe that calls for 2/5 of a cup of flour. Leila has 1 cup of flour. Does she have enough to triple her recipe?
no
yes
Answer:
No
Step-by-step explanation:
3 × [tex]\frac{2}{5}[/tex] = [tex]\frac{6}{5}[/tex] = 1 [tex]\frac{1}{5}[/tex] cups required to triple her recipe
she only has 1 cup
so does not have enough to triple her recipe
Answer:
No
Step-by-step explanation:
If she triples it that means you need to triple the 2/5 so she would neew 6/5 of flour which is 1/5 more than what she has.
Michael earns (2x3 + 3x) every month. His wife earns (3x2 + 6) every month. x represents the number of days they work in a month. What is the total earnings in a month?2x3 - 3x2 + 3x - 62x3 + 3x2 + 3x + 66x5 + 21x3 + 18x(2x3 + 3x) / (3x2 + 6)
From the question, we can derive the following:
Micheal earns 2x³ + 3x
His wife earns 3x² + 6
If x represents the number of days they work, in a month, we are asked to find the total earnings in a month.
So we will have:
(2x³ + 3x) + (3x² + 6)
Adding up the two earnings:
2x³ + 3x² + 3x + 6
So, (2x³ + 3x² + 3x + 6) is the total earnings in a month.
So the correct answer is the second option wich is (2x³ + 3x² + 3x + 6).
Let A = {0, 2, 4, 6}, B = {1, 2, 3, 4, 5}, and C = {1, 3, 5, 7}. Find AU (BNC).{
Solution:
Given that;
[tex]\begin{gathered} A=\left\{0,2,4,6\right\} \\ B=\left\{1,2,3,4,5\right\} \\ C=\left\{1,3,5,7\right\} \end{gathered}[/tex]For B∩C, i.e . common elements between bot sets
[tex]B\cap C=\lbrace1,3,5\rbrace[/tex]Then, A∪(B∪C), i.e. all the elements in A and B∩C
[tex]A∪\left(B∪C\right)=\lbrace0,1,2,3,4,5,6\rbrace[/tex]Hence, A∪(B∪C) is
[tex]\begin{equation*} \lbrace0,1,2,3,4,5,6\rbrace \end{equation*}[/tex]Solve the following expression when p = 15 p/3 + 4
So, our answer is 9!
80% of _ = 20?4-4-4-
Let
x -----> the missing number
we know that
80%=80/100=0.80
so
0.80x=20
solve the linear equation for x
Divide by 0.80 both sides
x=20/0.80
x=25
the answer is 25
If log a=4 log b= -16 and log c=19 find value of log a^2c (——-) /—— / B
We have the following
[tex]\begin{gathered} \log a=4 \\ \log b=-16 \\ \log c=19 \\ \log (\frac{a^2\cdot c}{\sqrt[]{b}}) \end{gathered}[/tex]Let's find a, b and c in order to solve the problem
a.
[tex]\begin{gathered} \log a=4 \\ a=10^4=10000 \end{gathered}[/tex]a = 10,000
b.
[tex]\begin{gathered} \log b=-16 \\ b=10^{-16}=\frac{1}{10^{16}} \end{gathered}[/tex]b=1.0E-16
c.
[tex]\begin{gathered} \log c=19 \\ c=10^{19} \end{gathered}[/tex]c=1.0E19
Thus, the value of log [ a^2c/sqrt(c) ] is :
replace:
[tex]\log (\frac{a^2\cdot c}{\sqrt[]{b}})=\log _{10}\mleft(\frac{\left(10^4\right)^2\cdot\:10^{19}}{\sqrt{10^{-16}}}\mright)[/tex]simplify:
[tex]\begin{gathered} \frac{\left(10^4\right)^2\cdot\:10^{19}}{\sqrt{10^{-16}}}=\frac{10^8\cdot10^{19}}{10^{-8}}=10^8\cdot10^8\cdot10^{19}=10^{8+8+19}=10^{35} \\ \Rightarrow\log 10^{35}=35 \end{gathered}[/tex]Therefore, the answer is 35
Convert 7 liters into gallons using measurement conversion 1 liter= 1.0567 quarts. Round to two decimals
Convert 7 liters into gallons
We have the measurement conversion 1 liter= 1.0567 quarts
and the gallons = 4 quarts
So, 7 liters = 7 * 1.0567 quarts = 7.3969 quarts
We will convert from the quarts to gallons as follows:
1 gallons = 4 quarts
x gallons = 7.3969 quarts
so, the value of x will be:
[tex]x=\frac{7.3969}{4}=1.849225[/tex]Round to two decimals
so, the answer will be 1.85 gallons
There are 152 students at a small school and 45 of them are freshmen. What fraction of the students are freshmen? Use "/" for the
fraction bar. Do not use spaces in your answer.
