From the first diagram shown, we can see that 1 cupcake costs $1.5
To get the price of 5 cupcakes
Since 1cupcake = $1.5
5 cupcakes = $x
cross multiply
1 * x = 5 * 1.5
x = $7.5
Hence 5 cupcakes will cost $7.5
Since 1cupcake = $1.5
18 cupcakes = $x
cross multiply
1 * x = 18 * 1.5
x = $27
Hence 5 cupcakes will cost $27
To get the number of cupcakes priced $18
Since 1cupcake = $1.5
x cupcake = $18
1.5x = 18
divide both sides by 1.5
1.5x/1.5 = 18/1.5
x =
i am supposed to find the volume of this pyramid
For this type of problems we use the formula for the volume of a pyramid:
[tex]\begin{gathered} V=\text{ }\frac{1}{3}A_bh \\ A_b\text{ is the area of the base} \\ h\text{ is the height of the pyramid} \end{gathered}[/tex]Substituting h=12 yd and knowing that the area of a square is side*side we get that:
[tex]\begin{gathered} A_b=\text{ 10yd }\cdot10yd=100yd^2 \\ V=\frac{1}{3}100yd^212yd=100yd^24yd=400yd^3 \end{gathered}[/tex]i432--5-4-3-2-1(3.1)2 3 45 X(0,-1)What is the equation of the line that is parallel to thegiven line and has an x-intercept of -3?Oy=x+3Oy=x+2Oy=-x+3Oy=-³x+2
Explanation:
Step 1. We are given the graph of a line and we need to find the equation of the line parallel to it that has an x-intercept of -3.
Since the new line will be a parallel line it means that it will have the same slope. Therefore, our first step is to find the slope of the current line.
Given any line, we find the slope as shown in the following example diagram:
Step 2. Using the previous method, the slope of our line is:
The new line will have the same slope of 2/3.
Step 3. We are also told that the x-intercept of the new line is -3, which means that the new line will cross the y-axis at x=-3, that point is:
(-3,0)
We will label that point of our new line as (x1,y1):
[tex]\begin{gathered} (x_1,y_1)\rightarrow(-3,0) \\ \downarrow \\ x_1=-3 \\ y_1=0 \end{gathered}[/tex]Step 4. So far, we know that the new line will have a slope of 2/3:
[tex]m=\frac{2}{3}[/tex]And that it includes the point (-3,0) where x1=-3 and y1=0.
To find the equation, we use the point-slope equation:
[tex]y-y_1=m(x-x_1)[/tex]Step 5. Substituting the known values into the formula:
[tex]y-0=\frac{2}{3}(x-(-3))[/tex]Solving the operations:
[tex]\begin{gathered} y=\frac{2}{3}(x+3) \\ \downarrow \\ \boxed{y=\frac{2}{3}x+2} \end{gathered}[/tex]Answer:
[tex]\boxed{y=\frac{2}{3}x+2}[/tex]5|x +1| + 7 = -38
Solve for x
Answer: No solutions
Step-by-step explanation:
[tex]5|x+1|+7=-38\\\\5|x+1|=-45\\\\|x+1|=-9[/tex]
However, as absolute value is non-negative, there are no solutions.
Use the Quotient Rule to find the derivative of the function.f(x) = x/(x − 6)f'(x)=
ANSWER
[tex]\frac{-6}{(x-6)^2}[/tex]EXPLANATION
We want to find the derivative of the function:
[tex]f(x)=\frac{x}{x-6}[/tex]The quotient rule states that:
[tex]f^{\prime}(x)=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}[/tex]where u = the numerator of the function
v = the denominator of the function
From the function, we have that:
[tex]\begin{gathered} u=x \\ v=x-6 \end{gathered}[/tex]Now, we have to differentiate both u and v:
[tex]\begin{gathered} \frac{du}{dx}=1 \\ \frac{dv}{dx}=1 \end{gathered}[/tex]Therefore, the derivative of the function is:
[tex]\begin{gathered} f^{\prime}(x)=\frac{(x-6)(1)-(x)(1)}{(x-6)^2} \\ f^{\prime}(x)=\frac{x-6-x}{(x-6)^2} \\ f^{\prime}(x)=\frac{-6}{(x-6)^2} \end{gathered}[/tex]Write the inequality stamens in a describing the numbers (-∞,-5)
The numbers are given to be:
[tex](-\infty,-5)[/tex]This is written in Interval notation.
