What is the simplified form of the expression square root of -64
we have
[tex]\sqrt[]{-64}[/tex]Remember that
64=2^6
and
i^2=-1
substitute
[tex]\sqrt[]{-64}=\sqrt[]{(-1)(2^6)}=\sqrt[]{i^2\cdot2^6}=2^3i=8i[/tex]option B1) f(x) = 60.73(0.95)x2) f(x) = 0.93(60.73)x3) f(x) = 60.04 – 8.25 ln x4) f(x) = 8.25 – 60.04 ln x
A logarithmic function is expressed as
y = a + blnx
We would substitute corresponding values of x and y into the function. This will give us two equations. We would solve the equations for a and b. We have
From the table, when x = 1, y = 60
Thus,
60 = a + b * ln1
60 = a + b * 0
60 = a
when x = 2, y = 54
Thus,
54 = a + bln2
54 = a + 0.693b
Substituting a = 60 into 54 = a + 0.693b, we have
54 = 60 + 0.693b
0.693b = 54 - 60 = - 6
b = - 6/0.693
b = - 8.65
The function would be
f(x) = 60 - 8.65lnx
How many different amounts of money can be made
with six pennies, two nickels, and one quarter?
Based on the number of pennies, nickels, and quarters, the number of different amounts of money that can be made are 42.
How to find the different amounts that can be made?First, find out the number of ways to select the different amounts.
There are six pennies so there are 7 ways to collect them including:
(0 times, 1 time, 2, 3, 4, 5, 6)
There are 3 ways to collect nickels and there are two ways to collect quarters.
The number of different amounts of money that can be made are:
= 7 x 3 x 2
= 42 different amounts of money
Find out more on pennies at https://brainly.com/question/2874020
#SPJ1
What is the solution to14h + 6 = 2(5 + 7h) - 4 ?
14h + 6 = 2(5 + 7h) - 4
First , apply distributive porperty to solve the parentheses:
14h+6 =2(5)+2(7h)-4
14h+6 = 10+14h-4
Move the "h " terms to the left:
14h-14h = 10-4-6
0 = 0
h has infinite solutions.
Find the area of a triangle with base 13 ft. and height 6 ft.
SOLUTION
The area of a triangle is given by the formula
[tex]Area=\frac{1}{2}\times base\times height[/tex]From the question we have been given the base as 13 and the height as 6.
So we will substitute base for 13 and height for 6 into the formula, we have
[tex]\begin{gathered} Area=\frac{1}{2}\times13\times6 \\ 6\text{ divides 2, we have 3, this becomes } \\ Area=1\times13\times3 \\ Area=39ft^2 \end{gathered}[/tex]Hence the answer is 39 square-feet
Hello! Need help with this, please explain in an easy way I am in year 9
Let's factor the trinomial step by step:
1. Multiply and divide the whole trinomial by the leading coefficient. For the middle term, leave it expressed:
[tex]3x^2-20x+12\rightarrow\frac{9x^2-20(3x)+36}{3}[/tex]2. We'll factor just like a regular x^2+bx+c trinomial:
• Open two sets of parenthesis and put the square root of the first term on each one
[tex]\frac{(3x)(3x)}{3}[/tex]• Put the sign of the second term of the trinomial in the first set of parenthesis, and the result of multiplying the sign of the second term by the sign of the third term on the second set:
[tex]\frac{(3x)(3x)}{3}\rightarrow\frac{(3x-)(3x-)}{3}[/tex]• Find two numbers whose product is 36 and whose sum is 20
[tex]\begin{gathered} 18\cdot2=36 \\ 18+2=20 \\ \\ \rightarrow18,2 \end{gathered}[/tex]• Fill both sets with such numbers, in ascending order:
[tex]\frac{(3x-)(3x-)}{3}\rightarrow\frac{(3x-18)(3x-2)}{3}[/tex]3. Simplify one of the terms with the denominator:
[tex]\frac{(3x-18)(3x-2)}{3}\rightarrow\frac{3(x-6)(3x-2)}{3}\rightarrow(x-6)(3x-2)[/tex]Therefore, the factorization of our trinomial is:
[tex](x-6)(3x-2)[/tex]Write an equation that expresses the following relationship.u varies jointly with p and d and inversely with wIn your equation, use k as the constant of proportionality.
