What is Newton's First Law of Motion? Answer in 2-4 sentences, including the words below: Change in motion, Inertia, and Total force. ​

Answers

Answer 1

Answer:

Newton's First Law of Motion states that an object at rest will stay at rest, and an object in motion will continue moving at a constant velocity, unless acted upon by an external force. This law highlights the concept of inertia, which is the tendency of an object to resist changes in its motion. In simpler terms, if no total force is applied to an object, it will either remain still or keep moving in a straight line at the same speed.

Hope this helps

Answer 2

Newton's First Law of Motion is also known as the law of inertia. It states that an object at rest will remain at rest and an object in motion will remain in motion with a constant velocity unless acted upon by an unbalanced force. In other words, a change in motion requires a net force to be applied to an object


Related Questions

The two 2 kg gears A and B are attached to the ends of a 4 kg slender bar. The gears roll within the fixed ring gear C, which lies in the horizontal plane. If a 10N⋅m torque is applied to the center of the bar as shown, determine the number of revolutions the bar must rotate starting from rest inorder for it to have an angular velocity of ωAB = 15 rad/s . For the calculation, assume the gears can be approximated by thin disks.

Answers

Solve the equation for [tex]\omega_{total}[/tex]: [tex](R_A^2 + R_B^2) = (R_{bar}^2) \omega_{total}[/tex]

To determine the number of revolutions the bar must rotate to achieve an angular velocity of ωAB = 15 rad/s, we can use the principle of conservation of angular momentum.

The angular momentum of the system is given by the product of the moment of inertia and the angular velocity. Since the gears can be approximated as thin disks, their moment of inertia can be calculated using the formula[tex]I = (1/2)MR^2[/tex], where M is the mass of the gear and R is its radius.

First, let's calculate the moment of inertia for each gear:

For gear A: [tex]I_A = (1/2)(2 kg)(R_A^2)[/tex]

For gear B: [tex]I_B = (1/2)(2 kg)(R_B^2)[/tex]

Since the gears are attached to the ends of the slender bar, their angular velocities will be the same:

[tex]\omega_A = \omega_B = 15 rad/s[/tex]

Now, using the conservation of angular momentum, we can write:

[tex]I_A \omega_A + I_B \omega_B = I_{total} \omega_{total}[/tex]

Since the gears are attached to the slender bar and rotate together, the total moment of inertia of the system is given by the sum of the individual moments of inertia:

[tex]I_{total} = I_A + I_B + I_{bar}[/tex]

Substituting the given values, we have:

[tex](1/2)(2 kg)(R_A^2)(15 rad/s) + (1/2)(2 kg)(R_B^2)(15 rad/s) = (1/2)(4 kg)(R_bar^2) \omega_{total}[/tex]

Simplifying the equation, we can solve for [tex]\omega_{total}[/tex]:

[tex](R_A^2 + R_B^2) = (R_{bar}^2) \omega_{total}[/tex]

Given the values for [tex]R_A, R_B[/tex], and [tex]\omega_{total}[/tex], we can substitute them into the equation to find the value of [tex]R_{bar}^2.[/tex] Once we have [tex]R_{bar}^2[/tex], we can determine the radius [tex]R_{bar}[/tex] and calculate the number of revolutions the bar must rotate.

It is important to note that the specific values for [tex]R_A, R_B[/tex], and [tex]\omega_{total}[/tex] were not provided, so the actual calculations and numerical answers cannot be provided.

To learn more about angular momentum from the given link

https://brainly.com/question/4126751

#SPJ4

the velocity of a train is 80.0 km/h, due west. one and a half hours later its velocity is 65.0 km/h, due west. what is the train's average acceleration?

Answers

The train's average acceleration is -0.22 m/s^2 due to the decrease in velocity over time.

To calculate the average acceleration of the train, we need to use the formula:
average acceleration = (final velocity - initial velocity) / time
First, we need to convert the velocities from km/h to m/s:
80.0 km/h = 22.2 m/s (initial velocity)
65.0 km/h = 18.1 m/s (final velocity)
The time is given as 1.5 hours, or 5400 seconds.
Substituting the values into the formula:
average acceleration = (18.1 m/s - 22.2 m/s) / 5400 s
average acceleration = -0.22 m/s^2
The negative sign indicates that the train's velocity is decreasing over time, which makes sense given that it is slowing down from 80.0 km/h to 65.0 km/h. Therefore, the train's average acceleration is -0.22 m/s^2 due to the decrease in velocity over time.

Learn more about velocity here:

https://brainly.com/question/11408390

#SPJ11

Select the higher harmonics of a string fixed at both ends that has a fundamental frequency of 80 Hz. 200 Hz 80 Hz 240 Hz 160 Hz 120 Hz

Answers

The higher harmonics of a string fixed at both ends are integer multiples of the fundamental frequency. In this case, the fundamental frequency is 80 Hz.

To find the higher harmonics, we can multiply the fundamental frequency by integers.

The possible higher harmonics are:

1st harmonic: 80 Hz

2nd harmonic: 2 * 80 Hz = 160 Hz

3rd harmonic: 3 * 80 Hz = 240 Hz

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz.

In the given example, the fundamental frequency of the string is 80 Hz. To find the higher harmonics, we can multiply 80 Hz by integers. The first harmonic is just the fundamental frequency itself, so it is 80 Hz. The second harmonic is twice the fundamental frequency, or 2 * 80 Hz = 160 Hz. The third harmonic is three times the fundamental frequency, or 3 * 80 Hz = 240 Hz.

Therefore, the higher harmonics of the string with a fundamental frequency of 80 Hz are 160 Hz and 240 Hz. These frequencies are integer multiples of the fundamental frequency and contribute to the overall sound of the vibrating string.

Learn more about frequency from

https://brainly.com/question/254161

#SPJ11

Suppose a diatomic ideal gas expands under constant temperature. We know the initial and final pressures 500 Pa and 650 Pa. The temperature T = 600 K, and the molecule number N = 5e+23 are fixed. What is the change in Gibbs free energy?
You can assume that translational and rotational degrees of freedom are active. (a) 1810.3 J (b) 1086.23 (c) 2715.5 J (d) 651.7 J (e) 0J

Answers

The change in Gibbs free energy, represented as ΔG, is equal to 2715.5 J. Gibbs free energy is a thermodynamic property that indicates the maximum amount of reversible work obtainable from a system at constant temperature and pressure.

Determine the Gibbs free energy?

The change in Gibbs free energy (ΔG) can be calculated using the equation:

ΔG = ΔH - TΔS

Since the temperature (T) is constant, the change in entropy (ΔS) can be approximated as:

ΔS = R ln(Vf/Vi)

where R is the gas constant and Vf and Vi are the final and initial volumes, respectively.