In "Interval Notation" we just write the beginning and ending numbers of the interval, and use:
a) [ ] a square bracket when we want to include the end value, or
b) ( ) a round bracket when we don't.
Because the interval given uses round brackets, the inequality will contain all real numbers between negative infinity and -5, but not including negative infinity and -5.
Therefore, the inequality will be:
[tex]-\inftyUse the multiplication method to solve the following systems of equations. c + 3t = 7 and 3c – 2t = –12
5x – 4z = 15 and –3x + 2z = 21
–4m + 3n = 50 and 2m + n = 10
2p – 4q = 18 and –3p + 5q = 22
3a + 4b = 51 and 2a + 3b = 37
After solving the system of equations we get the values as:
c=-2 and t=3x= -57 and z=-75m=-2 and n=14p=-89 and q=-49a=5 and b=9Given the equations are as follows, we need to solve them using multiplication method:
c+3t=7 and 3c-2t=-12take c+3t=7
rearrange the terms.
c = 7-3t
substitute c value in other equation.
3(7-3t)-2t=-12
21-9t-2t=-12
21-11t=-12
-11t = -12-21
-11t=-33
t=33/11
t=3
now substitute t value in c = 7-3t
c = 7-3(3)
c=7-9
c=-2
hence t and c values are 3 and -2.
5x – 4z = 15 and –3x + 2z = 21take 5x – 4z = 15
5x = 15+4z
x=15+4z/5
substitute x value in other equation.
-3(15+4z/5)+2z=21
-45-12z+10z=105
-45-2z=105
-2z=105+45
z=-75
substitute z value in x=15+4z/5
x=15+4(-75)/5
x=-57
hence x and z values are -57 and -75.
–4m + 3n = 50 and 2m + n = 10consider, -4m+3n=50
3n = 50+4m
n=50+4m/3
substitute n value in other equation.
2m+n=10
2m+50+4m/3 = 10
6m+50+4m=30
10m=30-50
10m=-20
m=-2
substitute m value in n=50+4m/3
n = 50+4(-2)/3
n = 50-8/3
n = 42/3
n = 14
hence m and n values are -2 and 14.
2p – 4q = 18 and –3p + 5q = 22consider 2p - 4q = 18
2p = 18+4q
p = 9+2q
substitute p value in other equation.
-3p+5q=22
-3(9+2q)+5q=22
-27-6q+5q=22
-27-q=22
-q = 22+27
q = -49
now p = 9+2q
p = 9+2(-49)
p = 9-98
p=-89
hence p and q values are -89 and -49.
3a + 4b = 51 and 2a + 3b = 37consider 3a + 4b = 51
3a = 51-4b
a=51-4b/3
substitute a value in other equation.
2(51-4b/3)+3b=37
102-8b+9b=111
102+b=111
b=111-102
b=9
now, a=51-4(9)/3
a = 51-36/3
a = 15/3
a = 5
hence a and b value are 5 and 9.
Therefore, we solved the required system of equations.
Learn more about System of equations here:
brainly.com/question/13729904
#SPJ1
Which value of n makes the following equation true?√n=4020408O 16
Solution
- The solution steps are given below:
[tex]\begin{gathered} \sqrt{n}=4 \\ \text{ Square both sides} \\ n=4^2 \\ n=16 \end{gathered}[/tex]Final Answer
The answer is 16
Write a sine function that has a midline of 4 , an amplitude of 3 and a period of 2/3
Given a midline of 4, an amplitude of 3 and a period of 2/3 we are asked to write a sine function.
Explanation
The equation of a sine function is given as
[tex]y=Asin(\frac{2\pi x}{T})+B[/tex]Where A is the amplitude, T is the period and B is the midline of the sine function.
