Explanation:
endpoints (5,7) and (1,3)
The equation of circle formula:
[tex]\begin{gathered} (x-a)^2+(y-b)^2=r^2 \\ radius\text{ =r and (a, b) are the coordinates of the centre} \end{gathered}[/tex]To find the centre(a, b), we need to find the midpoint of the two given points:
[tex]\begin{gathered} \text{Midpoint = }\frac{1}{2}(x_1+x_2),\text{ }\frac{1}{2}(y_1+y_2) \\ \text{Midpoint = 1/2(5+1), 1/2(7+3)} \\ \text{Midpoint = 3, 5} \\ \text{centre = (a, b) =(3, 5)} \end{gathered}[/tex]The radius is the distance between the centre of the circle and any of the two points.
We will apply the distance formula:
[tex]\begin{gathered} dis\tan ce\text{ = }\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2} \\ (3,5)\text{ and (1, 3)} \\ \text{Distance =}\sqrt[]{(3-5)^2+(1-3)^2} \\ \text{Distance =}\sqrt[]{4+4} \\ \text{Distance =}\sqrt[]{8}\text{ = 2}\sqrt[]{2} \\ \text{radius = distance = 2}\sqrt[]{2} \end{gathered}[/tex]Using the equation of circle:
[tex]\begin{gathered} (x-3)^2+(y-5)^2=(2\sqrt[]{2)}^2 \\ (2\sqrt[]{2)}^2=\text{ }2\sqrt[]{2)}\times2\sqrt[]{2)}\text{ = 4(}\sqrt[]{2})^2\text{ = 4(2) = 8} \\ (x-3)^2+(y-5)^2=\text{ 8} \end{gathered}[/tex]the sum of interior angle measures of a polygon with n sides is 2340 degrees. find n15
the measure of each angle will be 2340/n then if n=15 the measure of each one of the angles will be 2340/15=156 degrees
Write the Distance Formula
Replace c with d to write the distance formula. Use the Distance Formula to Find the Distance Between Two Points
Find the distance, d, between G and H using the distance formula.
The distance between any two points (x1,y₁) and (x2,y2) on a
coordinate plane can be found by using the distance formula. Let (x,y)= (-2,1) and (x2,y2) =(4,-3). Substitute these values into the
distance formula and evaluate.
The distance between the two points is [tex]2\sqrt{13} units[/tex]
What is distance formula?
Distance formula is the measurement of distance between 2 points. It calculates the straight line distance between the given points. The formula can be given as [tex]distance=\sqrt{(c-a)^{2} +(d-b)^{2} }[/tex] Where A(a, b) B(c, d) Are the coordinates.
We are given the coordinates as (-2, 1) and (4, -3)
We substitute the values in the distance formula we get
[tex]distance=\sqrt{(c-a)^{2} +(d-b)^{2} } \\distance=\sqrt{(4+2)^{2} +(-3-1)^{2} }\\ distance=\sqrt{36+16 } \\distance=\sqrt{52 } \\distance =2\sqrt{13}[/tex]
Hence the distance between two points is [tex]2\sqrt{13} units[/tex]
To learn more about distance formula please refer
https://brainly.com/question/661229
#SPJ13
Martin and Isabelle go bowling. Each game costs $10, and they split that cost. Martin has his own bowling shoes, but Isabelle pays $3 to rent shoes.Which graph shows a proportional relationship? Explain why.
We have the following:
Martin's graph is good and correct, although it is not totally straight, but the relationship that it keeps is totally proportional.
On the other hand, Isabelle's graph, although it is totally straight, is wrong, because she must start from 3, which is the rental value of the shoes, and her graph starts at 0, therefore it is wrong, despite of which shows a proportional relationship.
Therefore the correct answer is Martin's graph.
Answer:
Step-by-step explanation:
1a. 100 foot-long rope is cut into 3 pieces.The first piece of rope is 3 times as long asthe second piece of rope. The third piece istwice as long as the first piece of rope.What is the length of the longest piece ofrope?