Answer:
[tex]u=k\cdot\frac{p\cdot d}{w}[/tex]Explanation:
If a varies jointly with b, we write the equation
a = kb
If a varies inversely with b, we write the equation
a = k/b
So, if u varies jointly with p and d and inversely with w, the equation is
[tex]u=k\cdot\frac{p\cdot d}{w}[/tex]What is the value of w?14w +12 = 180
Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate.C=111.1°a=7.1mb=9.6mOption 1: No triangle satisfies the given conditions.Option 2: c=19.6m, A=26.8°, B=42.1°Option 3: c=16.7m, A=30.8°, B=38.1°Option 4: c=13.8m, A=28.8°, B=40.1°
Answer: Option 4: c=13.8m, A=28.8°, B=40.1°
Explanation:
From the information given,
the known sides are a = 7.1 and b = 9.6
the known angle is C = 111.1
We would find side c by applying the cosine rule which is expressed as
c^2 = a^2 + b^2 - 2abCosC
By substituting the given values into the formula,
c^2 = 7.1^2 + 9.6^2 - 2 x 7.1 x 9.6Cos111.1
c^2 = 50.41 + 92.16 - 136.32Cos111.1
c^2 = 142.57 - 136.32Cos111.1 = 191.6448
c = √191.6448 = 13.8436
c = 13.8
To find angle A, we would apply the sine rule which is expressed as
a/SinA = c/SinC
Thus,
7.1/SinA = 13.8436/Sin 111.1
By cross multiplying, we have
13.8436SinA = 7.1Sin111.1
SinA = 7.1Sin111.1/13.8436 = 0.4785
Taking the sine inverse of 0.4785,
A = 28.8
Recall, the sum of the angles in a triangle is 180. Thus,
A + B + C = 180
28.8 + B + 111.1 = 180
139.9 + B = 180
B = 180 - 139.9
B = 40.1
Option 4: c=13.8m, A=28.8°, B=40.1°
A restaurant has 5 desserts, 3 side dishes and 4 main dishes. A student chooses one side dish, one main dish, and one dessert. How many different meals could he make?
30
Explanation
if the first event occurs in x ways, and the second event occurs in y ways, then two events occur in as sequence of xy ways.
so
event A ; choose (1) dessert , 5 ways
event B , chosen (1) side dish, 3 ways
event C, choose (1) main dish, 2 ways
so
a meal( 1 dessert+1 side dish+main dish) is the product of the 3 ways
[tex]\begin{gathered} \text{ways a meal could be made= (5}\cdot3\cdot2)\text{ ways} \\ \text{ways a meal could be made=}30\text{ ways} \end{gathered}[/tex]therefore, the answer is
30
I hope this helps you
We need to know how to Convert the fraction into its decimal representation on level seven using step by step instructions. We especially need to know how to solve 1/7 in level seven
We want to convert our fractions in a way the denominators are potencys of 10. Let's start with the first one.
[tex]\frac{32}{40}[/tex]If we multiply both the numerator and denominator by 25, we're going to have
[tex]\frac{32\times25}{40\times25}=\frac{800}{1000}=0.8[/tex]Now, with the next fraction
[tex]\frac{12}{48}[/tex]Dividing both numerator and denominator by 12, we have
[tex]\frac{12}{48}=\frac{1}{4}[/tex]Again, If we multiply both the numerator and denominator by 25, we're going to have
[tex]\frac{1}{4}=\frac{25}{100}=0.25[/tex]For the next fraction, it is enough to multiply both numerator and denominator by 4
[tex]\frac{3}{25}=\frac{12}{100}=0.12[/tex]For the next one, we can again multiply both the numerator and denominator by 25
[tex]\frac{18}{40}=\frac{450}{1000}=0.45[/tex]9.State the slope and y-value of the y-intercept of the equation, y = 6x + 9Slopey-intercept
The slope is 6 and the y-intercept is 9
Explanation:The given equation is:
y = 6x + 9
The general form of the equation of a line is
y = mx + c
where m is the slope and c is the y-intercept.
