The vertex of a quadratic function can be found by using the following expression:
[tex]x=\frac{-b}{2a}[/tex]Where "a" is the number multiplying x² and b is the number multiplying x. For this function a = -2 and b = 5. Applying these on the problem we have:
[tex]x=\frac{-5}{2\cdot(-2)}=\frac{-5}{-4}=\frac{5}{4}=1.25[/tex]To find the y coordinate of the vertex we need to use the value for x that we found above. We have:
[tex]\begin{gathered} f(x)=-2x^2+5x+11 \\ f(\frac{5}{4})=-2\cdot(\frac{5}{4})^2+5\cdot(\frac{5}{4})+11 \\ f(\frac{5}{4})=-2\frac{25}{16}+\frac{25}{4}+11 \\ f(\frac{5}{4})=\frac{-50}{16}+\frac{25}{4}+11 \\ f(\frac{5}{4})=-3.125+6.25+11=14.125 \end{gathered}[/tex]The ordered pair for this function's vertex is (1.25, 14.125)
The area of a triangle is 5. two of the sides lengths are 4.1 and 2.5 and the included angle is obtuse. find the measure of the included angle, to the nearest tenth of a degree.
Given data:
The given area of the triangle is A=5.
The first side given is a=4.1.
The second side given is b=2.5.
The expression for the area of triangle is,
[tex]A=\frac{1}{2}ab\sin C[/tex]Substitute the given values in the above expression.
[tex]\begin{gathered} 5=\frac{1}{2}(4.1)(2.5)\text{ sin C} \\ \sin C=0.97561 \\ C=102.7^{\circ} \end{gathered}[/tex]Thus, the value of the angle is 102.7 degrees.
2. In the xy-plane above, ABCD is a square and point E is the center of the square. The coordinates of points C and E are (7,2) and (1,0), respectively. Write an equation of the line that passes through points A, E, and C. B 1 2 -С E X -6 2 4. 16 A -2
Ready
Points A = (-5, -2) C = (7, 2) E = (1, 0)
1.- Find the slope
m = (y2 - y1) / (x2 - x1)
m = (2 + 2) / (7 + 5)
m = 4/ 12
m = 1/3
2.- Find the equation of the line
y - y1 = m(x - x1)
y + 2 = 1/3(x + 5)
y + 2 = 1/3x + 5/3
y = 1/3x + 5/3 - 2
y = 1/3 x + 5/3 - 6/3
This is the equation:
y = 1/3 x - 1/3
my pleausre
The first quartile of a data set is 32, and the third quartile is 52. Which of
these values in the data set is an outlier?
Answer: As we know that the formula of outlier is
IQR = Q3 - Q1
= 52 - 32
= 20
52 + 1.5(20) = 82...
so anything above 82 is an outlier
now
32 - 1.5(20) = 2.
..anything below 2 is an outlier
so...the 83 is outlier
so correct option is D
hope it helps
Step-by-step explanation:
Solve the following simultaneous equation with elimination or substitution method
So, to solve the system:
To solve it, we could substitute the first equation in the second one and then solve for x:
We could solve the previous quadratic by factoring:
To find the values of y, just replace each vaue of x:
Therefore, the solutions of the system are
(x,y) = (-3,-1)
(x,y)=(1,3)
rst builds ons 3 Veronda has a bag of mixed shapes. She chooses 3 shapes and fits them together to form a figure as shown. 17 cm What is the area of the figure Veronda creates? Use 1 = 3.14 5 Holly A 136 cm? B 107.14 cm C 96.56 cm D 76.57 cm?