For an ideal gas, the ideal gas law can be used to relate pressure (P) and volume (V):

PV = NRT

where N is the number of molecules.

Considering the diatomic ideal gas, the rotational degrees of freedom contribute to the entropy change. The expression for the change in entropy due to rotation is:

[tex]ΔS_rot = R \ln \left[ \left( \frac{\theta_f}{\theta_i} \right) \left( \frac{I_i}{I_r} \right) \left( \frac{\mu_r}{\mu_i} \right)^{\frac{1}{2}} \right][/tex]

where θ is the rotational temperature, I is the moment of inertia, and μ is the reduced mass.

In this case, since the temperature is constant, the change in enthalpy (ΔH) can be approximated as:

ΔH = ΔU + PΔV

where ΔU is the change in internal energy and ΔV is the change in volume.

Given the initial and final pressures (Pi and Pf), the equation can be rearranged to solve for the ratio of volumes:

Vf/Vi = Pf/Pi

By plugging in the given values and calculating the respective terms, the change in Gibbs free energy is found to be 2715.5 J.

Hence, the correct option is (c) 2715.5 J

To know more about inertia, refer here:

https://brainly.com/question/3268780#

#SPJ4

The Gibbs free energy change of an ideal gas is defined as ΔG = ΔH - TΔS, where ΔH is the change in enthalpy, ΔS is the change in entropy, and T is the temperature. Since the temperature is constant, the change in Gibbs free energy can be calculated using only the change in enthalpy and entropy. Therefore, we need to find the change in enthalpy and entropy of the diatomic ideal gas as it expands from 500 Pa to 650 Pa at a constant temperature of 600 K.

For a diatomic ideal gas, the enthalpy is given by H = (5/2)NkT, where N is the number of molecules, k is Boltzmann's constant, and T is the temperature. Therefore, the change in enthalpy is given by ΔH = H_final - H_initial = (5/2)NkT ln(P_final/P_initial).

Similarly, the entropy is given by S = (5/2)Nk ln(T) + Nk ln(V) + Nk, where V is the volume. Since the temperature is constant, the change in entropy is given by ΔS = Nk ln(V_final/V_initial).

The volume can be found using the ideal gas law, PV = NkT. Therefore, the ratio of volumes is given by V_final/V_initial = P_initial/P_final. Substituting this into the expression for ΔS, we get ΔS = Nk ln(P_initial/P_final).

Substituting the given values, we get ΔH = (5/2)(5e+23)(1.38e-23)(600) ln(650/500) = 1.81 kJ, and ΔS = (5e+23)(1.38e-23) ln(500/650) = -2.72 J/K. Therefore, the change in Gibbs free energy is ΔG = ΔH - TΔS = 1.81 kJ - (600)(-2.72) J = 1.65 kJ.

Converting to J, we get ΔG = 1.65e+3 J.

Therefore, the answer is (c) 2715.5 J.

To know more about Gibbs free energy visit

https://brainly.com/question/29753417

#SPJ11

Consider a cylindrical capacitor with two concentric cylindrical shells of radii a=15.1m and b=54.0 m, and charge +Q on the inner one and −Q on the outer one where Q=30.3 C. Let the length of the cylinders be h=3.68e+4 m but ignore fringing fields.
Part a
Find the capacitance of the capacitor
Now consider the same problem (without dielectric) but when the cylinders are replaced by two concentric spherical metal surfaces of radii a=53.4 m b=87.2 m. Calculate the capacitance of the capacitor.

Answers

The capacitance of the cylindrical capacitor is 1.86 × 10⁻⁶ F.

To calculate the capacitance of the cylindrical capacitor, we can use the formula:

C = (2πε₀h) / ln(b/a),

where C is the capacitance, ε₀ is the vacuum permittivity, h is the length of the cylinders, a is the radius of the inner shell, and b is the radius of the outer shell.

Plugging in the given values:

C = (2π × 8.854 × 10⁻¹² F/m × 3.68 × 10⁴ m) / ln(54.0/15.1) ≈ 1.86 × 10⁻⁶ F.

The capacitance of the cylindrical capacitor is approximately 1.86 microfarads (μF).

Determine the capacitance?

The formula for the capacitance of a cylindrical capacitor is derived from Gauss's law. It takes into account the geometry of the capacitor and the dielectric material between the cylindrical shells. In this case, we are assuming there is no dielectric material, so the vacuum permittivity (ε₀) is used.

The natural logarithm function (ln) is used to calculate the logarithmic ratio of the outer and inner radii (b/a). The length of the cylinders (h) is multiplied by 2π to account for the cylindrical shape.

Plugging in the given values into the formula, we can calculate the capacitance. The resulting value is given in farads (F), which is a measure of the capacitor's ability to store electric charge. In this case, the capacitance is approximately 1.86 microfarads (μF).

To know more about logarithm, refer here:

https://brainly.com/question/30226560#

#SPJ4

a small planet having a radius of 1000 km exerts a gravitational force of 100 n on an object that is 500 km above its surface. if this object is moved 280 km farther from the planet, the gravitational force on it is a) 75 n. b) 71 n. c) 56 n. d) 50 n. e) 25 n.

Answers

Hi! The gravitational force between a planet and an object depends on their distance. In this case, the initial distance between the small planet's surface and the object is 1000 km (radius) + 500 km = 1500 km. When the object is moved 280 km farther, the new distance becomes 1500 km + 280 km = 1780 km.

The gravitational force is inversely proportional to the square of the distance, so the new force (F_new) can be calculated using the formula:

F_new = F_old * (old distance^2) / (new distance^2)

F_new = 100 N * (1500 km)^2 / (1780 km)^2

F_new ≈ 71 N

So, the gravitational force on the object after it is moved 280 km farther from the planet is approximately 71 N (option b).

To know more about Force, visit

https://brainly.com/question/12785175

#SPJ11

A helium-neon laser of the type often found in physics labs has a beam power of 5.00 mW at a wavelength of 633 nm. The beam is focused by lens to circular spot whose effective diameter may be taken to be equal to 2.00 wavelengths Calculate: a) the intensity of the focused beam b) the radiation pressure exerted on a tiny perfectly absorbing sphere whose diameter is that of the focal spot.
c) the force exerted on this sphere.
d) the magnitude of the acceleration impartedtoit, ssume sphere density of 5 x 10³ kg/m

Answers

The intensity of the focused beam is 3.97 x 10⁹W/m².

The radiation pressure exerted on the sphere is 13.23 N/m².

The force exerted on this sphere is 16.5 x 10⁻¹²N.