Comparing these equations, we see that
m = 6 and c = 9
Therefore, the slope is 6 and the y-intercept is 9
Find the coordinates of point p that partition AB in the ratio 1: 4,
Given:
[tex]A(1,-1)\text{ ; B(}4,4)\text{ m:n =1:4}[/tex][tex](x,y)=(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex][tex](x,y)=(\frac{4+4}{1+4},\frac{4-4}{1+4})[/tex][tex](x,y)=(\frac{8}{5},0)[/tex]Therefore the point P be ( 1.6 ,0)
1. Write a linear equation of the form y1 = mx + b for your first set of data.2. Write a linear equation of the form y2 = mx + b for the other equation in your system. 3. Graph and explain the solution.
Given:
Company A: transport 56 people in one hour for $40 per person in 30 minutes
Company B:
what is quotient of 0.5?
A.25÷5
B.2.5÷5
C.25÷0.5
D.25÷0.05
Answer:
B
Step-by-step explanation:
2.5/5=0.5
Answer: the answer is b
Step-by-step explanation:
because 2.5 goes into 5 0.5 times also written as 1/2 and said as one half i hope this helps have a great day (brainly pls)
model and solve. 3/5 ÷ 1/2 =
Solution:
Consider the following diagram
extremes and means are multiplied in the diagram. Then we have that:
[tex]\frac{\frac{3}{5}}{\frac{1}{2}}\text{ = }\frac{3\text{ x 2}}{5\text{ x1}}\text{ = }\frac{6}{5}\text{ = 1.2}[/tex]and this number is represented on the real line as follows:
Given a and b are first quadrant angles, sin a=5/13 and cos b=3/5 evaluate cos (a+b)1) 56/652) 33/653) 16/65
Match each expression to the equivalents value. 4. i^121 A. 15. i^240 B. -16. i^90 C. -i7. i^43 D. i
Let's find the value of each expression.
[tex]undefined[/tex]Use the drawing tool(s) to form the correct answer on the provided graph, The function fx) is shown on the provided graph. Graph the result of the following transformation on f(X). f(x) + 6
We have that the line passes by the points (0, -2) & (1, 2). Using this we determine the slope (m) and then the function. After that we transformate the function. We proceed as follows:
[tex]m=\frac{2-(-2)}{1-0}\Rightarrow m=4[/tex]Now, using one of the points [In our case we will use (0, -2), but we can use any point of the line] and the slope, we replace in:
[tex]y-y_1=m(x-x_1)[/tex]Then:
[tex]y-(-2)=4(x-0)[/tex]Now, we solve for y:
[tex]\Rightarrow y+2=4x\Rightarrow y=4x-2[/tex]And we apply the transformation to our line, that is f(x) -> f(x) + 6:
[tex]y=4x-2+6\Rightarrow y=4x+4[/tex]Therefore our final line (After the transformation) is y = 4x + 4, and graphed that is:
would this be (0, -1) since if b is greater than 1 but it is also -2
The y-intercept is the point where the graph cuts the y-axis. The y-axis is the line x = 0, therefore, to find the y-coordinate of this point we just need to evaluate x = 0 in our function.
[tex]\begin{gathered} y(x)=b^x-2 \\ y(0)=b^0-2 \end{gathered}[/tex]Any nonzero real number raised to the power of zero is one, therefore
[tex]y(0)=b^0-2=1-2=-1[/tex]The y-intercept is (0, -1).
Write a linear function f with f (- 1/2) = 1 and f (0) = -4
The linear function f with f (- 1/2) = 1 and f (0) = -4 would be ; y = -5x -4.
What is linear equation?Linear equation is equation in which each term has at max one degree. Linear equation in variable x and y can be written in the form y = mx + c
Linear equation with two variables, when graphed on cartesian plane with axes of those variables, give a straight line.