We have three different figures
Semicircle
r = 4cm
[tex]\begin{gathered} A_r=\frac{\pi\cdot r^2}{4} \\ A_r=\frac{3.14\cdot4^2}{4} \\ A_r=\frac{3.14\cdot16}{4} \\ A_r=12.56 \end{gathered}[/tex]Square
l = 8cm+
Which equation is true when the value of x is - 12 ?F: 1/2x+ 22 = 20G: 15 - 1/2x = 21H: 11 - 2x = 17 J: 3x - 19 = -17
Substitute x = - 12 in each of the given equation, if the equation satisfy then tha x = -1 2
F) 1/2x + 22 = 20
1/2 ( -12) + 22 = 20
(-6) + 22 = 20
16 is not equal to 22
G) 15 -1/2x = 21
Substitute x = -12 in the expression :
15 - 1/2( -12) = 21
15 + 1/2(12) =21
15 + ( 6) = 21
21 = 21
Thus, The equation 15 - 1/2x = 21 is true for x = -12
H) 11 - 2x = 17
Susbstitute x = ( -12) in the equation :
11 - 2x = 17
11 - 2( -12) = 17
11 + 24 = 17
35 = 17
Since, 35 is not equal to 17
D) 3x - 19 = -17
SUsbtitute x = ( -12)
3( -12) - 19 = -17
-36 - 19 = -17
-36 = -17 + 19
-36 = 2
Since - 36 is not equal 2
Answer : G) 15 - 1/2x = 21
Please help me, i struggle with these types of problems
Solution
[tex]\begin{gathered} 11x-3=9x+15 \\ \\ 2x=18 \\ \\ x=9 \end{gathered}[/tex]Therefore, we find m < 7
[tex]\begin{gathered} 11x-3 \\ \\ 11(9)-3 \\ \\ 99-3 \\ \\ 96\degree \end{gathered}[/tex]An item is regularly priced at $85. Yolanda bought it at a discount of 65% off the regular price?
Read the following scenario and develop a method for answering the question posed. Be sure to define all variables used, justify your thinking mathematically, and fully answer the questions posed in complete sentences. Orbital Toys sells two types of sets of magnetic spheres, silver, and brass. The store owner, Lucy Ball, pays $8 and $16 for each one set of silver magnetic spheres and brass magnetic spheres respectively. One set of silver magnetic spheres yields a profit of $5 while a set of brass magnetic spheres yields a profit of $7. Ms. Ball estimates that no more than 2000 sets of magnetic spheres will be sold every month and she does not plan to invest more than $20,000 in the inventory of these sets. How many sets of each type of magnetic spheres should be stocked in order to maximize her total monthly profit? What is her maximum monthly profit?
8 dlls for silver
16 dlls for brass
5 dlls profit silver
7 dlls profit spheres
Then the price is
8+5= 13 dlls for silver
16+7=23 dlls for brass
Let S and B be the amount of magnetic silver and brass sphers that are sold, respectively.
Then, Ms. Ball estimation is that
[tex]S+B\leq2000[/tex]Also, she doesn't want to invest more than 20000, so
[tex]\begin{gathered} 8S+16B\leq20000 \\ S+2B\leq2500 \end{gathered}[/tex]The objective function is
[tex]V=5S+7B[/tex]Subjected to:
[tex]\begin{gathered} S+B\leq2000 \\ S+2B\leq2500 \\ S\ge0,\text{ B}\ge0 \end{gathered}[/tex]GRAPH
The interection is at
[tex]\begin{gathered} S=2000-B \\ S=2500-2B \\ 2000-B=2500-2B \\ B=500 \\ S=2000-500 \\ S=1500 \end{gathered}[/tex]So, the extremes must be at (0,1250), (1500,500), (2000,0) , (0,0).
So, if we replace the points
[tex]\begin{gathered} V(0,1250)=5(0)+7(1250)=8750 \\ V(1500,500)\text{ = 5(1500)+7(500)=}11000 \\ V(2000,0)=5(2000)+7(0)=10000 \end{gathered}[/tex]So, the amount she will need to stock to maximize her profit is 1500 of silver and 500 of brass, and the maximum profit is going to be 11000 dlls.
what operation helps calculate unit rates and unit prices
Division operation is operation helps calculate unit rates and unit prices.
Division operation -
A rate with 1 as the denominator is referred to as a unit rate. If you have a rate, such as a price per a certain number of items, and the quantity in the denominator is not 1, you can determine the unit rate or price per unit by performing the division operation: numerator divided by denominator.What method do you employ to determine the unit rate?
Simple division of the numerator and denominator yields the unit rate. The outcome tells us how many of the units in the numerator to anticipate for each unit in the denominator.
What in mathematics are rate and unit rate?