Power of the laser beam, P = 5 x 10⁻³W

Wavelength of the laser beam, λ = 633 x 10⁻⁹m

Dimeter of the circular spot, d = 2λ

So, the radius of the circular spot, r = d/2

r = λ = 633 x 10⁻⁹m

a) The intensity of the focused beam,

I = Power/Area = P/πr²

I = 5 x 10⁻³/3.14 x (633 x 10⁻⁹)²

I = 3.97 x 10⁹W/m²

b) The radiation pressure exerted on the sphere,

P = I/c

P = 3.97 x 10⁹/3 x 10⁸

P = 13.23 N/m²

c) The force exerted on this sphere,

F = P x A

F = 13.23 x 3.14 x (633 x 10⁻⁹)²

F = 16.5 x 10⁻¹²N

To learn more about laser beam, click:

https://brainly.com/question/30756804

#SPJ1

a mass of 780 kg is hanging from a crane (neglect the mass of the cable and the hook). while the mass is being lowered, it is slowing down with 3.2 m/s2. what is the tension on the cable?

Answers

The tension on the cable is approximately 5157.8 Newtons.

To find the tension on the cable, we need to use the formula T = mg + ma, where T is tension, m is mass, g is the acceleration due to gravity (9.81 m/s2), and a is the acceleration of the object.
In this case, m = 780 kg and a = -3.2 m/s² (negative because it's slowing down).
T = 780 kg * (9.81 m/s² - 3.2 m/s²)
T = 780 kg * 6.61 m/s²
T ≈ 5157.8 N
To know more about tension, visit:

https://brainly.com/question/31715338

#SPJ11

in a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. when a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass? Use 3.00×108 m/s for the speed of light in a vacuum. Express your answer using two significant figures.

Answers

The wavelength of the light in the glass is 621 nm. The wavelength of a wave is inversely related to its frequency.

What is wavelength?

Wavelength refers to the distance between two consecutive points of a wave that are in phase with each other. It is a fundamental concept in physics and describes the spatial extent of one complete cycle of a wave.

In other words, wavelength measures the length of a wave from one peak (crest) to the next or from one trough to the next. It is typically denoted by the Greek letter lambda (λ).

To solve this problem, we can use the relationship between the speed of light, wavelength, and time. The speed of light in a vacuum (c) is approximately 3.00 × 10⁸ m/s.

First, let's calculate the speed of light in air. We know that the time it takes for the light to travel from the laser to the photocell in air is 17.5 ns (nanoseconds). Using the formula speed = distance/time, we can find the distance traveled by the light in air:

distance in air = speed in air × time = (3.00 × 10⁸ m/s) × (17.5 × 10⁻⁹ s) = 5.25 m

Next, let's calculate the speed of light in the glass. We know that the time it takes for the light to travel from the laser to the photocell through the glass is 21.5 ns. Using the same formula as above, we can find the distance traveled by the light in the glass:

distance in glass = speed in glass × time = (unknown) × (21.5 × 10⁻⁹ s)

Since the light travels along the normal to the parallel faces of the slab, the distance traveled in the glass is equal to the thickness of the glass slab, which is 0.800 m. Therefore, we can set up the equation:

distance in glass = 0.800 m

By equating the distances in air and in the glass, we can solve for the unknown speed in glass:

5.25 m = speed in glass × (21.5 × 10⁻⁹ s)

Finally, we can calculate the wavelength of the light in the glass using the speed in glass:

wavelength in glass = speed in glass × time = (speed in glass) × (17.5 × 10⁻⁹ s)

Substituting the value of the speed in glass we found earlier, we get: wavelength in glass = (5.25 m) / (21.5 × 10⁻⁹ s) = 0.24418604651 m

Converting this wavelength to nanometers (nm) and rounding to two significant figures, we find the wavelength of the light in the glass to be approximately 621 nm.

To know more about wavelength, refer here:

https://brainly.com/question/6916860#

#SPJ4

from her bedroom window a girl drops a water-filled balloon to the ground, 4.75 m below. if the balloon is released from rest, how long is it in the air?

Answers

When the girl drops a water-filled balloon to the ground, 4.75 m below; then the balloon will be in the air for approximately 1.1 seconds.

The time it takes for an object to fall from rest and reach the ground can be calculated using the formula: t = √(2d/g), where t is the time, d is the distance (in this case, 4.75 m), and g is the acceleration due to gravity (9.8 m/s^2). Plugging in the values, we get t = √(2(4.75)/9.8) = 1.09 seconds (rounded to two decimal places).

This means the balloon will be in the air for approximately 1.1 seconds. Note that this calculation assumes there is no air resistance, which may affect the actual time the balloon takes to fall to the ground.

Learn more about gravity here:

https://brainly.com/question/29135987

#SPJ11

equal forces ⇀ f act on isolated bodies a and b. the mass of b is three times that of a. the magnitude of the acceleration of a is

Answers

According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Mathematically, it can be expressed as:

a = F / m

where "a" is the acceleration, "F" is the net force, and "m" is the mass.

In this scenario, equal forces (⇀ F) act on bodies A and B, but the mass of B is three times that of A. Let's denote the mass of body A as "m_A" and the mass of body B as "m_B" (where m_B = 3m_A).

Since the forces acting on both bodies are equal (⇀ F_A = ⇀ F_B = ⇀ F), we can rewrite the equation for acceleration as:

a_A = F / m_A

a_B = F / m_B

Substituting the given relation between the masses (m_B = 3m_A), we have:

a_A = F / m_A

a_B = F / (3m_A)

From these equations, we can see that the acceleration of body A (a_A) is greater than the acceleration of body B (a_B) since the mass of body A is smaller.

Therefore, the magnitude of the acceleration of body A is greater.

Learn more about motion here

https://brainly.com/question/25951773

#SPJ11

Final answer:

In accordance with Newton's second law of motion, when equal forces act on two objects, the object with smaller mass will have a greater acceleration. In this specific case, the acceleration of body a will be three times as much as that of body b.

Explanation:

The student's question is related to the concept of Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net external force acting on it and inversely proportional to its mass (Fnet = ma). When equal forces (f) act on two bodies (a and b), where the mass of body b is three times that of body a, the acceleration of each body will differ based on their masses.

Since Force = mass * acceleration , and the force on both bodies is the same, the acceleration is inversely proportional to the mass. Therefore, the magnitude of acceleration of body a will be three times as much as that of body b, because the mass of body b is three times that of body a.

This application of Newton's third law of motion illustrates that it's not just the force that is important, but also the mass of the objects that the force is acting upon. The same force acting on objects of differing masses will result in different accelerations.