To solve the exercise, it is easier to make a drawing, like this
So, you have
[tex]\begin{gathered} z=3y \\ y=y \\ x=2z \\ z+y+x=100 \end{gathered}[/tex]Now solving
[tex]\begin{gathered} x=2z \\ x=2(3y) \\ x=6y \end{gathered}[/tex][tex]\begin{gathered} z+y+x=100 \\ 3y+y+6y=100 \\ 10y=100 \\ \frac{10y}{10}=\frac{100}{10} \\ y=10\text{ ft} \end{gathered}[/tex][tex]\begin{gathered} x=6y \\ x=6(10) \\ x=60\text{ ft} \end{gathered}[/tex][tex]\begin{gathered} z=3y \\ z=3(10) \\ z=30\text{ ft} \end{gathered}[/tex]Therefore, the length of the longest piece is 60ft.
mr dudzic has above ground swimming pool thatbis a circular cylinder. the diameter of the pool is 25 ft. and the height isb4.5 ft. in order to open he needs to shock it with chlorine. if one gallon of liquid chlorin treats 3000 gallons of water, how many full gallons will he need to buy. (1 foot^3=7.48 gallons)
The volume of the cylinder is
[tex]V=\pi\text{ }\times r^2\times h[/tex]The diameter of the cylinder is 25 feet, then
The radius of it = 1/2 x diameter
[tex]r=\frac{1}{2}\times25=12.5ft[/tex]Since the height is 4.5 ft
Substitute them in the rule above
[tex]\begin{gathered} V=3.14\times(12.5)^2\times4.5 \\ V=2207.8125ft^3 \end{gathered}[/tex]Now we will change the cubic feet to gallons
[tex]\because1ft^3=7.48\text{ gallons}[/tex]Then multiply the volume by 7.48 to find the number of gallons
[tex]7.48\times2207.8125=16514.4375gallons[/tex]Now let us divide the number of gallons by 3000 to find how many gallons of liquid chlorin he needs to buy
[tex]\frac{16514.4375}{3000}=5.5048125[/tex]Then he has to buy 6 full gallons
a line with a slope of 1/3 and containing the point (-4,7)
An equation of line with a slope of 1/3 and containing the point (-4,7) is
y = 1/3 x + 25/7
In this question, we have been given
slope (m) = 1/3
and a point (-4, 7)
We need to find an equation of a line with a slope of 1/3 and containing the point (-4,7)
Using the formula for the slope-point form of equation of line,
y - y1 = m(x - x1)
y - 7 = 1/3(x + 4)
y - 7 = (1/3)x + 4/3
y = (1/3)x + 4/3 + 7
y = 1/3 x + 25/7
Therefore, an equation of line with a slope of 1/3 and containing the point (-4,7) is y = 1/3 x + 25/7
Learn more about the equation of line here:
https://brainly.com/question/24524587
#SPJ1
A 35-foot wire is secured from the top of a flagpole to a stake in the ground. If the stake is 1 feet from the base of the flagpole, how tall is the flagpole?
The figure for the height of flagpole, wire and ground is,
Determine height of the pole by using the pythagoras theorem in triangle.
[tex]\begin{gathered} l^2=b^2+h^2 \\ (35)^2=(14)^2+h^2 \\ 1225-196=h^2 \\ h=\sqrt[]{1029} \\ =32.078 \\ \approx32.08 \end{gathered}[/tex]Thus, height of the flagpole is 32.08 feet.
vertical anges are always equal to each other
Given the statement:
Vertical angles are always equal to each other
The answer is: True
Because they are inclosed by the same lines
15 = a/3 - 2
what is a?
Answer: a is 51
Step-by-step explanation:
Hope this help.
Answer:
a==51
Step-by-step explanation:
15=a/3-2
a/3-2+2=15+2
a/3=17
a=17*3
a=51
Create three different proportions that can be used to find BC in the figure above. At least one proportion must include AC as one of the measures.
We are given two similar triangles which are;
[tex]\begin{gathered} \Delta AEB\text{ and }\Delta ADC \\ \end{gathered}[/tex]Note that the sides are not equal, but similar in the sense that the ratio of two sides in one triangle is equal to that of the two corresponding sides in the other triangle.