A ratio called a rate compares two amounts of DIFFERENT types of UNITS. When expressed as a fraction, a unit rate has a denominator of 1. Divide the rate's numerator and denominator by the denominator to represent the rate as a unit rate.Learn more about Division operation
brainly.com/question/12984208
#SPJ13
Insert three arithmetic means between -16 and 4
To answer this question we will use the following formulas to compute n arithmetic means between 'a' and 'b':
[tex]\begin{gathered} A_1=a+\frac{b-a}{n+1}, \\ A_2=a+2\cdot\frac{b-a}{n+1}, \\ \ldots \\ A_n=a+n\cdot\frac{b-a}{n+1}\text{.} \end{gathered}[/tex]Substituting n=3, a=-16, and b=4 we get:
[tex]\begin{gathered} A_1=-16+\frac{4-(-16)}{3+1}, \\ A_2=-16+2\cdot\frac{4-(-16)}{3+1}, \\ A_3=-16+3\cdot\frac{4-(-16)}{3+1}\text{.} \end{gathered}[/tex]Simplifying the above results we get:
[tex]\begin{gathered} A_1=-16+\frac{4+16}{4}=-16+\frac{20}{4}=-11, \\ A_2=-16+2\cdot\frac{4+16}{4}=-16+\frac{40}{4}=-6, \\ A_3=-16+3\cdot\frac{4+16}{4}=-16+\frac{60}{4}=-1. \end{gathered}[/tex]Answer: -11, -6, and -1.
f(-9)=7x+6
what would the value of F(-9) be?
6. Find the distance from A to B for the hexagonal nut shown below: А 1.50 in BYo I've asked tutors and they have been unable to answer, after all it's only given one side and I need some help.
Let
x ------> the length side of the regular polygon
we have a regular hexagon
that means
the interior angle of this polygon is
180(6-2)/6=120 degrees
A regular hexagon can be divided into 6 congruent equilateral triangles
see the attached figure to better understand the problem
in the right triangle of the figure
we have that
sin(60)=0.75/x
solve for x
x=0.75/sin(60)
Remember that
[tex]\sin (60^o)=\frac{\sqrt[]{3}}{2}[/tex]substitute
[tex]\begin{gathered} x=0.75\colon\frac{\sqrt[]{3}}{2} \\ \\ x=\frac{1.50}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}}=\frac{1.50\sqrt[]{3}}{3}=\frac{\sqrt[]{3}}{2} \end{gathered}[/tex]Part 2
Find the distance AB
Applying the Pythagorean Theorem
AB^2=1.5^2+x^2
substitute the value of x
AB^2=2.25+(3/4)
AB^2=3
[tex]AB=\sqrt[]{3}\text{ in}[/tex]the distance AB is the square root of 3 inchespls help i Dont get it
Answer:
what do you need
Step-by-step explanation:
If possible, give the input and output variables of the equation f(r) = 兀r2.
The input variable of the function is r, while the output variable is f(r)
How to determine the variables?The definition of the function is given as
f(r) = πr²
In the above function definition, we have the function to be
f(r)
The definition f(r) implies that
r represents the input variablef(r) represents the output variableThe above is true because, the variable π has its constant value of 22/7
i.e. π= 22/7
While the variable r can change its value
Take for instance:
If r = 7, then we have
f(7) = π x 7²
Evaluate
f(7) = 154
If r = 14, then we have
f(14) = π x 14²
Evaluate
f(14) = 616
See that the value of f(r) changes as r changes
This means that, the stated parameters above are true i.e.
r represents the input variablef(r) represents the output variableRead more about functions at
https://brainly.com/question/28532394
#SPJ1
There is a 50% chance of rain here and a 10% chance of rain on Mars. Therefore, there is a 45% chance that it will rain in neither place.
The statement that " There is a 45% chance that it will rain in neither place" is true.
In the question ;
it is given that
Probability of raining here = 50% = 0.5
Probability of raining on mars = 10% = 0.1
So, the probability of not raining here = 1-0.5 = 0.5
and probability of not raining on mars = 1-0.1 = 0.9
Hence the probability of rain in neither place = (probability of not raining here)×(probability of not raining on mars) .
Substituting the values , we get
probability of rain in neither place = 0.5×0.9
= 0.45
= 45%
Therefore , the statement " There is 45% chance that it will rain in neither place" is true.