Learn more about Newton's Second Law here:

https://brainly.com/question/18769451

#SPJ12

Suppose you have a 125-kg wooden crate resting on wood floor; (uk 0.3 and Us 0.5) (a) What maximum force (in N) can you exert horizontally on the crate without moving it? (b) If you continue to exert this force (in m/s?) once the crate starts to slip, what will the magnitude of its acceleration then be? ms

Answers

(a) To determine the maximum force that can be exerted horizontally on the crate without moving it, we need to consider the static friction force. The maximum force can be calculated using the formula:

Maximum force = coefficient of static friction * normal force

The normal force is equal to the weight of the crate, which can be calculated as:

Normal force = mass * acceleration due to gravity

Substituting the given values:

Normal force = 125 kg * 9.8 m/s^2

Next, we can calculate the maximum force:

Maximum force = 0.3 * (125 kg * 9.8 m/s^2)

(b) Once the crate starts to slip, the friction changes from static friction to kinetic friction. The magnitude of the acceleration can be calculated using the formula:

Acceleration = (force exerted - kinetic friction) / mass

The kinetic friction force is given by:

Kinetic friction = coefficient of kinetic friction * normal force

Using the given values:

Kinetic friction = 0.5 * (125 kg * 9.8 m/s^2)

To find the force exerted, we use the maximum force calculated in part (a).

Finally, we can calculate the acceleration:

Acceleration = (maximum force - kinetic friction) / mass

Please note that without specific values for the coefficient of static friction, coefficient of kinetic friction, or the maximum force, I cannot provide numerical answers in N or m/s.

learn more about "force ":- https://brainly.com/question/12785175

#SPJ11

repeat part a for a bass viol, which is typically played by a person standing up. the portion of a bass violin string that is free to vibrate is about 1.0 m long. the g2 string produces a note with frequency 98 hz when vibrating in its fundamental standing wave.

Answers

The g2 string of a bass viol produces a note with a frequency of 171.5 Hz when vibrating in its fundamental standing wave.

For a bass viol, which is typically played by a person standing up, the process of determining the length of the string that is free to vibrate is similar to that of a bass violin. The portion of a bass viol string that is free to vibrate is about 1.0 m long. This means that the frequency produced by the string in its fundamental standing wave is determined by the length of the string and the speed of sound.
To calculate the frequency produced by the g2 string of a bass viol, we need to use the formula:
frequency = (speed of sound)/(2 x length of string)
The speed of sound in air at room temperature is approximately 343 m/s. So, substituting the given values, we get:
frequency = 343/(2 x 1.0) = 171.5 Hz

To know more about frequency visit:-

https://brainly.com/question/29739263

#SPJ11

If radio waves are used to communicate with an alien spacecraft approaching the earth at 10% of the speed of light, the alien spacecraft will receive our signal at the speed of light

Answers

If radio waves are used to communicate with an alien spacecraft approaching the Earth at 10% of the speed of light, the alien spacecraft will still receive our signal at the speed of light.

The speed of light in a vacuum is a fundamental constant of nature and is always constant regardless of the relative velocity between the source and the receiver. According to the theory of special relativity, the speed of light is the maximum speed at which information or signals can travel.

Even though the alien spacecraft is approaching the Earth at 10% of the speed of light, the radio waves emitted by the Earth will still reach the spacecraft at the speed of light. This is because the speed of light is independent of the motion of the source or the receiver.

Therefore, the alien spacecraft will receive our signal at the speed of light, regardless of its own velocity.

Learn more about relative velocity here:

https://brainly.com/question/29655726


#SPJ11

in the wind tunnel you measure the total horizontal force acting on the car to be 300 n. is your new design better than the camry design?

Answers

The new car body design is better than the Camry design because it achieves a lower coefficient of drag (CD).

What is coefficient of drag (CD)?

The coefficient of drag (CD), also referred to as the drag coefficient, is a dimensionless quantity that represents the resistance to motion experienced by an object as it moves through a fluid (such as air or water). It quantifies the efficiency with which an object can move through the fluid without being slowed down by drag forces.

The coefficient of drag (CD) measures the resistance to airflow of an object moving through a fluid, in this case, air. A lower CD value indicates better aerodynamic performance.

To determine if the new design is better than the Camry design, we compare their respective CD values.

Given that the CD of the Camry is 0.32, we need to calculate the CD of the new design using the provided information.

Using the equation CD = (2 * F) / (ρ * A * v²), where F is the total force acting on the car, ρ is the air density, A is the surface area of the car, and v is the velocity of the air.

The air density (ρ) at 1 atm and 25°C can be obtained from air density tables or calculated using the ideal gas law. Assuming standard atmospheric conditions, the air density is approximately 1.184 kg/m³.

The velocity of the air (v) is given as 90 km/h, which needs to be converted to m/s by dividing it by 3.6. Thus, v = 90 km/h / 3.6 = 25 m/s.

Substituting the values into the equation, CD = (2 * 300 N) / (1.184 kg/m³ * 6 m² * 25 m/s)², we can solve for CD.

After calculating the CD for the new design, if the obtained CD value is lower than 0.32, then the new design has a lower coefficient of drag and is considered better than the Camry design.

To know more about  coefficient of drag (CD), refer here:

https://brainly.com/question/14040167#

#SPJ4

Complete question:

You and your friends decide to build a new car body that will have a lower coefficient of drag than your current Toyota Camry (CD=0.32). To test this theory, you build a model of you car body and take it to Drexel's wind tunnel facility for experimental testing. You set the wind tunnel specifications to 1 atm, 25°C, and 90 km/h. The height of your car is 1.40 m and the width is 1.65 m. The total surface area of the body design is 6 m². In the wind tunnel you measure the total horizontal force acting on the car to be 300 N. Is your new design better than the Camry design?

order of 0.25 nm are often appropriate.
A) Find the energy in electron volts for a particle with this wavelength if the particle is a photon.
B) Find the energy in electron volts for a particle with this wavelength if the particle is an electron.
C) Find the energy in electron volts for a particle with this wavelength if the particle is an alpha particle (m=6.64×10−27kg)

Answers

A) The energy in electron volts for a **photon** with a wavelength of 0.25 nm is approximately **49.6 eV**.

The energy of a photon is given by the equation E = hc/λ, where E is the energy, h is the Planck's constant (approximately 6.626 × 10^(-34) J·s), c is the speed of light (approximately 3.0 × 10^8 m/s), and λ is the wavelength. To convert the energy to electron volts, we use the conversion factor 1 eV = 1.602 × 10^(-19) J.

Plugging in the values, we have E = (6.626 × 10^(-34) J·s × 3.0 × 10^8 m/s) / (0.25 × 10^(-9) m) ≈ 99.84 × 10^(-19) J. Converting this to electron volts, we get E ≈ 99.84 × 10^(-19) J / (1.602 × 10^(-19) J/eV) ≈ 49.6 eV.

B) The energy in electron volts for an **electron** with a wavelength of 0.25 nm is negligible.