Therefore, we will have;
[tex]\begin{gathered} y=3sin(2\pi x\div\frac{2}{3})+4 \\ y=3sin(2\pi x\times\frac{3}{2}_)+4 \\ y=3s\imaginaryI n(3\pi x)+4 \end{gathered}[/tex]Answer:
[tex]y=3s\imaginaryI n(3\pi x)+4[/tex]
Find (fog)(x) and (gof)(-1) for the functions f(x) = 3x² + 5 and g(x) = -x + 1
Answer:
Step-by-step explanation:
fog(x)=3(-x+1)^2+5
=3(x^2+2x+1)+5
=3x^2+6x+3+5
fog(x) =3x^2+6x+8
gof(x)=-(3x^2+5)+1
=-3x^2-5+1
gof(x)=-3x^2-4
gof(-1)=-3(-1)^2-4
=-3-4
gof(-1) =-7
Find the most important variable in the problem. A bag of marbles is full with 20 marbles, 12 of which are yellow. How many are not yellow? A. the total number of marbles B. the number of yellow marbles C. the number of marbles that are not yellow
Since there are 20 marbles and 12 of them are yellow; the marbles that are not yellow is not the same number as the marbles, and neither the number of Yellow marbles because they are yellow. So the answer is C.
If ¼ gallon of paint covers 1/12 of a wall, then how many quarters of paint are needed for the entire wall?
We know that
1 quarter gallon of paint ⇄ 1/12 wall
?? ⇄ 1 wall
Now we just divide both sides of the equivalence
[tex]\begin{gathered} \frac{1}{?}=\frac{\frac{1}{12}}{1} \\ \frac{1}{?}=\frac{1}{12} \end{gathered}[/tex]We clear the equation in order to find the unkown value
[tex]\begin{gathered} \frac{1\cdot12}{1}=\text{?} \\ 12=\text{?} \end{gathered}[/tex]Then, we need 12 quarters of paintA solid plastic cube has sides of length 0.5 cm. Its mass is m g. Write a formula for its density in grams per cubic centimetres
The density of the cube is equal to ρ = m / L³.
What is the density of a plastic cube?
The density of the plastic cube (ρ), in grams per cubic centimeter, is equal to the mass of the cube (m), in grams, divide to the volume of the cube. The volume is equal to the cube of the side length (L), in centimeters. Then, the density of the plastic cube is:
ρ = m / L³
By using the definition of density, the density of the element is equal to ρ = m / L³.
To learn more on densities: https://brainly.com/question/15164682
#SPJ1
(3x² − 5x + 7) and (2x² + x − 2).
By using polynomial rule we can get 6x^4-7x^3+3x^2+17x-14
What is polynomial rule?
All exponent in the algebraic expressions must be non-negative integer in order for the algebraic expressions to be a polynomial.
A polynomial is defined as per an expression which is the composed of variables, constants and exponents, that are combined using the mathematical operations are such as addition, subtraction, multiplication and division.
Sol- (3x^2-5x+7).(2x^2+x-2)
(3x^2-2x^2+3x^2.x-3x^2.2)-5x.2x^2-5x.x+5x.2+7.2x^2+7.x-14
{polynomial multiplication rule}
=6x^4+3x^2-6x^2-10x^3-5x^2+1x+14x^2+7x-14
{Plus or minus with the same x coefficient}
We are get=
6x^4-7x^3+3x^2+17x-14
To know more about polynomial rule click-
https://brainly.com/question/2833285
#SPJ13
A pancake recipe asked for one and 2/3 times as much milk as flower if two and one half cups of milk is used what quantity of flower would be needed according to the recipe?
Let x be the quantity of flour used
Let y be the quantity of milk used
A pancake recipe asked for one and 2/3 times as much milk as flour:
[tex]y=1\frac{2}{3}x[/tex]If two and one half cups of milk is used what quantity of flower would be needed according to the recipe?