To calculate the length of side BC, we can use any of the following ratios (proportions);
[tex]\frac{AE}{ED}=\frac{AB}{BC}[/tex][tex]\frac{AB}{AC}=\frac{AE}{AD}[/tex][tex]\frac{AE}{AB}=\frac{AD}{AC}[/tex]Using the first ratio as stated above, we shall have;
[tex]\begin{gathered} \frac{AE}{ED}=\frac{AB}{BC} \\ \frac{8}{5}=\frac{6.5}{BC} \end{gathered}[/tex]Next we cross multiply and we have;
[tex]\begin{gathered} BC=\frac{6.5\times5}{8} \\ BC=4.0625 \end{gathered}[/tex]ANSWER:
[tex]BC=4.0625[/tex]1+——>1/12 write. Fraction to make each number sentence true, answer I got is 1/1
c) Set x to be the number we need to find; therefore, the inequality to be solved is
[tex]\begin{gathered} 1+x>1\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2} \\ \Rightarrow1+x>\frac{3}{2} \\ \Rightarrow-1+1+x>-1+\frac{3}{2} \\ \Rightarrow x>\frac{1}{2} \end{gathered}[/tex]Therefore, any number greater than 1/2 (greater, not equal to) satisfies the inequality; particularly 1/1=1>1/2. Thus, 1/1 is a possible answer
5. How would you solve the system of equations y = 5x + 1 and -2x + 3y =-10 ? What is the solution? *
SOLUTION:
Step 1:
In this question, we are given the following:
Solve the system of equations y = 5x + 1 and -2x + 3y =-10 ?
What is the solution?
Step 2:
The solution to the systems of equations:
[tex]\begin{gathered} y\text{ = 5x + 1 -- equation 1} \\ -2x\text{ + 3y = -10 -- equation 2} \end{gathered}[/tex]check:
Given y = -4 , x = -1
Let us put the values into the equation:
y = 5x + 1 and -2x + 3y = -10
[tex]\begin{gathered} y\text{ = 5x + 1} \\ -4=5(-1)\text{ + 1} \\ -4=-5+1 \\ -4\text{ = - 4 (COR}\R ECT) \end{gathered}[/tex][tex]\begin{gathered} -2x+3y\text{ = -10} \\ -2(-1)+3(-4)_{}_{} \\ 2-12=-10\text{ (COR}\R ECT) \end{gathered}[/tex]CONCLUSION:
The solution to the system of equations are:
[tex]\begin{gathered} \text{x = -1} \\ y=-4 \end{gathered}[/tex]
Solve for k 4k – 6/3k – 9 = 1/3
hello
to solve this simple equation, we need to follow some simple steps.
[tex]4k-\frac{6}{3}k-9=\frac{1}{3}[/tex]step 1
multiply through by 3
we are doing this to eliminate the fraction and it'll help us solve this easily
[tex]\begin{gathered} 4k(3)-\frac{6}{3}k(3)-9(3)=\frac{1}{3}(3) \\ 12k-6k-27=1 \end{gathered}[/tex]notice how the equation haas changed suddenly? well this was done to make the question simpler and faster to solve.