45/152 is fraction of the students are freshmen.
What are fraction?Any number of equal parts is represented by a fraction, which also represents a portion of a whole. A fraction is a portion of a whole and is used to represent how many pieces of a particular size there are while speaking in ordinary English, for example, one-half, eight-fifths, and three-quarters. The number is represented mathematically as a quotient, where the numerator and denominator are split. Both are integers in a simple fraction. There is a proportion there in numerator or denominator of a complicated fraction. There are three main categories of fractions in mathematics. Proper fractions, incorrect fractions, and mixed fractions are these three types. The expressions with a numerator and a denominator are called fractions.
Total students = 152
Freshman = 45
Fraction = 45/152
This is the simplest form .
To know more about fractions , visit:
brainly.com/question/10354322
#SPJ13
Write an equation for a rational function with:
Vertical asymptotes at x = -5 and x =
-6
x intercepts at x = -3 and x = -4
y intercept at 4
Equation for a rational function is 10(x2 + 7x + 12) / (x2 + 11x + 30) = 0.
What is Rational Function?
Any function that can be expressed mathematically as a rational fraction—an algebraic fraction in which both the numerator and the denominator are polynomials—is referred to as a rational function. The polynomials' coefficients don't have to be rational numbers; they can be found in any field K.
So this will be a rational function with the vertical asymptotes given by the denominators:
(x + 5) and (x + 6).
The x-intercepts will be provided by the numerator,
which will be:
a(x + 3)(x + 4)
The letter an is a constant.
Given that (0,4) is the y intercept, we have:
4 = a(0+3)(0+4) / (0+5)(0+6)
4= 12a / 30
12a = 120
now,
a = 120/12,
a = 10,
and a = 1.
Now,
a(x+3)(x+4) / (x+5)(x+6) = 0
10 (x^2 + 7x + 12) / (x^2 + 11x + 30) = 0
Hence, We have the following equation for a rational function:
10 (x2 + 7x + 12) / (x2 + 11x + 30) = 0.
To learn more about Rational Function click on the link
https://brainly.com/question/19044037
#SPJ9
propriate symbols and/or words in your submissionSolve for the indicated measure.5. R = 19°, ZB = 56°, find mZT.6. R = 19, ZB'S 56°, find mZS.7. R = 19°, ZB = 56°, find mZC.8. True or false?AABC = AZXY9. Are the two triangles congruent?Yes or no?10. Use the image below to complete the proof.Identify the parts that are congruent by the given reason in the proof.STATEMENTS REASONSAB = DC GivenAB || DC Given2.Alternate Interior Angles TheoremReflexive Property of CongruenceSAS Congruence Theorem3.4.
ok
The sum of the internal angles in a triangle equals 180°
R + B = T = 180
Substitution
19 + 56 + T = 180
T = 180 - 19 - 56
T = 105°
Result:
T = 105°
-21 < f (x) < 0 , where f (x) = - 2x- 5
We can solve this using the next property:
If a
Replace f (x) = - 2x- 5 , then:
-21 < f (x) < 0
-21 < -2x-5 < 0
Solve -21 < -2x-5 and -2x-5 < 0
Therefore:
-21 < -2x-5
Add both sides 5
-21+5 < -2x-5 +5
-16 < -2x
(-1)-16 < (-1)(-2x)
16>2x
x<16/2
x<8
and
-2x-5 < 0
Add both sides 5
-2x-5 +5 < 0+5
-2x<5
(-1)-2x < (-1)5
2x > -5
x > -5/2
Hence, the resulting interval is:
-5/2 < x < 8
Write a multiplication expression to represent each situation. Then find each product and explain its meaning. Ethan burns 650 calories when he runs for 1 hour. Suppose he runs 5 hours in one week.