Find x when y=2 1/2:
[tex]2\frac{1}{2}=1\frac{2}{3}x[/tex]Write the quantities as fractions;
[tex]\begin{gathered} 2+\frac{1}{2}=(1+\frac{2}{3})x \\ \\ \frac{4}{2}+\frac{1}{2}=(\frac{3}{3}+\frac{2}{3})x \\ \\ \frac{5}{2}=\frac{5}{3}x \end{gathered}[/tex]Solve x:
[tex]x=\frac{\frac{5}{2}}{\frac{5}{3}}=\frac{15}{10}[/tex]Write the answer as a mixed number:
[tex]\frac{15}{10}=\frac{10}{10}+\frac{5}{10}=1+\frac{5}{10}=1+\frac{1}{2}=1\frac{1}{2}[/tex]Then, for 2 1/2 cups of milk would be needed 1 1/2 cups of flourAnswer: 1 1/2The cost of renting a bicycle from Dan's Bike Shop is $2 for 1 hour plus $1 for each additional hour of rental time. Which of the following graphs shows the cost, in dollars, of renting a bicycle from Dan's Bike Shop for 1, 2, 3, and 4 hours? Bicycle Rental Cost Bicycle Rental Cost 7 6 Rental Cost (dollars) Rental Cout (dollars) 2. 1 Hetalia A B. Rental Time Chours) Bicycle Rental Cosi Bicycle Rental 7 7 Rental Cost dollars) 1 Rental Time (hours) Rental Tiene Chours) D.
option B
Explanation:The cost of renting per hour = $2
For 1 hour = $2
For each additional hour, it is $1
For 2 hours = First hour + 1(additional hour)
For 2 hours = $2 + $1(1) = 2+1 = $3
For 3 hours = $2 + $1 (2) = 2+2 = $4
For 4 hours = $2 + $1(3) = 2+3 = $5
The graph which shows this rental cost as 2, 3, 4, 5 is option B
How do you determine 1 and 2/5 - 6/10 =
[tex]\frac{4}{5}[/tex].
Step-by-step explanation:1. Write the expression.[tex]1+\frac{2}{5} -\frac{6}{10}[/tex]
2. Rewrite the fractions with a common denominator.A common denominator is just a number that can be used as a denominator all fractions when we convert them through multiplications. A common denominator is usually found just by multiplying all denominators of all fractions. In this case, we don't need to go that far, since 5 could be a common denominator.This is how you do it:
[tex]1=\frac{1}{1} *\frac{5}{5}=\frac{5}{5} \\ \\\frac{2}{5}= \frac{2}{5}\\\\\frac{6}{10} =\frac{6/2}{10/2}=\frac{3}{5}[/tex]
3. Take all the rewritten fractions and rewrite the operation.[tex]\frac{5}{5} +\frac{2}{5} -\frac{3}{5}[/tex]4. Solve.[tex]\frac{5}{5} +\frac{2}{5} -\frac{3}{5} =\frac{5+2-3}{5} =\frac{4}{5}[/tex]
5. Express your result.[tex]1+\frac{2}{5} -\frac{6}{10}=\frac{4}{5}[/tex].
[tex]\frac{4}{5}[/tex].
Step-by-step explanation:1. Write the expression.[tex]1+\frac{2}{5} -\frac{6}{10}[/tex]
2. Rewrite the fractions with a common denominator.A common denominator is just a number that can be used as a denominator all fractions when we convert them through multiplications. A common denominator is usually found just by multiplying all denominators of all fractions. In this case, we don't need to go that far, since 5 could be a common denominator.This is how you do it:
[tex]1=\frac{1}{1} *\frac{5}{5}=\frac{5}{5} \\ \\\frac{2}{5}= \frac{2}{5}\\\\\frac{6}{10} =\frac{6/2}{10/2}=\frac{3}{5}[/tex]
3. Take all the rewritten fractions and rewrite the operation.[tex]\frac{5}{5} +\frac{2}{5} -\frac{3}{5}[/tex]4. Solve.[tex]\frac{5}{5} +\frac{2}{5} -\frac{3}{5} =\frac{5+2-3}{5} =\frac{4}{5}[/tex]
5. Express your result.[tex]1+\frac{2}{5} -\frac{6}{10}=\frac{4}{5}[/tex].
Consider function f, where B is a real number.
f(z) = tan (Bz)
Complete the statement describing the transformations to function f as the value of B is changed.