step 2
collect like terms and simplify
[tex]\begin{gathered} 12k-6k-27=1 \\ 12k-6k=1+27 \\ 6k=28 \\ \end{gathered}[/tex]step three
divide both sides by the coefficient of k which is 6
[tex]\begin{gathered} \frac{6k}{6}=\frac{28}{6} \\ k=\frac{14}{3} \end{gathered}[/tex]from the calculations above, the value of k is equal to 14/3
find the area of the circle with a circumference of 30π. write your solution in terms of π
we know that
the circumference of a circle is giving by
[tex]C=2\pi r[/tex]we have
C=30pi
substitute
[tex]\begin{gathered} 30\pi=2\pi r \\ \text{simplify} \\ r=\frac{30}{2} \\ r=15\text{ units} \end{gathered}[/tex]Find the area of the circle
[tex]A=\pi r^2[/tex]substitute the value of r
[tex]\begin{gathered} A=\pi(15^2) \\ A=225\pi\text{ unit\textasciicircum{}2} \end{gathered}[/tex]the area is 225π square unitsJ is the midpoint of CT if CJ=5x-3 and JT=2x+21 find CT
Since J is the midpoint of the CT segment, then:
[tex]\begin{gathered} CJ=JT \\ 5x-3=2x+21 \end{gathered}[/tex]Now, you can solve the equation for x:
[tex]\begin{gathered} 5x-3=2x+21 \\ \text{ Add 3 from both sides of the equation} \\ 5x-3+3=2x+21+3 \\ 5x=2x+24 \\ \text{ Subtract 2x from both sides of the equation} \\ 5x-2x=2x+24-2x \\ 3x=24 \\ \text{ Divide by 3 from both sides of the equation} \\ \frac{3x}{3}=\frac{24}{3} \\ x=8 \end{gathered}[/tex]Replace the value of x into the equation for segment CJ or segment JT to find out what its measure is. For example in the equation of the segment CJ:
[tex]\begin{gathered} CJ=5x-3 \\ x=8 \\ CJ=5(8)-3 \\ CJ=40-3 \\ CJ=37 \end{gathered}[/tex]Finally, you have
[tex]\begin{gathered} CJ=37 \\ CJ=JT \\ 37=JT \\ \text{ Then} \\ CT=CJ+JT \\ CT=37+37 \\ CT=74 \end{gathered}[/tex]Therefore, the measure of the segment CT is 74.
helpppppppppppppppppppppppppppppppppppppp
Answer:
[tex]\large \text{$f^{-1}(x) = 3x -6$}[/tex]
Graphs attached
Step-by-step explanation:
Your inverse function is correct. So not sure what additional information you need
I am not familiar with the graphing tool you have been provided with. My graph is attached. I used a free online graphing tool
why are whole numbers rational numbers?
Answer:
Step-by-step explanation:
A whole number can be written as a fraction that has a denominator of 1. So, the whole numbers 18, 3, and 234 can be written as the rational numbers 18/1, 3/1, and 234/1.
So, all whole numbers are rational numbers, but not all rational numbers are whole numbers.
95-a(b+c) when a= 9, b = 3 and c=7.4 I don’t get how to solve this please put an explanation
Notice that in the statement of the exercise are the values of a, b and c. Then, to evaluate the given expression, we replace the given values of a, b, and c. So, we have:
[tex]\begin{gathered} a=9 \\ b=3 \\ c=7.4 \\ 95-a\mleft(b+c\mright) \\ \text{ We replace the given values} \\ 95-a(b+c)=95-9(3+7.4) \\ 95-a(b+c)=95-9(10.4) \\ 95-a(b+c)=95-93.6 \\ 95-a(b+c)=\boldsymbol{1.4} \end{gathered}[/tex]Therefore, the result of evaluating the given expression when a = 9, b = 3, and c = 7.4 is 1.4.
need help with image
Step by step explanation:
sum of co-exterior angle is 180°
(10x-48)+(6x)=180°
4x-48=180°
4x=180-48
4x=132
x=132/4
x=33
Please can I have the answer for number 12?Thanks a lot
Given:
length of the piece of string = 3/4 inches
length of the piece that we need = 1/8 inches
The number of smaller piece that we can get from the original piece of string can be calculated using the formula:
[tex]\text{Number }of\text{ smaller piece = }\frac{length\text{ of original piece}}{length\text{ of smaller piece}}[/tex]Applying this formula:
[tex]\begin{gathered} \text{Number of smaller piece = }\frac{3}{4}\div\text{ }\frac{1}{8} \\ \end{gathered}[/tex]If the number of pieces is represented as n:
[tex]n\text{ = }\frac{3}{4}\div\text{ }\frac{1}{8}[/tex]Answer:
What is the value of sinθ given that (3, −7) is a point on the terminal side of θ?