The given question is incomplete , the complete question is
There is a 50% chance of rain here and a 10% chance of rain on Mars. Therefore, there is a 45% chance that it will rain in neither place.
Is the statement True or False ?
Learn more about Probability here
https://brainly.com/question/27942798
#SPJ1
Determine the real number x and y if (x-yj)(3+5j) is the conjugate of -6-24j
The values of the variables x and y such that the conjugate of - 6 - j 24 is found are 3 and 3, respectively.
How to find the value of two variables associated with the conjugate of a complex number
Let α + i β be a complex number, whose conjugate is the complex number α - i β. In this problem we find the values of the variables x and y such that:
(x + i y) · (3 + i 5) = - 6 + i 24
3 · x + i 3 · y + i 5 · x + i² 5 · y = - 6 + i 24
(3 · x - 5 · y) + i (5 · x + 3 · y) = - 6 + i 24
Then, we need to solve the following system of linear equations:
3 · x - 5 · y = - 6
5 · x + 3 · y = 24
Now we proceed to solve the system algebraically. Clear x in the first equation:
x = (- 6 + 5 · y) / 3
x = - 2 + (5 / 3) · y
Substitute x on the second equation and clear y:
5 · [- 2 + (5 / 3) · y] + 3 · y = 24
- 10 + (25 / 3) · y + 3 · y = 24
34 / 3 · y = 34
(1 / 3) · y = 1
y = 3
Finally, we substitute on y in the first equation:
x = - 2 + (5 / 3) · 3
x = - 2 + 5
x = 3
The values of the variables x and y are 3 and 3, respectively.
To learn more on conjugate of complex numbers: https://brainly.com/question/18392150
#SPJ1
Scatter PlotWhich statement best describes the association betweenvariable X and variable Y?.moderate negative association. Perfect negative association. Moderate positive association. Perfect positive association
It's moderate negative association
Exercises Complete the following: 11. Find the intercepts and (a) 9x² - 164 = 144 (c) 25x - 4y = 100 (e) x² + y² = 1 29x² + 16y² = 144
The intercepts for a function can be on either of the two axis, y or x.
when finding the intercepts of x, means that y = 0
when finding the intercepts of y, means that x = 0
finding the x intercepts
[tex]\begin{gathered} -x^2+(0)^2=1 \\ -x^2=1 \\ x^2=-1 \\ x=\sqrt[]{-1} \end{gathered}[/tex]since the solution for the square root of -1 has not any solution on the real numbers, we can say that there is no intercept over the x axis.
finding the y intercepts
[tex]\begin{gathered} -(0)^2+y^2=1 \\ y^2=1 \\ y=\pm\sqrt[]{1} \\ y=1;y=-1 \end{gathered}[/tex]there are 2 intercepts on the y axis, these are at y=1 and y=-1
information can be proven by graphing the function
Write the following number in standard decimal form.five and seventy-nine hundredths
five and seventy-nine hundredths = 5.79
Use dimensional analysis to determine which rate is greater. The pitcher for the Robins throws a baseball at 90.0 miles per hour. The pitcher on the Bluebirds throws a baseball 125.4 feet per second. Which pitcher throws a baseball faster? Complete the explanation:When I convert the Bluebirds pitcher's speed to the same units as the Robins pitcher's speed the speed is __ mi/h. Since the Bluebirds pitcher's speed is ____ the Robins pitcher's speed, the pitcher on the ____ throws a faster ball.
ANSWER and EXPLANATION
We want to solve the problem by using dimensional analysis.
To do this, let us convert the speed of the Bluebirds baseball to miles per hour.
We have that:
1 feet per second = 0.6818 miles per hour
125.4 feet per second = 85.50 miles per hour
As we can see the baseball of the Bluebirds is slower than the Robins (90 miles per hour)
Now, to complete the explanation:
When I convert the Bluebirds pitcher's speed to the same units as the Robins pitcher's speed, the speed is _85.50_ mi/h.
Since the Bluebirds pitcher's speed is _less than_ the Robins pitcher's speed, the pitcher on the __Robins_ throws a faster ball.
Find the coordinates of the stationary points of the curve and use the secondderivative to determine the type of each.