We are asked to write the linear function f with f (- 1/2) = 1 and f (0) = -4
Let the equation in variable x and y can be written in the form y = mx + c
So f (- 1/2) = 1
this gives, 1 = -1/2m+c -----------eq 1
Also f (0) = -4
This gives -4 = c. --------------eq2
Now Putting value of c in equation in eq1 we get m=0.
So 1 = -1/2m+c
1 = -1/2m - 4
m = -5
Then we get;
y = -5x -4.
Learn more about linear equations here:
https://brainly.com/question/27465710
#SPJ1
Which is the better buy: $40.00 for 30 gallons of gas or $8.50 for 8 gallons ofgas?
Ok, we need to calculate the value of each gallon and see which is the cheapest:
First Option: 40/30=1.33
Second Option: 8.5/8=1.0625
This mean that the better buy is $8.50 for 8 gallons of gas.
Find the slope of the line passing through the points(-2,6) and (-6, 3).
Answer:
3/4
Step-by-step explanation:
To find the slope (gradient) of the line = change in y / change in x
[tex]slope=\frac{y_{2}-y_{1} }{x_{2} -x_{1} }\\(x_{1} ,y_{1} ) = (-2,6)\\(x_{2} ,y_{2} ) = (-6,3)[/tex]
insert those coordinates in the equation:
[tex]slope=\frac{3-6}{-6-(-2)} =\frac{-3}{-4} =\frac{3}{4}[/tex]
The graph below shows the length of Jutta's hair over 6 months period. Each month point represents a measurement at the beginning of a month. How many inches did her hair grow between the beginning of February and the beginning of July?
Given:
Length of hair at the beginning of february is 4.1''
Length of hair at the beginning of July is 7.7''
[tex]\begin{gathered} \text{Hair grown between beginning of February an beginning of July=7.7''-4.1''} \\ =3.6^{\doubleprime} \end{gathered}[/tex]Calculate Sy for the arithmetic sequence in which ag = 17 and the common difference is d =-21.O A -46O B.-29.2O C. 32.7O D. 71.3
Given: An arithmetic sequaence has the following parameters
[tex]\begin{gathered} a_9=17 \\ d=-2.1 \end{gathered}[/tex]To Determine: The sum of the first 31st term.
Please note that the sum of the first 31st term is represented as
[tex]S_{31}=\text{ sum of the first 31st term}[/tex]The formula for the finding the n-term of an arithmetic sequence (AP) is
[tex]\begin{gathered} a_n=a+(n-1)d \\ \text{Where} \\ a_n=n-\text{term} \\ a=\text{first term} \\ d=\text{common difference} \end{gathered}[/tex]Since, we are given the 9th term as 17, we can calculate the first term a, as shown below:
[tex]\begin{gathered} a_9=17 \\ \text{Substituting into the formula} \\ a_9=a+(9-1)d \\ a_9=a+8d \\ \text{Therefore:} \\ a+8d=17 \\ d=-2.1 \\ a+8(-2.1)=17 \\ a-16.8=17 \\ a=17+16.8 \\ a=33.8 \end{gathered}[/tex]Calculate the sum of the first 31st term.
The formula for finding the first n-terms of an arithmetic series is given as
[tex]S_n=\frac{n}{2}(2a+(n-1)d)[/tex]We are given the following:
[tex]a=33.8,n=31,d=-2.1[/tex]Substitute the given into the formula:
[tex]\begin{gathered} S_{31}=\frac{31}{2}(2(33.8)+(31-1)-2.1) \\ S_{31}=15.5(67.6)+(30)-2.1) \\ S_{31}=15.5(67.6-63) \end{gathered}[/tex][tex]\begin{gathered} S_{31}=15.5(4.6) \\ S_{31}=71.3 \end{gathered}[/tex]Hence, the sum of the first 31st term of the A.P is 71.3, OPTION D
Are there no more tutors for mathematics, I can’t seem to find the option anymore for a tutor.
A quadratic equation is represented graphically as:
[tex]y=a(x-h)^2+k[/tex]Here the graph represents the parabola where (h,k) is the vertex of the parabola.
Put any value of h, k and a to get the graph as follows:
The graph of a quadratic equation is parabolic in nature.