We know that
• Ethan burns 650 calories per hour.
If he runs 5 hours we just have to multiply this time with the given rate.
[tex]650\cdot5=3,250[/tex]Therefore, Ethan burns 3,250 calories in 5 hours.B) Use the quadratic formula to find the roots of each quadratic function.
which number is 5 more than 8009998
A number which is 5 more than 8009998 is 8010003
In this question we need to find a number which is 5 more than 8009998.
Let x be a number which is 5 more than 8009998.
We get the required number by adding 5 to 8009998.
so, we write it down as:
x = 8009998 + 5
x = 8010003
Therefore, a number which is 5 more than 8009998 is 8010003
Learn more about the addition here:
https://brainly.com/question/191493
#SPJ1
10 of 25Jackie and Ruth both studied very hard for their history test. Ruth studied 2 hours less than twice as many hours as Jackie.Together,"heir study time was 10 hours. How many hours did Ruth study for her history test?
Answer: 6 hours
Explanation:
We have that "Ruth studied 2 hours less than twice as many hours as Jackie". I will call the hours that Ruth studied "R" and the hours that Jackie studied "J". The first equation is as follows:
[tex]R=2J-2[/tex]The hours that Ruth studied as 2 less than twice as many as Jackie. This will be referred to as equation 1.
Now, we are told that "Together, their study time was 10 hours" so we have the following equation:
[tex]R+J=10[/tex]This will be our equation 2.
The next step is to substitute equation 1 into equation 2:
[tex]2J-2+J=10[/tex]And we solve for J.
Combining like terms:
[tex]3J-2=10[/tex]We add +2 on both sides of the equation to cancel the -2 on the left side:
[tex]\begin{gathered} 3J-2+2=10+2 \\ 3J=12 \end{gathered}[/tex]And we divide both sides by 3:
[tex]\begin{gathered} \frac{3J}{3}=\frac{12}{3} \\ \\ J=4 \end{gathered}[/tex]Jackie studied for 4 hours.
Since we are asked for Ruth, we substitute J=4 into the equation 1:
[tex]\begin{gathered} R=2J-2 \\ R=2(4)-2 \\ R=8-2 \\ R=6 \end{gathered}[/tex]Ruth studied for 6 hours.
Suppose a basketball player has made 359 out of 449 free throws. If the player makes the next 3 free throws, I will pay you $39. Otherwise you pay me $43.
Step 2 of 2 : If you played this game 623 times how much would you expect to win or lose?
Answer: expect to lose 679.07 dollars
==========================================================
Explanation:
Assuming each free throw is independent of any other, the probability of making the next free throw is 359/449
The probability of making 3 in a row is (359/449)^3 = 0.511145 approximately which represents the probability of earning the $39
That must mean 1-0.511145 = 0.488855 is the approximate probability of losing $43
Let's make a table of outcomes and their associated probabilities.
X = amount of money the player earns (the person shooting the free throws)
[tex]\begin{array}{|c|c|} \cline{1-2}\text{X} & \text{P(X)}\\\cline{1-2}39 & 0.511145\\\cline{1-2}-43 & 0.488855\\\cline{1-2}\end{array}[/tex]
Then from here we'll multiply each X and P(X) value for each separate row.
Example: 39*0.511145 = 19.934655
Let's form a third column of these products
[tex]\begin{array}{|c|c|c|} \cline{1-3}\text{X} & \text{P(X)} & \text{X}*\text{P(X)}\\\cline{1-3}39 & 0.511145 & 19.934655\\\cline{1-3}-43 & 0.488855 & -21.020765\\\cline{1-3}\end{array}[/tex]
Add up everything in the X*P(X) column and you should get roughly -1.08611 which rounds to -1.09
The player expects, on average, to lose about $1.09 each time they play this game. Playing 623 times means they should expect to lose 623*1.09 = 679.07 dollars
Of course, given the nature of this random process, it's not a guarantee they will lose this amount. This is just the average of many attempts.