Calculate the derivative of the function, as shown below
[tex]\begin{gathered} y=3x+\frac{108}{x}=3x+108x^{-1} \\ \Rightarrow y^{\prime}=3+108((-1)x^{-1-1})=3-108x^{-2} \\ \Rightarrow y^{\prime}=3-108x^{-2} \end{gathered}[/tex]Set y'=0 and solve for x, as shown below
[tex]\begin{gathered} y^{\prime}=0 \\ \Rightarrow3-108x^{-2}=0,x\ne0 \\ \Rightarrow3=\frac{108}{x^2} \\ \Rightarrow x^2=\frac{108}{3} \\ \Rightarrow x^2=36 \\ \Rightarrow x=\pm\sqrt[]{36} \\ \Rightarrow x=\pm6 \end{gathered}[/tex]Their corresponding y-coordinates are
[tex]\begin{gathered} x=\pm6 \\ \Rightarrow y=3(6)+\frac{108}{6}=18+18=36 \\ \Rightarrow(6,36) \\ \text{and} \\ 3(-6)+\frac{108}{-6}=-18-18=-36 \\ \Rightarrow(-6,36) \end{gathered}[/tex]Therefore, the two stationary points are (6,36) and (-6,-36).
Using the second derivative test,
[tex]\begin{gathered} y^{\prime}=3-108x^{-2} \\ \Rightarrow y^{\doubleprime}=-108(-2x^{-2-1})=216x^{-3} \end{gathered}[/tex]Then,
[tex]\begin{gathered} y^{\doubleprime}(6)=\frac{216}{(6)^3}=1>0\to\text{ local minimum at x=6} \\ \text{and} \\ y^{\doubleprime}(-6)=\frac{216}{(-6)^3}=-1<0\to\text{ local maximum at x=-6} \end{gathered}[/tex](6,36) is a local minimum and (-6,-36) is a local maximum.
I need help what is the sum of five squared and five
You have the following expression:
"the sum of five squared and five"
the previous statement, in a mathematical form is:
5² + 5
It is important to point out that you have "the sum" of two numbers, which numbers? five squared and five.
The simplified form is:
5² + 5 = 25 + 5 = 30
Graph the solution of the linear inequality and answer the questions on the bottom
The inequality is given
[tex]-2y\leq6x+18[/tex]To draw the graph of the inequality which is less than equal to
how is the metric system important to a pharmacy Technician?
The metric system is a system of decimals in which all the measurements are taken as multiples or divisions based on a factor of 10. We have to convert between different units of measurements while working in a pharmacy. Metric system helps to make fast and easy conversions of units of measurements. Therefore, metric system is important to a pharmacy technician.
In the picture below, line PQ is parallel to line RS, and the lines are cut by a transversal, line TO. The transversal is not perpendicular to the parallel lines.
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
Congruent angles = ?
Step 02:
We must analyze the diagram to find the solution.
Congruent angles:
∠ Y ≅ ∠ E
The answer is:
∠ Y ≅ ∠ E : are congruent
I inserted a picture of the questionPlease state whether it’s A B C or DCheck all that apply
Given the initial function,
[tex]f(x)=2^x[/tex]In general, a vertical stretch/compression is expressed by
[tex]f(x)\to k\cdot f(x)[/tex]If k>1, the function gets a vertical stretch; on the other hand, if 0Therefore, in our case,
[tex]g_1(x)=\frac{1}{3}f(x)\to\text{vertical compression by a factor of 1/3}[/tex]A vertical shift is given by the following formula
[tex]\begin{gathered} f(x)+k \\ k>0\to\text{shifted up} \\ k<0\to\text{shifted down} \end{gathered}[/tex]In our case,
[tex]g(x)=g_1(x)-7\to\text{vertical shift down by 7 units.}[/tex]Therefore, the answers are B and D.
which number below comes first when the numbers are listed from least to greatest? Explain. Then write the numbers in order from least to greatest 1/6, -3, the square root of 5, -9 / 2, 4.6 which number comes first when the numbers are listed from least to greatest?A. 1/6B.-3C.-9/2D.Square root of 5E. 4.6
Answer:
The number that comes first when the numbers are listed from least to greatest is;
[tex]\frac{-9}{2}[/tex]And, arranging the numbers from least to greatest will give;
[tex]\frac{-9}{2},-3,\frac{1}{6},\sqrt{5},4.6[/tex]Explanation:
We want to arrange the number given below from least to greatest;
[tex]\frac{1}{6},-3,\frac{-9}{2},\sqrt{5},4.6[/tex]From the list of numbers, let us simplify each of them to their approximate decimal.