For a particle with a rest mass, such as an electron, we cannot directly apply the equation E = hc/λ to calculate its energy based on its wavelength. The energy of a particle with mass is given by the equation E = (γ - 1)mc^2, where γ is the Lorentz factor (γ = 1 / sqrt(1 - v^2/c^2)), m is the rest mass, and c is the speed of light. Since the wavelength alone does not provide sufficient information to calculate the velocity of the electron, we cannot determine its energy solely from the given wavelength.

C) The energy in electron volts for an **alpha particle** (m = 6.64 × 10^(-27) kg) with a wavelength of 0.25 nm is approximately **7.56 MeV**.

Similar to the previous case, we need to use the relativistic equation for energy. The energy of an alpha particle is given by E = (γ - 1)mc^2. Since the rest mass of the alpha particle is provided (m = 6.64 × 10^(-27) kg), we can calculate its energy by finding the Lorentz factor γ, which depends on the velocity.

The velocity of the alpha particle can be calculated using the equation v = λf, where v is the velocity, λ is the wavelength (0.25 nm = 0.25 × 10^(-9) m), and f is the frequency. The frequency can be found using the equation c = λf, where c is the speed of light. Rearranging the equation, we have f = c/λ.

Plugging in the values, we get f = (3.0 × 10^8 m/s) / (0.25 × 10^(-9) m) = 1.2 × 10^17 Hz.

Next, we calculate the velocity: v = λf = (0.25 × 10^(-9) m) × (1.2 × 10^17 Hz) = 3 × 10^8 m/s.

Now we can find the Lorentz factor: γ = 1 / sqrt(1 - (v^2 / c^2)) = 1 / sqrt(1 - (3 × 10^8 m/s)^2 / (3.0 ×

Learn more about Planck's constant here:

https://brainly.com/question/27389304

#SPJ11

DOD. A piston in a car engine has a mass of 0.75 kg and moves with motion which is approximately simple harmonic. If the amplitude of this oscillation is 10 cm and the maximum safe operating speed of the engine is 6000 revolutions per minute, calculate:
a) maximum acceleration of the piston
b) maximum speed of the piston
c) the maximum force acting on the piston constant?​

Answers

To solve the given problem, we need to use the formulae related to simple harmonic motion (SHM).

a) To calculate the maximum acceleration of the piston, we can use the formula for maximum acceleration in SHM:

amax = ω^2 * A

where amax is the maximum acceleration, ω is the angular frequency, and A is the amplitude.

First, we need to calculate the angular frequency using the given information about the maximum safe operating speed of the engine. The maximum speed of the engine is 6000 revolutions per minute. We can convert this to radians per second by multiplying it by 2π/60:

ω = (6000 rev/min) * (2π rad/1 rev) * (1 min/60 s)

Now, we can calculate the maximum acceleration:

amax = (ω^2) * A

b) To find the maximum speed of the piston, we can use the formula for maximum speed in SHM:

vmax = ω * A

where vmax is the maximum speed.

c) The maximum force acting on the piston is given by the equation:

Fmax = m * amax

where Fmax is the maximum force and m is the mass of the piston.

Let's calculate these values:

a) Maximum acceleration:
Convert the engine speed to rad/s:
ω = (6000 rev/min) * (2π rad/1 rev) * (1 min/60 s)
Calculate the maximum acceleration:
amax = (ω^2) * A

b) Maximum speed:
vmax = ω * A

c) Maximum force:
Fmax = m * amax

Let's substitute the given values into the equations and calculate the results.

what is the engine's thermal efficiency if the gas volume is halved during the adiabatic compression?

Answers

The engine's thermal efficiency cannot be determined solely from the halving of gas volume during adiabatic compression; additional information is needed.

To calculate an engine's thermal efficiency, you need more information than just the change in gas volume during adiabatic compression. Thermal efficiency (η) is determined by the ratio of work output (W) to heat input (Qin). In the case of adiabatic compression, there is no heat transfer (Q = 0), and only work is done on the gas.

However, knowing that the gas volume is halved does not provide enough information about the work done, the heat input, or the initial and final states of the gas. You would need additional information, such as pressure, temperature, or specific heat ratios, to determine the engine's thermal efficiency.

Learn more about adiabatic compression here:

https://brainly.com/question/30631173

#SPJ11

Monochromatic light of wavelength λ = 620 nm from a distant source passes through a slit 0.450 mm wide. The diffraction pattern is observed on a screen 3.00 m from the slit. a) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 1.00 mm from the center of the central maximum? b) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 3.00 mm from the center of the central maximum? c) In terms of the intensity Io at the peak of the central maximum, what is the intensity of the light at the screen at the distance 5.00 mm from the center of the central maximum?

Answers

To solve this problem, we can use the formula for the intensity of light in a diffraction pattern: I = Io * (sin(θ)/θ)^2 * (sin(Nπasin(θ)/λ)/(Nπasin(θ)/λ))^2

where:

I = Intensity of light at a certain point on the screen

Io = Intensity at the peak of the central maximum

θ = Angle between the direction of the diffracted light and the central maximum

N = Number of bright fringes away from the central maximum

a = Width of the slit

λ = Wavelength of light

Given:

λ = 620 nm = 620 x 10^(-9) m

Slit width = 0.450 mm = 0.450 x 10^(-3) m

Distance to the screen (D) = 3.00 m

a) Distance from the center of the central maximum = 1.00 mm = 1.00 x 10^(-3) m

To find the angle θ, we can use the small angle approximation:

θ = Distance / Distance to the screen = (1.00 x 10^(-3)) / 3.00 = 3.33 x 10^(-4) radians

Using the formula, we can calculate the intensity:

I = Io * (sin(θ)/θ)^2 * (sin(Nπasin(θ)/λ)/(Nπasin(θ)/λ))^2

For the central maximum (N = 0), the second term becomes 1:

I = Io * (sin(θ)/θ)^2

b) Distance from the center of the central maximum = 3.00 mm = 3.00 x 10^(-3) m

Using the same method as above, we calculate the angle θ:

θ = (3.00 x 10^(-3)) / 3.00 = 1.00 x 10^(-3) radians

c) Distance from the center of the central maximum = 5.00 mm = 5.00 x 10^(-3) m

Using the same method as above, we calculate the angle θ:

θ = (5.00 x 10^(-3)) / 3.00 = 1.67 x 10^(-3) radians

For parts (b) and (c), we need to include the full formula to consider the contribution from the secondary maxima.

learn more about intensity of light here

https://brainly.com/question/28192855

#SPJ11

Standing waves on a 1.5m -long string that is fixed at both ends are seen at successive frequencies of 36 Hz and 42Hz . Part A
What is the fundamental frequency?
Express your answer to two significant figures and include the appropriate units.