Suppose that you have a quadratic equation given by:
[tex]y=x^2-5x+6[/tex]Convert the equation into perfect square by completing the square method
[tex]\begin{gathered} y=(x^2-5x+\frac{25}{4})+6-\frac{25}{4} \\ y=(x-\frac{5}{2})^2-\frac{1}{4} \end{gathered}[/tex]This is the method of conversion of quadratic to plot the graph.
use the figure at the right . if JK=5x+23 and NO=29, what is the value of x?
From the triangle midpoint theroem,
[tex]\begin{gathered} NO=\frac{1}{2}JK \\ 29=\frac{1}{2}(5x+23) \\ 58=5x+23 \\ 58-23=5x \\ 35=5x \\ x=7 \end{gathered}[/tex]Write the inverse of the given conditional statement.Conditional Statement: "If a shape has four sides, then theshape is a rectangle."Inverse Statement: Ifthen
Given: A conditional statement, "If a shape has four sides, then the
shape is a rectangle."
Required: To write the inverse of the statement.
Explanation: The given statement has two following statements:
[tex]\begin{gathered} p\rightarrow\text{ A shape has four sides} \\ q\rightarrow\text{ The shape is rectangle} \end{gathered}[/tex]The inverse of the statement will be
[tex]\text{ If }∼q\text{ then \thicksim}p[/tex]Hence the inverse statement is
Final Answer: The inverse statement is- "If the shape is not a rectangle, then the shape doesn't has four sides."
Find the distance between the two points. 15.) (-3, -1), (-1, -5)-use Pythagorean Throrem
Answer:
4.5 units
Explanation:
First, we need to draw the points (-3, -1) and (-1, -5) as follows
Therefore, the distance between the points is the length of the yellow line. This distance is the hypotenuse of a triangle with legs a and b.
The length of a is 2 and the length of b is 4
Then, using the Pythagorean theorem, we can calculate the length of c as follow
[tex]\begin{gathered} c^2=a^2+b^2 \\ c^2=2^2+4^2 \\ c^2=4+16 \\ c^2=20 \end{gathered}[/tex]So, using the calculator, we get that the value of c is equal to
[tex]\begin{gathered} \sqrt{c^2}=\sqrt{20} \\ c=\sqrt{20} \end{gathered}[/tex]To find an approximate value for c, we will use the following:
We know that √16 = 4 and √25 = 5
Since 20 is between 16 and 25, the square root of 20 is a number between 4 and 5, so we can approximate it to 4.5.
Therefore,
c = 4.5
Describe the relationship between average velocity of a car in motion versus the instantaneous velocity of the same car in motion. Which one matters more if you get pulled over on the freeway for speeding and why?
Answer:
During a typical trip to school, your car will undergo a series of changes in its speed. If you were to inspect the speedometer readings at regular intervals, you would notice that it changes often. The speedometer of a car reveals information about the instantaneous speed of your car. It shows your speed at a particular instant in time.
Step-by-step explanation:
The instantaneous speed of an object is not to be confused with the average speed. Average speed is a measure of the distance traveled in a given period of time; it is sometimes referred to as the distance per time ratio. Suppose that during your trip to school, you traveled a distance of 5 miles and the trip lasted 0.2 hours (12 minutes). The average speed of your car could be determined as
On the average, your car was moving with a speed of 25 miles per hour. During your trip, there may have been times that you were stopped and other times that your speedometer was reading 50 miles per hour. Yet, on average, you were moving with a speed of 25 miles per hour.
hope this helps might not be the answer your looking for but a better explanation on how too figure it out :))
If the discriminant is 22, then the roots of the quadratic equation are ________________.irrationalrationalreal and equalcomplex
Given:
The discriminant is 22.
Required:
To choose the correct option for the roots.
Explanation:
The desciminant is 22 means
[tex]b^2-4ac=22[/tex]We know that if
[tex]b^2-4ac>0[/tex]the equation has two distinct real number roots.
Therefore the roots are irrational or rational.
Final Answer:
The roots are irrational or rational.