[tex]\begin{gathered} \frac{1}{6}=0.1667 \\ -3 \\ \frac{-9}{2}=-4.5 \\ \sqrt{5}=2.236 \\ 4.6 \end{gathered}[/tex]From the given number, the highest negative number will be the least number.
Because the higher a negative number the lower it becomes.
The highest negative is -4.5 followed by -3.
So, arranging from the least to the greatest we have;
[tex]-4.5,-3,0.1667,2.236,4.6[/tex]Rewriting it in its initial form we have;
[tex]\frac{-9}{2},-3,\frac{1}{6},\sqrt{5},4.6[/tex]Therefore, The number that comes first when the numbers are listed from least to greatest is;
[tex]\frac{-9}{2}[/tex]And, arranging the numbers from least to greatest will give;
[tex]\frac{-9}{2},-3,\frac{1}{6},\sqrt{5},4.6[/tex]Score: U OQuestion Help3.3.29CeringritdA train travels 140 km in the same time that a plane covers 630 km. If the speed of the plane is 30 km per hr less than 5 times the speed ofTrain140the train, find both speeds.Planey 630The train's speed is km per hr
Notice that the time for both trips is the SAME but not known (let's use the letter T to address this unknown).
We also assign St to the speed of the train, and Sp to the speed of the plane.
Then, the relationship between the speeds according to the information they provide, is given by the equation:
Sp = 5 * St - 30
we also know that the train covers 140 km in the time T, Then according to the formula for speed (distance divided by time) we can say:
St = 140 km / T, therefore T = 140 km / St
We do something similar with the information on the distance covered by the plane:
Sp = 630 km / T which solving for T gives:
T = 630 km / Sp
Now we equal the expressions for T (since that time is the SAME as we noticed before, and get:
630 km / Sp = 140 / St
we corss-multiply to get the speeds in the numerator:
630 St = 140 Sp
ANd we use the very first equation we wrote (Sp = 5 * St - 30)
to replace Sp in terms of St:
630 St = 140 (5 St - 30)
Now use distributive property on the right to eliminate the parenthesis:
630 St = 700 St - 4200
add 4200 to both sides, and subtract 630 St from both sides :
4200 = 700 St - 630 St
4200 = 70 St
divide both sides by 70 to isolate St completely:
St = 4200 / 70
St = 60 km/h (this is the speed of the train)
Now we can find the value of the speed of the plane, using the first equation again:
Sp = 5 * St - 30 = 5 (60) - 30 = 300 - 30 = 270 km/h
Then the speed of the plane is: 270 km/h
Two people out of a group of 75 will win tickets to an upcoming concert. How many different groups of two are possible?
To calculate the combinations of groups of 2, since the order doesn't matter, we can use combination. In this case we have a total of 75 to choose from and will choose 2, so this is "75 choose 2".
The equation to use is (n choose k):
[tex]C(n,k)=\frac{n!}{(n-k)!k!}[/tex]In this case, we have n = 75 and k = 2, so:
[tex]C(75,2)=\frac{75!}{73!2!}[/tex]For the property of factorials, 75! / 73! = 75*74, because the terms less or equal 73 cancel out. so:
[tex]C(75,2)=\frac{75\cdot74}{2!}=\frac{75\cdot74}{2}=75\cdot\frac{74}{2}=75\cdot37=2775[/tex]So, there are 2775 different groups of 2 in this case.
Another way of doing this calculation is by thinking of choosing one at a time.
At first, we can choose from 75 possible people, so we start at 75.
When we choose the second one, we already picked the first, so there are only 74 people left. So we get:
[tex]75\cdot74[/tex]This are the two first people, but, in this way we are considering too many groups, since here we considere the order matter, to fix this we divide by k!, where k is the number of picks, which is 2 in this case (so, permutation of 2). So:
[tex]\frac{75}{2}\frac{74}{1}=\frac{75\cdot74}{2}=2775[/tex]