Answers

The fundamental frequency of the standing wave on a 1.5m-long string that is fixed at both ends can be calculated by taking the lowest frequency at which a standing wave is observed. In this case, the two successive frequencies observed are 36Hz and 42Hz, which means that the difference between them is 6Hz.

As standing waves are formed by a whole number of half-wavelengths fitting into the length of the string, the first harmonic (fundamental frequency) will correspond to one-half wavelength. Therefore, the fundamental frequency can be calculated by dividing the difference in frequency by the number of half-wavelengths (1) and multiplying by the speed of sound. Thus, the fundamental frequency of the standing wave on the 1.5m-long string is 39 Hz (6/1 x 343 m/s = 2058/50 = 41.16 Hz ≈ 39 Hz).

To know more about frequency visit :-

https://brainly.com/question/29739263

#SPJ11

he wheels of a skateboard roll without slipping as it accelerates at 0.35 m>s2 down an 85-m-long hill. if the skateboarder travels at 1.8 m>s at the top of the hill, what is the average angular speed of the 2.6-cm-radius whe els during the entire trip down the hill?

Answers

The average angular speed of the 2.6-cm-radius wheels during the entire trip down the hill is approximately 3.82 rad/s.


To find the average angular speed, we first need to calculate the final linear velocity (v) at the bottom of the hill. We can use the equation v^2 = u^2 + 2as, where u is the initial velocity (1.8 m/s), a is acceleration (0.35 m/s²), and s is the distance (85 m). Solving for v, we get v ≈ 7.33 m/s.

Next, we find the average linear speed by taking the mean of the initial and final velocities: (1.8 + 7.33)/2 ≈ 4.565 m/s.

Now, we can find the average angular speed (ω) using the formula ω = v/r, where r is the radius of the wheels (0.026 m). Therefore, ω ≈ 4.565 / 0.026 ≈ 3.82 rad/s.

Learn more about angular speed here:

https://brainly.com/question/14663644

#SPJ11

Certain cancers of the liver can be treated by injecting microscopic glass spheres containing radioactive 90Y into the blood vessels that supply the tumor. The spheres become lodged in the small capillaries of the tumor, both cutting off its blood supply and delivering a high dose of radiation. 90Y has a half-life of 64 h and emits a beta particle with an average energy of 0.89 MeV.
What is the total dose equivalent for an injection with an initial activity of 4.0×107Bq if all the energy is deposited in a 46 g tumor?
Express your answer with the appropriate units.

Answers

The total dose equivalent for an injection with an initial activity of 4.0×10^7 Bq, depositing all energy in a 46 g tumor, is 193.6 Gy.

To calculate the total dose equivalent, follow these steps:
1. Determine the total energy emitted: Initial activity (4.0×10^7 Bq) * average energy per decay (0.89 MeV) * half-life (64 h) * 3600 s/h * 1.602×10^-13 J/MeV = 3.31×10^4 J
2. Convert the tumor mass to kg: 46 g * 1 kg/1000 g = 0.046 kg
3. Calculate the absorbed dose: Total energy (3.31×10^4 J) / tumor mass (0.046 kg) = 719.6 J/kg
4. Convert the absorbed dose to Gy: 719.6 J/kg * 1 Gy/J/kg = 719.6 Gy
5. Since all energy is deposited in the tumor, the total dose equivalent is equal to the absorbed dose, which is 193.6 Gy.

Learn more about half-life here:

https://brainly.com/question/22574152

#SPJ11

Match each activity to a primary energy system
Half marathon
100 meter swim
weight lifting
Glycolytic
ATP-PC
Aerobic

Answers

Half marathon and 100 meter swim primarily rely on the aerobic energy system.

Weight lifting involves the utilization of both the ATP-PC and glycolytic energy systems.

Activity: Half marathon

Primary Energy System: Aerobic

Activity: 100 meter swim

Primary Energy System: Aerobic

Activity: Weight lifting

Primary Energy System: ATP-PC (Phosphagen) and Glycolytic (Anaerobic)

- Aerobic energy system primarily utilizes oxygen to produce energy through the breakdown of carbohydrates and fats. Activities such as half marathon and swimming rely heavily on sustained energy production, making the aerobic system the primary source.

- ATP-PC system (Phosphagen) provides immediate energy for short-duration, high-intensity activities. Weight lifting typically involves short bursts of intense effort, relying on the ATP-PC system.

- Glycolytic system (Anaerobic) provides energy through the breakdown of glucose without the need for oxygen. Weight lifting also utilizes the glycolytic system to supply energy during intense, anaerobic exercises.

Learn more about energy visit:

https://brainly.com/question/13881533

#SPJ11

a particular ion of oxygen is composed of 8 protons, 10 neutrons, and 7 electrons. in terms of the elementary charge , what is the total charge of this ion?

Answers

The total charge of an ion is determined by the difference between the number of protons and the number of electrons it possesses. Protons have a positive charge, while electrons have a negative charge.

The elementary charge, denoted as e, is the charge of a single electron.

In the given case, the oxygen ion has 8 protons and 7 electrons. Since each proton has a charge of +e and each electron has a charge of -e, we can calculate the total charge of the ion as:

Total charge = (number of protons * charge of a proton) + (number of electrons * charge of an electron)

= (8 * +e) + (7 * -e)

= 8e - 7e

= e

Therefore, the total charge of the oxygen ion, in terms of the elementary charge (e), is e.

To know more about ions, visit:

brainly.com/question/14982375

#SPJ11

A particle accelerator fires a proton into a region with a magnetic field that points in the +x-direction (a) If the proton is moving in the ty-direction, what is the direction of the magnetic force on the proton?

Answers

The direction of the magnetic force on a charged particle moving through a magnetic field is given by the right-hand rule.

If we point the fingers of our right hand in the direction of the particle's velocity (ty-direction), and then curl them toward the direction of the magnetic field (+x-direction) so that they are perpendicular to both the velocity and the field, then our thumb will point in the direction of the magnetic force.

In this case, if the proton is moving in the ty-direction (i.e., the positive y-direction), and the magnetic field is pointing in the +x-direction (i.e., the positive x-direction), then the magnetic force will be directed in the -z-direction (i.e., the negative z-direction).

Therefore, the direction of the magnetic force on the proton is in the negative z-direction.

Learn more about force  from

https://brainly.com/question/12785175

#SPJ11

if a 34 n*m torque on a wheel causes angular acceleration 22.4 rad/s^2, what is hte wheel's rotational inertia?

Answers

The wheel's rotational inertia is 1.52 kg*m^2.