As the value of B increases, the period of the function
When the value of B is negative, the graph of the function
shy
and the frequency of the function
If the value of B increases, the period of the function decreases, and the frequency of the function increases. When the value of B is negative, the graph of the function reflects over the y-axis.
How to estimate the graph and the frequency of the function?Let the tangent function be f(z) = tan (Bz)
The period exists [tex]$P=\frac{\pi}{|B|}$[/tex]
The frequency exists [tex]$F=\frac{1}{P}=\frac{|B|}{\pi}$[/tex].
The period exists inversely proportional to B, therefore, as B increases, the period decreases.
Frequency exists inversely proportional to the period, therefore, as the period decreases, the frequency increases.
When B is negative, we get f(z) = tan -Bz = f(-z), therefore, the function exists reflected over the y-axis, as the graph at the end of the answer shows, with f(z) exists red(B positive) and f(-z) exists blue(B negative).
As the value of B increases, the period of the function decreases, and the frequency of the function increases. When the value of B exists negative, the graph of the function reflects over the y-axis.
To learn more about the frequency of the function refer to:
https://brainly.com/question/27195128
#SPJ13
Text-to-Speech6.For the expression, combine like terms and write an equivalentexpression with fewer terms.4- 2x + 5xВ ІΣSave answer and go to next question
hello
the question given request we write an equivalent expression as the one given which is
[tex]4-2x+5x[/tex]an equivalent expression to the one above would be
[tex]4+3x[/tex]so, we can say
[tex]4-2x+5x=4+3x[/tex]Find the value of M and YZ if Y is between X and Z. XY = 5m YZ =m, and X2 = 25
Notice that XZ = XY + YZ
where XY = 5m
YZ = m and XZ =25
Thus,
25 = 5m + m
25 = 6m
Hence,
[tex]m\text{ = }\frac{25}{6}\text{ = 4}\frac{1}{6}\text{ }[/tex]But YZ = m
Therefore, YZ =
[tex]4\frac{1}{6}[/tex]Comment on the similarities and differences for the graph of every polynomial function.
There are different graphs of polynomial functions. In terms of shape, it can go from a straight line, slanting line, parabola, to curvy graphs especially when we are graphing polynomial functions with degrees 3 or higher.
See examples below:
However, what is similar to these graphs is that each graph is continuous or has no breaks and the domain of every polynomial function is the set of all real numbers.
metres> -21,23Sup10f3: Wandere first rareAnswerTeir wiced data prosto w will be whermerson is us. There will stand er is danfromGoethe type of boundary lineDashedEnter two points on the boundary lineSelect the repon you wish to be shaded:
Given
[tex]\begin{gathered} x>-2 \\ y\ge3 \end{gathered}[/tex]The graph
[tex]\begin{gathered} x>-3\text{ the pink colour} \\ y\ge3\text{ the blue colour} \end{gathered}[/tex]Two boundary points
[tex]\begin{gathered} \lparen-2,3) \\ \lparen-2,0) \end{gathered}[/tex]Are they inverses?f(x) = 6x - 6, g(x) = 1/6x + 1
Given function,
f(x) = 6x - 6
or
y = 6x -6
The inverse of a function is calculated by replacing the values of x and y
therefore
Inverse (y = 6x - 6)
x = 6y - 6
x + 6 = 6y
6y = x + 6
y = x/6 + 6/6
y = 1/6*x + 1
or
g(x) = 1/6*x + 1
Hence, both are inverse of each other.