Solution
[tex]\begin{gathered} \text{ using pythagoras theorem} \\ \\ OB=\sqrt{OA^2+AB^2}=\sqrt{3^2+7^2}=\sqrt{58} \\ \\ \Rightarrow\sin\theta=\frac{AB}{OB}=-\frac{7}{\sqrt{58}}=-\frac{7\sqrt{58}}{58} \end{gathered}[/tex]divide and Simplify 7/5 ÷7/9
What we have is a fractional division, this is following expression
[tex]\frac{(\frac{7}{5})}{(\frac{7}{9})}[/tex]For this procedure, it says to multiply the top and bottom ends to get the numerator, and the middle numbers to get the denominator
[tex]\frac{7\cdot9}{7\cdot5}=\frac{9}{5}[/tex]In conclusion after splitting and simplifying this, the answer is 9/5
Enter your solution as an ordered pair, with no spaces and with parentheses. OR the answer could be: Infinitely many OR No Solution
Given the equation system:
[tex]\begin{gathered} 1)y=4x \\ 2)3x+2y=55 \end{gathered}[/tex]The first step is to replace the first equation in the second equation
[tex]3x+2(4x)=55[/tex]With this, we have a one unknown equation. Now we can calculate the value of x:
[tex]\begin{gathered} 3x+8x=55 \\ 11x=55 \\ \frac{11x}{11}=\frac{55}{11} \\ x=5 \end{gathered}[/tex]Now that we know the value of x, we can determine the value of y, by replacing x=5 in the first equation
[tex]\begin{gathered} y=4x \\ y=4\cdot5 \\ y=20 \end{gathered}[/tex]This system has only one solution and that is (5,20)
Please help with this question
The average velocities of the stone are: i) 12.96 m / s, ii) 13.20 m / s, iii) 13.20 m / s, iv) 13 m / s. The instantaneous velocity is approximately equal to 13 meters per second.
How to find the average velocity and the instantaneous velocity of a stone
The average velocity (u), in meters per second, is the change in the height (h), in meters, divided by the change in time (t), in seconds. And the instantaneous velocity (v), in meters per second, is equal to the average velocity when the change in time tends to zero.
a) Then, the average velocities are determined below:
Case i)
u = [f(1.05) - f(1)] / (1.05 - 1)
u = (18.748 - 18.1) / 0.05
u = 12.96 m / s
Case ii)
u = [f(1.01) - f(1)] / (1.01 - 1)
u = (18.232 - 18.1) / 0.01
u = 13.20 m / s
Case iii)
u = [f(1.005) - f(1)] / (1.005 - 1)
u = (18.166 - 18.1) / 0.005
u = 13.20 m / s
Case iv)
u = [f(1.001) - f(1)] / (1.001 - 1)
u = (18.113 - 18.1) / 0.001
u = 13 m / s
The fourth option offers the best estimation for the instantaneous velocity at t = 1 s. Then, the instantaneous velocity is approximately equal to 13 meters per second.
To learn more on average velocities and instantaneous velocities: https://brainly.com/question/13372043
#SPJ1
Solve the inequality and write the solution using:
Inequality Notation:
The solution for the given inequality is x >7.
InequalityIt is an expression mathematical that represents a non-equal relationship between a number or another algebraic expression. Therefore, it is common the use following symbols: ≤ (less than or equal to), ≥ (greater than or equal to), < (less than), and > (greater than).
The solutions for inequalities can be given by: a graph in a number line or numbers.
For solving this exercise, it is necessary to find a number and a graph solution for the given inequality.
The given inequality is [tex]1-\frac{6}{7}x < -5[/tex] . Then,
Move the number 1 for the other side of inequality and simplify.[tex]-\frac{6}{7}x < -5 -1\\ \\ -\frac{6}{7}x < -6[/tex]
Multiply both sides by -1 (reverse the inequality )[tex]-\frac{6}{7}x < -6 *(-1)\\ \\ \frac{6}{7}x > 6[/tex]
Solve the inequality for x[tex]\frac{6}{7}x > 6\\ \\ 6x > 42\\ \\ x > \frac{42}{6} \\ \\ x > 7[/tex]
You should also show the results t > 7 in a number line. Thus, plot the number line. See the attached image.