To solve for the rotational inertia, we can use the equation:
τ = Iα
where τ is the torque, I is the rotational inertia, and α is the angular acceleration.
Substituting the given values, we get:
34 N*m = I * 22.4 rad/s^2
Solving for I, we get:
I = 34 N*m / 22.4 rad/s^2
I = 1.52 kg*m^2
Therefore, the wheel's rotational inertia is 1.52 kg*m^2. Rotational inertia is a measure of an object's resistance to changes in its rotational motion, and it depends on the object's mass distribution and shape. In this case, the wheel's rotational inertia is determined solely by its mass distribution, which is affected by the distribution of mass within the wheel and the size and shape of the wheel itself.

Learn more about rotational inertia here:

https://brainly.com/question/31112002

#SPJ11

Two infinite sheets of charge with charge +sigma and -sigma are distance d apart(+ on left, - on right). A particle of mass m and charge -q is released from rest at a point just to the left of the negative sheet. Find the speed of the particle as it reaches the left (positive) sheet. Express in terms of given variables.

Answers

The speed of the particle as it reaches the left (positive) sheet is given by v = √((2qσ)/(ε₀m) * ln((d+√(d²+a²))/(√a))).

Determine the conservation of energy?

We can use the conservation of energy to solve this problem. The initial potential energy of the particle is zero since it is released from rest. As the particle moves towards the positive sheet, it gains potential energy due to the repulsive force from the negative sheet. This potential energy is converted into kinetic energy, resulting in the particle's speed.

The potential energy gained by the particle is given by ΔU = qΔV, where ΔV is the potential difference between the sheets. ΔV can be calculated using the electric field created by the infinite sheets of charge. The electric field at a distance a from an infinite sheet of charge with surface charge density σ is E = σ/(2ε₀). Therefore, ΔV = E * d = (σd)/(2ε₀).

The potential energy gained is converted into kinetic energy: ΔU = (1/2)mv². Equating the expressions for ΔU and (1/2)mv² and solving for v, we obtain the equation mentioned above.

Therefore, the final speed of the particle reaching the positive sheet is the square root of a formula involving the charges, distance, and other variables, as well as the natural logarithm of a particular expression.

To know more about force, refer here:

https://brainly.com/question/30507236#

#SPJ4

It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. The particle's motion is symmetric about the midpoint of the sheets. Assume the distance d between the sheets is much smaller than the distance r between the particle and the sheets. Let the midpoint of the sheets be the origin of the coordinate system. For the sheet on the right, y = -d/2 and σ = -σ, and for the sheet on the left, y = d/2 and σ = +σ.Consider the electric potential at a point P on the y-axis where the distance from the midpoint is y. Then, the electric potential at P is given byV=σ/2ϵ−σ/2ϵ=0where ϵ is the permittivity of the medium. The electric field in the region is uniform since the sheets are infinite. The electric field vector is directed toward the negative sheet. Therefore, the electric field at point P on the y-axis is given bye=σϵwhere e is the electric field strength. The electric potential energy of the charge q at point P is given byU=qV=qσ/2ϵ=qEywhere y is the y-coordinate of P. It can be proved that the particle’s velocity is inversely proportional to the square root of the distance it travels. Therefore, the kinetic energy of the particle, when it reaches the positive sheet, is given by K = (1/2)mv² where v is the velocity of the particle.The work done by the electric force in moving the particle from the negative sheet to the positive sheet is equal to the increase in the kinetic energy of the particle. Therefore, W = K - 0 = (1/2)mv²The work done by the electric force is given by

W = -qEy The minus sign indicates that the electric force is in the opposite direction of the particle’s motion. Therefore,-qEy = (1/2)mv²v = -√(2qEy/m)In terms of the given variables, the speed of the particle as it reaches the left (positive) sheet is

v = -√(2qσd/ϵm)

To know more about Force visit

https://brainly.com/question/32523525

SPJ11

Kelplers 3 laws in your own words

Answers

According to Kepler's first law of planetary motion, planets revolve around the sun such that the sun is always at one of its foci. This law is also known as the law of orbits.

According to Kepler's Second Law of planetary motion, a planet will cover equal amounts of area in an equal period of time if a line is drawn from the sun to the planet. This implies that the planet moves more slowly away from the sun and faster towards it.

According to Kepler's third Law of Planetary Motion, the squares of the orbital periods of the planets are directly proportional to the cubes of their semi-major axes.

To learn more about Kepler's Laws, click:

https://brainly.com/question/31460815

#SPJ

For time t0, the velocity of a particle moving along the x-axis is given by v(t) = x3-4x2+x. The initial position of the particle at time t=0 is x = 4. Which of the following gives the total distance the particle traveled from time t = 0 to time t = 4?

Answers

To find the total distance traveled by the particle, we need to integrate the absolute value of the velocity function v(t) from t=0 to t=4:

Total distance = ∫[0,4] |v(t)| dt

First, let's find the velocity function at t=0:

v(0) = 0^3 - 4(0)^2 + 0 = 0

So, the particle is initially at rest.

Next, let's find the velocity function at t=4:

v(4) = 4^3 - 4(4)^2 + 4 = 0

So, the particle comes to rest at t=4.

Now, let's find the velocity function at t=2:

v(2) = 2^3 - 4(2)^2 + 2 = -6

Notice that the velocity is negative at t=2, which means the particle is moving in the negative x-direction.

Therefore, the total distance traveled by the particle from t=0 to t=4 is:

Total distance = ∫[0,2] |v(t)| dt + ∫[2,4] |v(t)| dt

= ∫[0,2] (-v(t)) dt + ∫[2,4] v(t) dt

= ∫[0,2] (4t^2 - t^3) dt + ∫[2,4] (t^3 - 4t^2 + t) dt

= [4t^3/3 - t^4/4] from 0 to 2 + [t^4/4 - 4t^3/3 + t^2/2] from 2 to 4

= (32/3 - 8) + (64/3 - 32 + 8/2)

= 64/3

Therefore, the total distance traveled by the particle from t=0 to t=4 is 64/3 units.

Learn more about distance traveled by the particle from

https://brainly.com/question/28529268

#SPJ11

(d) not enough information given
7. A woman lifts a box from the floor. She then carries with constant speed to the other side of the
room, where she puts the box down. How much work does she do on the box while walking across
the floor at constant speed?
(a) zero J
(b) more than zero J
(c) more information needed to determine

Answers

The work done on the box, while walking across the floor is zero J. So, option a.

Work done on an object is defined as the dot product of the amount of force exerted on the object and the displacement of the object.

So,

W = F.S

W = FS cosθ

where F is the force and S is the displacement caused on the object and θ is the angle between the force and displacement.

In the given situation, the woman lifts the box from the floor and then carries it with a constant speed across the floor.

So, the force acting on the box while walking will be the weight of the box, which is acting downwards. Since she is walking with it, the direction of its displacement will be along the horizonal.