Hi I need help with this thank you! Previous question that may help answer this one : Line of best fit: ^y1=−0.02 x+4.68 ● Curve of best fit: ^y2=−0.09 x2+1.09 x+2.83 Section 2 Question 1 Using a curve to make a prediction of the y value for an x value between two existing x values in your data set is called interpolation. Suppose the year is 2005, where x = 5 years: (a) Use the equation for the line of best fit to predict the number of cell phones sold during that year. Round answers to one decimal place and be sure to include the appropriate units. Your Answer: we have the linear equation: y1=-0.02x+4.68Where x is the number of years since the year 2000, y1 ----> is the number of cell phones sold. So for the year 2005, x=2005-2000=5 years.substitute:y1=-0.02(5)+4.68y1=4.58Therefore, the answer is 4.6 cell phones sold.(b) Use the equation for the non-linear curve of best fit to predict the number of cell phones sold during that year. Round answers to one decimal place and be sure to include the appropriate units. Your Answer: We have the equation y2=-0.09x^2+1.09x+2.83For x=5 yearssubstitute:y2=-0.09(5)^2+1.09(5)+2.83y2=6.03Therefore, the answer is 6.0 cell phones sold.
From the information provided we will have that the predictions will be:
*Line of best fit:
[tex]y_1=0.02(13)+4.68\Rightarrow y_1=4.94\Rightarrow y_1\approx4.9[/tex]So, the extrapolation from the line of best fit is 4.9 sold.
*Curve of best fit:
[tex]y_2=0.09(13)^2+1.09(13)+2.83\Rightarrow y_2=32.21\Rightarrow y_2\approx32.2[/tex]So, the extrapolation for the curve of best fit is 32.2 sold.
what's the difference between two whole number 1/2 percent of 36 and 30% of 10
Here, we proceed step by step, to obtain our answer,
[tex]\frac{1}{2}[/tex] % of 36 can be written as ,
0.5 % of 36 , which means,
100 % refers to 36, then
0.5 % refers to what, thus, by cross multiplication we get,
0.5 % of 36 = [tex]\frac{0.5 X 36}{100}[/tex] = 0.18 ___(1), which can be expressed in whole numbers as 0.
Now, 30 % of 10 means,
100 % refers to 10, then
30 % refers to what, thus, by cross multiplication we get,
30 % of 10 = [tex]\frac{30 X 10}{100}[/tex] = 3 __(2)
From equations (1) and (2),
the whole numbers that we obtain are 0 and 3, respectively,
Thus the difference between these two whole numbers is,
= 3 - 0 = 3.
To know more about percentage, visit,
https://brainly.com/question/26497520
#Percentage
Find the probability that a randomly chosen point is the figure lies in the shaded region. Give all answers in fraction and percent forms.help with number 5 or all of them if u can pls
NUMBER 5:
INFORMATION:
We have a trapeze and, we need to find the probability that a randomly chosen point is the figure lies in the shaded region
STEP BY STEP EXPLANATION:
To find the probability, we must divide the area of the shaded region by the total area of the trapeze
[tex]\text{ Probability}=\frac{Shaded\text{ area}}{Total\text{ area}}[/tex]- Total area:
To calculate the total area, we must use the formula for the area of a trapeze
[tex]A_{trapeze}=\frac{(b_1+b_2)h}{2}[/tex]Where, b1 and b2 are the bases and h is the height
Then, analyzing the trapeze we can see that b1 = 20, b2 = 14 and h = 12
[tex]A_{total}=A_{trapeze}=\frac{(20+14)12}{2}=204[/tex]So, the total area is 204 square units
- Shaded area:
To find the shaded area, we must subtract the no shaded area from the total area.
We can see that the no shaded area is a rectangle with width = 14 and height = 12
Now, using the formula for the area of a rectangle
[tex]A_{rectangle}=\text{ width}\times\text{ height}=14\times12=168[/tex]Then, subtracting the area of the rectangle from the total area
[tex]A_{\text{ no shaded}}=204-168=36[/tex]So, the no shaded are is 36 square units.