Read more about inequalities here.
brainly.com/question/25275758
#SPJ1
an art teacher makes a batch of green paint by mixing 5/8 cup of yellow paint with 5/8 cup of blue paint if she mixes 29 batches how many cups will she have with green paint
1 lote = 5/8 cup yellow + 5/8 cup blue
29 lotes = 29(5/8) +29(5/8) cups
29 lotes = 58(5/8)= (58*5)/8=290/8=145/4
145/4 =35.25 cups of paint
6. Line 1 passes through the points (1,4) and (-2,5). Line 2 passes through the points (1,0) and (0,3). What is true about Line 1 and Line 2? (2 points) (A) (B) They are perpendicular. They are parallel. They both decrease. They both increase. (C) (D)
First, calculate the slope (m) of both lines.
[tex]m=\frac{y2-y1}{x2-x1}[/tex]Line 1:
Point 1 = (x1,y1) = (1,4)
Point 2 = (x2,y2) = (-2,5)
Replacing:
[tex]m=\frac{5-4}{-2-1}=\frac{1}{-3}=-\frac{1}{3}[/tex]Line 2:
Point 1 = (x1,y1) = (1,0)
Point 2 = (x2,y2) = (0,3)
[tex]m=\frac{3-0}{0-1}=\frac{3}{-1}=-3[/tex]Lines to be parallel must have the same slope, and to be perpendicular, they must have negative reciprocal slope.
None of the slopes are equal or negative reciprocal. SO, A and B are false-
Now, for the increase/ decrease
We can see that both lines have a negative slope, so they both decrease.
Correct option: C
A box contains 6 red pens, 4 blue pens, 8 green pens, and some black pens. Leslie picks a pen and returns it to the box each time. the outcomes are: number of times a red pen is picked: 8number of times a blue pen is picked: 5 number of times a green pen is picked: 14number of times a black pen is picked: 3Question: if the theoretical probability of drawing a black pen is 1/10, how many black pens are in the box?
We have:
x = total pens
n = number of black pens
so:
[tex]x=6+4+8+n=18+n[/tex]and for black pen:
[tex]\begin{gathered} \frac{1}{10\text{ }}=0.1\text{ (probability)} \\ \text{then} \\ \frac{n}{18+n}=0.1 \\ n=0.1(18+n) \\ n=1.8+0.1n \\ n-0.1n=1.8+0.1n-0.1n \\ 0.9n=1.8 \\ \frac{0.9n}{0.9}=\frac{1.8}{0.9} \\ n=2 \end{gathered}[/tex]answer: 2 black pens
find the lowest common denominator of - not graded !
Given:
There are two equation given in the question.
Required:
We have to find the lowest common denominator of both equation.
Explanation:
[tex]\frac{p+3}{p^2+7p+10}and\frac{p+5}{p^2+5p+6}[/tex]are given equations
first of all we need to factorization both denominator
[tex]\begin{gathered} p^2+7p+10and\text{ }p^2+5p+6 \\ (p+5)(p+2)and\text{ \lparen p+3\rparen\lparen p+2\rparen} \end{gathered}[/tex]so here (p+2) is common in both so take (p+2) for one time only
so now the lowest common denominator is
[tex](p+5)(p+2)(p+3)[/tex]Final answer:
The lowest common denominator for given two equations is
[tex](p+5)(p+2)(p+3)[/tex]
PLEASE HELP ASAP! What is the standard form of the hyperbola that the receiver sits on if the transmitters behave as foci of the hyperbola?
A hyperbola is a particular kind of smooth curve that lies in a plane and is classified by its geometric characteristics or by equations for which it is the solution set.
What is hyperbola?A hyperbola is a particular kind of smooth curve that lies in a plane and is classified by its geometric characteristics or by equations for which it is the solution set. A hyperbola is made up of two mirror images of one another that resemble two infinite bows.These two sections are known as connected components or branches. A series of points in a plane that are equally spaced out from a directrix or focus is known as parabolas. The difference in distances between a group of points that are situated in a plane and two fixed points—which is a positive constant—is what is referred to as the hyperbola.Therefore, a hyperbola is a particular kind of smooth curve that lies in a plane and is classified by its geometric characteristics or by equations for which it is the solution set.
To learn more about hyperbola refer to:
brainly.com/question/26250569
#SPJ1