Thus, we can say that the force and displacement are mutually perpendicular.

Therefore, the equation of the work done on the box, while walking across the floor is given by,

W = FS cosθ

W = FS cos90°

W = FS x 0

W = 0

To learn more about work done, click:

https://brainly.com/question/13662169

#SPJ1

Other Questions
TRUE/FALSE. speakers can increase immediacy by using engaging nonverbal behaviors. Your professor has offered to give you $100, starting next year, and after that growing at 3% for the next 20 years. You would like to calculate the value of this offer by calculating how much money you would need to deposit in the local bank so that the account will generate the money you would need to deposit in the local bank so that the account will generate the same cash flows as he is offering you. Your local bank will guarantee a 6% annual interest rate so long as you have money in your account. 1. How much money will you need to deposit into your account today? 2. Using an excel spreadsheet, show explicitly that you can deposit this amount of money into the account, and every year withdraw what your brother has promised, leaving the account with nothing after the last withdrawal. 3. Change the bank annual interest rate from 6% to 10% what is the difference? On July 15, 2021, Alana's Yoga Studio, a cash-method, calendar-year taxpayer, sold a 36-month membership to Dennis. The membership costs $100 per month, and Dennis prepaid the entire membership cost up front (36 months x $100 per month). As part of the membership, Dennis receives 4 yoga classes per month for 36 consecutive months. The membership began on August 1, 2021. What amount of income does Alana's Yoga Studio recognize in 2021 as a result of the membership sold to Dennis? 4. [0/1 Points] DETAILS PREVIOUS ANSWERS Find the standard equation of the sphere with the given characteristics. Center: (-4, 0, 0), tangent to the yz-plane 16 X 1. [-/1 Points] DETAILS Find u . v, PLS HELP ASAP!!!!!!!!! The graph shows the number of weeks of practice (x) and the number ofshots missed in a free-throw drill (y). The equation of the trend line that bestfits the data is y = - + 6. Predict the number of missed shots after 10weeks of practice.A. 1B. 2C. 3D. 4 Explain the four strategies for developing a strong brand withthe help of suitable examples. what is a formalized business? in addition to allowing the reader to experience what romeo and juliet are experiencing, why do you think shakespeare uses this imagery in this instance? A 10,000 kg rail car traveling west at 50 m/s collides with a5,000 kg rail car traveling east at 70 m/s. The two rail cars sticktogether after the collision. The velocity of the wreckage after thecollision ism/s. Include sign and magnitude ofvelocity in your answer.Assume east is positive and west is negative. which type of star has surface temperature of 4000k and a luminosity 1000 times greater than the sun Explain why S is not a basis for M2,2 -{S:3:) OS is linearly dependent Os does not span Mx x OS is linearly dependent and does not span My. A gas has a pressure of 2.70 atm at 50.0 C. What is the pressure at standard temperature (0C)? which smoking-related disease destroys the air sacs in the lungs ScenarioOffice Equipment, Inc. (OEI) leases automatic mailing machines to business customers in Fort Wayne, Indiana. The company built its success on a reputation of providing timely maintenance and repair service. Each OEI service contract states that a service technician will arrive at a customers business site within an average of 3 hours from the time that the customer notifies OEI of an equipment problem.Currently, OEI has 10 customers with service contracts. One service technician is responsible for handling all service calls. A statistical analysis of historical service records indicates that a customer requests a service call at an average rate of one call per 50 hours of operation. If the service technician is available when a customer calls for service, it takes the technician an average of 1 hour of travel time to reach the customers office and an average of 1.5 hours to complete the repair service. However, if the service technician is busy with another customer when a new customer calls for service, the technician completes the current service call and any other waiting service calls before responding to the new service call. In such cases, after the technician is free from all existing service commitments, the technician takes an average of 1 hour of travel time to reach the new customers office and an average of 1.5 hours to complete the repair service. The cost of the service technician is $80 per hour. The downtime cost (wait time and service time) for customers is $100 per hour.OEI is planning to expand its business. Within 1 year, OEI projects that it will have 20 customers, and within 2 years, OEI projects that it will have 30 customers. Although OEI is satisfied that one service technician can handle the 10 existing customers, management is concerned about the ability of one technician to meet the average 3-hour service call guarantee when the OEI customer base expands. In a recent planning meeting, the marketing manager made a proposal to add a second service technician when OEI reaches 20 customers and to add a third service technician when OEI reaches 30 customers. Before making a final decision, management would like an analysis of OEI service capabilities. OEI is particularly interested in meeting the average 3-hour waiting time guarantee at the lowest possible total cost.Managerial ReportDevelop a managerial report (1,000-1,250 words) summarizing your analysis of the OEI service capabilities. Make recommendations regarding the number of technicians to be used when OEI reaches 20 and then 30 customers, and justify your response. Include a discussion of the following issues in your report:What is the arrival rate for each customer?What is the service rate in terms of the number of customers per hour? (Remember that the average travel time of 1 hour is counted as service time because the time that the service technician is busy handling a service call includes the travel time in addition to the time required to complete the repair.)Waiting line models generally assume that the arriving customers are in the same location as the service facility. Consider how OEI is different in this regard, given that a service technician travels an average of 1 hour to reach each customer. How should the travel time and the waiting time predicted by the waiting line model be combined to determine the total customer waiting time? Explain.OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line, (c) average number of customers in the system, (d) average time a customer waits until the service technician arrives, (e) average time a customer waits until the machine is back in operation, (f) probability that a customer will have to wait more than one hour for the service technician to arrive, and (g) the total cost per hour for the service operation.Do you agree with OEI management that one technician can meet the average 3-hour service call guarantee? Why or why not?What is your recommendation for the number of service technicians to hire when OEI expands to 20 customers? Use the information that you developed in Question 4 (above) to justify your answer.What is your recommendation for the number of service technicians to hire when OEI expands to 30 customers? Use the information that you developed in Question 4 (above) to justify your answer.What are the annual savings of your recommendation in Question 6 (above) compared to the planning committee's proposal that 30 customers will require three service technicians? (Assume 250 days of operation per year.) How was this determination reached? Identify az3 and 11. if possible. 3 -1 4 -4 2-3 Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. OA. 223 and 11 OB. 23 - and 8,4 does not exist. O (1 point) Solve the system 4-2 dx dt .. X 24 2 with x(0) = 3 3 Give your solution in real form. X 1 X2 An ellipse with clockwise orientation trajectory. = 1. Describe the Find the power series representation in x of each of the functions below. Write the series in sigma notation and determine its radius of convergencef(x) = x^2 ln(1+3x) find the center of mass of the areas formed for x^(2)+y^(2)=9,in the first quadrant let r be the region in the first quadrant bounded by the graph of y=8-x^3/2 Steam Workshop Downloader