Finally, the probability would be
[tex]\begin{gathered} \text{ Probability}=\frac{36}{204} \\ \text{ Simplifying,} \\ \frac{3}{17}\approx17.65\text{ \%} \end{gathered}[/tex]ANSWER:
the probability that a randomly chosen point is the figure lies in the shaded region is
[tex]\frac{3}{17}\approx17.65\text{ \%}[/tex]The sales tax on a table saw is $12.41. a. What is the purchase price of the table saw (before tax) if the sales tax rate is 7.3%? b. Find the total price of the table saw. a. The purchase price is $
We know that the tax rate is 7.3% and it corresponds to $12.41. We want to find the total price of the table saw without taxes, it is to say the 100%. We have the following equivalence:
100% ⇔ ??
7.3% ⇔ $12.41
If we divide both parts of the equivalence we will have the same result:
[tex]\frac{100}{7.3}=\frac{?\text{?}}{12.41}[/tex]Multiplying both parts of the equation by 12.41:
[tex]\begin{gathered} \frac{100}{7.3}=\frac{?\text{?}}{12.41} \\ \downarrow \\ \frac{100}{7.3}\cdot12.41=?\text{?} \end{gathered}[/tex]Now, we can find the total price of the table saw without taxes:
[tex]\begin{gathered} \frac{100}{7.3}\cdot12.41=170 \\ \text{??}=170 \end{gathered}[/tex]Answer A. the purchase price is 170
BThe total price of the table saw (it is to say, including taxes, $12.41), is
170 + 12.41 = 182.41
Answer B. the total price is 182.41
Which of the following could be an example of a function with a domain (-0,) and a range (-0,2)? Check all that apply. A. V= - (0.25)* - 2 - B. v= -(3)*-2 O c. v= -(3)*+2 1 v= - (0.25)*+2 D.
It is desired that the domain and range of the function should, respectively, be
[tex]\begin{gathered} \text{Domain}=(-\infty,\infty) \\ \text{Range}=(-\infty,2) \end{gathered}[/tex]Observe the given choices of function.
It is evident that all the functions are exponential functions, so their domain must be the set of all real numbers,
[tex](-\infty,\infty)[/tex]Now, we have to check the range of each of the 4 given functions.
Option A:
The function is given as,
[tex]y=-(0.25)^x-2[/tex]Consider the following,
[tex]\begin{gathered} x\rightarrow\infty\Rightarrow-(0.25)^x\rightarrow0\Rightarrow-(0.25)^x-2\rightarrow-2\Rightarrow y\rightarrow-2 \\ x\rightarrow-\infty\Rightarrow-(0.25)^x\rightarrow-\infty\Rightarrow-(0.25)^x-2\rightarrow-\infty\Rightarrow y\rightarrow-\infty \end{gathered}[/tex]Thus, we see that the range of the function is,
[tex]\text{Range}=(-\infty,-2)[/tex]Since this does not match with the desired range. This is not a correct choice.
Option B:
The function is given as,
[tex]y=-(3)^x-2[/tex]Consider the following,
[tex]\begin{gathered} x\rightarrow\infty\Rightarrow-(3)^x\rightarrow-\infty\Rightarrow-(3)^x-2\rightarrow-\infty\Rightarrow y\rightarrow-\infty \\ x\rightarrow-\infty\Rightarrow-(3)^x\rightarrow0\Rightarrow-(3)^x-2\rightarrow-2\Rightarrow y\rightarrow-2 \end{gathered}[/tex]Thus, we see that the range of the function is,
[tex]\text{Range}=(-\infty,-2)[/tex]Since this does not match with the desired range. This is not a correct choice.
Option C:
The function is given as,
[tex]y=-(3)^x+2[/tex]Consider the following,
[tex]\begin{gathered} x\rightarrow\infty\Rightarrow-(3)^x\rightarrow-\infty\Rightarrow-(3)^x+2\rightarrow-\infty\Rightarrow y\rightarrow-\infty \\ x\rightarrow-\infty\Rightarrow-(3)^x\rightarrow0\Rightarrow-(3)^x+2\rightarrow2\Rightarrow y\rightarrow2 \end{gathered}[/tex]Thus, we see that the range of the function is,
[tex]\text{Range}=(-\infty,2)[/tex]Since this exactly matches with the desired range. This is a correct choice.