A new shopping mall is gaining in popularity. Every day since it opened, the number of shoppers is 20%, percent more than the number of shoppers the day before. The total number of shoppers over the first 4 days is 671.How many shoppers were at the mall on the first day?Round your final answer to the nearest integer.
if the number of shoppers increases by 20% daily and 671 shoppers had visited over 4 days then let the num ber of shoppers on the first day be x
The numebr of shopperes the next day will be
= x(100 + 20)%
= 1.2x
teh number of shoppers the day after
= 1.2x(100 + 20)%
= 1.44x
the next day, the number
= 1.44x (100 + 20)%
= 1.728x
Given that the total number of people that have shopped after 4 days is 671 then
x + 1.2x + 1.44x + 1.728x = 671
5.368x = 671
x = 671/5.368
= 125
if the number of shoppers increases by 20% daily and 671 shoppers had visited over 4 days then let the num ber of shoppers on the first day be x
The numebr of shopperes the next day will be
= x(100 + 20)%
= 1.2x
teh number of shoppers the day after
= 1.2x(100 + 20)%
= 1.44x
the next day, the number
= 1.44x (100 + 20)%
= 1.728x
Given that the total number of people that have shopped after 4 days is 671 then
x + 1.2x + 1.44x + 1.728x = 671
5.368x = 671
x = 671/5.368
= 125
Given that DE is the midsegment of the scalene AABC, answer theprompts to the right.
Answers:
Part A.
C. AD = AE
Part B.
BC = 26
Explanation:
Part A.
If DE is a midsegment of triangle ABC, D is a point that divides AB into two equal segments, so option A. 1/2 AB = AD is true.
Additionally, if DE is a midsegment of triangle ABC, its length is equal to half the length of the side that the segment doesn't cross. So:
[tex]\begin{gathered} DE=\frac{1}{2}BC \\ 2DE=2\times\frac{1}{2}BC \\ 2DE=BC \end{gathered}[/tex]Therefore, option B is also true.
Triangle ABC is scalene, it means that all their sides have different length, it means that AD is not equal to AE and option C is not true.
Finally, segments AE and EC form AB, so:
AC = AE + EC
AC - AE = AE + EC - AE
AC - AE = EC
So, option D is also true.
Therefore, the answer for part A is C. AD = AE
Part B.
We know that 2DE = BC, so replacing the expression for each segment, we get:
[tex]\begin{gathered} 2DE=BC \\ 2(2x+1)=5x-4 \end{gathered}[/tex]Solving for x:
[tex]\begin{gathered} 2(2x)+2(1)=5x-4 \\ 4x+2=5x-4 \\ 4x+2-4x=5x-4-4x \\ 2=x-4 \\ 2+4=x-4+4 \\ x=6 \end{gathered}[/tex]Now, with the value of x, we get that BC is equal to:
BC = 5x - 4
BC = 5(6) - 4
BC = 30 - 4
BC = 26
So, the answer for part B is 26.
on a map where each unit represents one kilometer two marinas are located at p(4,2) and q(8,12). if a boat travels in a straight line from one marina to the other how far does the boat travel. Answer choices: 14 kilometers 2^296 kilometer 2^5 kilometers
Solution
Step 1:
Write the two given points:
p(4,2) and q(8,12)
Step 2
Find the distance between the two points:
[tex]\begin{gathered} Distance\text{ = }\sqrt{(8-4)^2+(12-2)^2} \\ \\ =\text{ }\sqrt{4^2+10^2} \\ \\ =\text{ }\sqrt{16+100} \\ \\ =\text{ }\sqrt{116} \\ \\ =\text{ 2}\sqrt{29} \end{gathered}[/tex]Answer
[tex][/tex]Which theorem proves that the triangles are congruent?a) CPCTC b) SAS c) AAS d) SSS
Answer:
B. SAS
:)
Step-by-step explanation:
Tasty Subs acquired a food-service truck on October 1, 2024, for $23,100. The company estimates a residual value of $1,500 and a six-year service life. Required:Calculate depreciation expense using the straight-line method for 2024 and 2025, assuming a December 31 year-end.