Option D:
The function is given as,
[tex]y=-(0.25)^x+2[/tex]Consider the following,
[tex]\begin{gathered} x\rightarrow\infty\Rightarrow-(0.25)^x\rightarrow0\Rightarrow-(0.25)^x+2\rightarrow2\Rightarrow y\rightarrow2 \\ x\rightarrow-\infty\Rightarrow-(0.25)^x\rightarrow-\infty\Rightarrow-(0.25)^x-2\rightarrow-\infty\Rightarrow y\rightarrow-\infty \end{gathered}[/tex]Thus, we see that the range of the function is,
[tex]\text{Range}=(-\infty,2)[/tex]Since this exactly matches with the desired range. This is also a correct choice.
Thus, the we see that the functions in option C and D possess the desired domain and range.
Therefore, option C and option D are t
a line intersects the points (2,2) and (-1, 20).What is the slope of the line in simplest form?m = _
Given: The points a line intersects as shown below
[tex]\begin{gathered} Point1:(2,2) \\ Point2:(-1,20) \end{gathered}[/tex]To Determine: The slope of the line in its simplest form
Solution
The formula for finding the slope of two points is as shown below
[tex]\begin{gathered} Point1:(x_1,y_1) \\ Point2:(x_2,y_2) \\ slope=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]Let us apply the formula to the given points
[tex]\begin{gathered} Points1(x_1,y_1)=(2,2) \\ Point2(x_2,y_2)=(-1,20) \\ slope=\frac{20-2}{-1-2} \\ slope=\frac{18}{-3} \\ slope=-6 \end{gathered}[/tex]Hence, the slope of the line in simplest form is -6
Function g is defined as g(x)=f (1/2x) what is the graph of g?
Answer:
D.
Explanation
We know that g(x) = f(1/2x)
Additionally, the graph of f(x) passes through the point (-2, 0) and (2, 0).
It means that f(-2) = 0 and f(2) = 0
Then, g(-4) = 0 and g(4) = 0 because
[tex]\begin{gathered} g(x)=f(\frac{1}{2}x_{}) \\ g(-4)=f(\frac{1}{2}\cdot-4)=f(-2)=0 \\ g(4)=g(\frac{1}{2}\cdot4)=f(2)=0 \end{gathered}[/tex]Therefore, the graph of g(x) will pass through the points (-4, 0) and (4, 0). Since option D. satisfies this condition, the answer is graph D.
Today, October 20, 2022, seven friends ate lunch together at Chipotle.
Friend #1 eats there every day - including weekends.
Friend #2 eats there every other day - including weekends
Friend #3 eats there every third day - including weekends
Friend #4 eats there every fourth day - including weekends
Friend #5 eats there every fifth day - including weekends
Friend #6 eats there every sixth day - including weekends
Friend #7 eats there every seventh day - including weekends
Assuming that none of them catch Covid or miss any days, what will be the date when the friends again all eat lunch together at Chipotle?
The most appropriate choice for LCM of two numbers will be given by -
All the friends together can eat lunch on 14th December 2023.
What is LCM?
LCM means Lowest Common Multiple. LCM of two numbers a and b is the least number that is divisible by both a and b.
Friend 1 eats lunch together at Chipotle everyday including weekends
Friend 2 eats lunch together at Chipotle every other day including weekends
Friend 3 eats lunch together at Chipotle every third day including weekends
Friend 4 eats lunch together at Chipotle every fourth day including weekends
Friend 5 eats lunch together at Chipotle every fifth day including weekends
Friend 6 eats lunch together at Chipotle every sixth day including weekends
Friend 7 eats lunch together at Chipotle every seventh day including weekends
Number of days after which all the friends together can eat lunch
= LCM of 1, 2, 3, 4, 5, 6, 7 = 420 days
All the friends together can eat lunch after 420 days
All the friends together can eat lunch on =
(31 - 20) + 30 + 31 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 +14 = 14th December 2023
To learn more about LCM of two numbers, refer to the link -
https://brainly.com/question/16054958
#SPJ9