The company estimates a residual value of $1,500 and a six-year service life.
It is given that,
Cost of truck delivery = $ 23100
Salvage value = $ 1500
Useful life = 6 years
Depreciation expenses by using the straight-line method are calculated as,
[tex]Depreciation\text{ expenses p.a = }\frac{cost\text{ - salvage value }}{useful\text{ life}}[/tex]Substituting the value in the formula,
[tex]\begin{gathered} Depreciation\text{ expenses p.a = }\frac{23100\text{ - 1500}}{6} \\ Depreciation\text{ expenses p.a = }\frac{21600}{6} \\ Depreciation\text{ expenses p.a = 3600} \end{gathered}[/tex]Thu
For triangle ABC, AB = 3 cm and BC = 5 cm.Which could be the measure of AC?A 2 cmB 4 cmC 8 cmD 15 cm
ANSWER
2, 4 and 8
EXPLANATION
We have that in a triangle ABC, AB = 3 cm and BC = 5 cm.
To find the possible length of AC, we can apply the triangle inequality theorem.
It states that in any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side.
This means that:
[tex]\begin{gathered} AB\text{ + AC }\ge\text{ BC} \\ \text{and } \\ AB\text{ + BC }\ge\text{ AC} \\ \text{and} \\ AC\text{ + BC }\ge\text{ AB} \end{gathered}[/tex]So, we have that:
[tex]\begin{gathered} 3\text{ + AC }\ge\text{ 5 }\Rightarrow\text{ AC }\ge\text{ 2} \\ 3\text{ + 5 }\ge\text{ AC }\Rightarrow\text{ AC }\leq\text{ 8} \\ AC\text{ + 5 }\ge3\Rightarrow\text{ AC }\ge\text{ -2} \end{gathered}[/tex]We have to disregard the third line, since the length of a triangle side can only be positive.
So, using the first 2 lines, we see that:
[tex]2\text{ }\leq\text{ AC }\leq\text{ 8}[/tex]This means that from the options, the measure of AC can either be 2, 4 or 8.
Factor the common factor out of each expression (GCF).-32m^5n - 36m^6n - 24m^5n^2________________________
In order to find the greatest common factor (GCF) of the terms, first let's factor the numeric values in their prime factors:
[tex]\begin{gathered} 32=2\cdot2\cdot2\cdot2\cdot2\\ \\ 36=2\cdot2\cdot3\cdot3\\ \\ 24=2\cdot2\cdot2\cdot3 \end{gathered}[/tex]The common factor between these three numbers is the product of the common prime factors, that is, 2 * 2 = 4.
Now, to find the common factor of the variables, we choose for each variable the one with the smaller exponent:
[tex]\begin{gathered} m^5,m^6,m^5\rightarrow m^5\\ \\ n,n,n^2\rightarrow n\\ \\ \\ GCF=m^5n \end{gathered}[/tex]Therefore the common factor is -4(m^5)n.
(we can put the negative signal as well, since all terms are negative).
Look at this set of ordered pairs: (-8, 19) (11, 1) (0, 15. Is this relation a function?
Answer:
Yes, the set of ordered pairs is a function.
Explanation:
To test whether a given set of ordered pairs represents a function, we have to make sure that it satisfies the definition.
By definition, a function cannot have two outputs for one input. For example, the set of ordered pairs (3, 10 ) and (4, 5) represents a function whereas (3, 10) and (3, 13) does not.
With this in mind, looking at the given set we see that every input gives a unique output; therefore, the set represents a function.
2.05x0.004 I know the answer is 0.0082 but when I multiply it myself I get 0.08200?
2 . 0 5 0
0 . 0 0 4
---------------------------------
8 2 0 0
+ 0 0 0 0
0 0 0 0
0 0 0 0
------------------------------
0 . 0 0 8 2 0 0 =
-----------------------------