The value of h by solving the given relationship we get, h = 9
In the above question, a word problem is given with the following relations which are as
First we'll express the given word problem statements into mathematical equation expressions
Therefore, The difference of twice of h and 5 is as much as the sum of h and 4
It can be written as in mathematical equation form as
2h - 5 = h + 4
Now, we need to find the value of h by solving the above mathematical equation formed put of the given relationship
Here,
2h - 5 = h + 4
2h - h = 5 + 4
h = 9
Hence, The value of h by solving the given relationship we get, h = 9
To learn more about, word problems here
https://brainly.com/question/2610134
#SPJ1
Find the distance between the pair of parallel lines with the given equations.y = -5xy = -5x + 26O A) 5 unitsO B) 14.14 unitsC) C) 5.10 unitsO D) 6 units
Solution:
Consider two lines with the following equations:
[tex]y_1=mx+c[/tex]and
[tex]y_2=mx+c_2[/tex]the distance d between these two parallel lines is given by the following equation:
First, we need to take one of the lines and convert it to standard form. For example, take the line:
y = -5x + 26
then, we obtain:
-5x-y+26=0
in this case, we get that
A = -5
B= -1
C = 26
Now we can substitute A, B, and C into our distance equation along with a point, (x1,y1) from the other line. We can pick any point on the line y2. Just plug in a number for x, and solve for y. I will use x = 2, to obtain:
y = -5(2) = -10
then
(x1,y1) = (2,-10)
Replacing these values into the distance equation, we obtain:
[tex]d\text{ = }\frac{|-5(2)+(-1)(-10)+26|}{\sqrt[]{(-5)^2+(-1)^2}}[/tex]that is:
[tex]d\text{ = }\frac{|-10+10+26|}{\sqrt[]{(-5)^2+(-1)^2}}=\frac{26}{\sqrt[]{26}}=5.09\approx5.10[/tex]so that, the correct answer is:
[tex]5.10\text{ units}[/tex]Express the answer in simplest formIf A die is rolled one time find the probability of
Solution
If A die is rolled one time find the probability of getting an even number
The total number in a die rolled once = 6
number of even number = 3
Probability = number of required outcome / number of possible outcome
[tex]\begin{gathered} Pr(evene\text{ number\rparen = number of even / total number} \\ Pr(even)\text{ = 3/6} \\ =\frac{1}{2} \end{gathered}[/tex]Therefore the probability of getting an even number = 1/2
log (2x+ 9) = 1+ log(x- 8)
x = 11.125
STEP - BY - STEP EXPLANATION
What to do?
Solve the given equation.
Given:
log (2x+ 9) = 1+ log(x- 8)
To solve, we will follow the steps below:
Step 1
Re-arrange by subtracting log(x-8) from both-side of the equation.
[tex]log(2x+9)-log(x-8)=1[/tex]Step 2
Apply the law of logarithm that is applicable to the given problem.
[tex]log\frac{(2x+9)}{(x-8)}=1[/tex]Step 3
Replace 1 by log10
Step 4
[tex]log\frac{(2x+9)}{(x-8)}=log10[/tex]Step 5
Cancel-out the log from both-side of the equation.
[tex]\frac{2x+9}{x-8}=10[/tex]Step 6
Cross - multiply
[tex]2x+9=10(x-8)[/tex]Step 7
Open the parenthesis.
[tex]2x+9=10x-80[/tex]Step 8
Collect like term.
[tex]10x-2x=80+9[/tex][tex]8x=89[/tex]Step 9
Divide both-side of the equation by 8
[tex]\frac{8x}{8}=\frac{89}{8}[/tex][tex]x=11.125[/tex]Therefore, the value of x is 11.125
Suppose a person is standing on the top of a building and that she has an instrument that allows her tomeasure angles of depression. There are two points that are 100 feet apart and lie on a straight line that isperpendicular to the base of the building. Now suppose that she measures the angle of depression from thetop of the building to the closest point to be 34.5 and the angle of depression from the top of thebuilding to the furthest point to be 27.8°. Determine the height of the building. (Round your answer to thenearest tenth of a foot.)
see the figure below to better understand the problem
In the right triangle ABC
tan(34.5)=h/x -----> by TOA
h=x*tan(34.5) -----> equation 1
In the right triangle ABD
tan(27.8)=h/(100+x) -----> by TOA
h=(100+x)*tan(27.8) -----> equation 2
Equate equation 1 and equation 2
x*tan(34.5)=(100+x)*tan(27.8)
solve for x
x*tan(34.5)=100*tan(27.8)+x*tan(27.8)
x*[tan(34.5)-tan(27.8)]=100*tan(27.8)
x=329.4 ft
Find out the value of h
h=x*tan(34.5)
h=329.4*tan(34.5)
h=226.4 ft
therefore
the answer is
the height of the building is 226.4 ftUse the x and y intercepts to sketch a graph of each equation.
The given equation is expressed as
x + 4y = 8
4y = 8 - x
y = 2 - x/4
The first step is to input values for x into the equation and determine the corresponding y values. These values are then plotted on the graph.
For x = 0, y = 2 - 0/4 = 2
For x = 1, y = 2 - 1/4 = 1.75
For x = 2, y = 2 - 2/4 = 1.5
We would plot these points on the graph
How many solutions does this equation have?-4k + 4k = 0
Let's try so solve this equation:
[tex]\begin{gathered} -4k+4k=0 \\ 0=0 \end{gathered}[/tex]When you have a result of 0 = 0, that means the equation has infinite solutions, that is, any value of k we use would satisfy the equation.
So the equation has infinitely many solutions.
What is the area of the circle to the nearest 10th unit?
First, lets find the radius of the circle.
For a circle inscribed in a square, the diameter of this circle is equal to the side lenght.
D = 4.4
Since the radius (r) is D/2
r = 4.4/2 = 2.2
Now, we can calcule the area of the circle (A), using the following equation:
[tex]\begin{gathered} A=\pi\cdot r^2 \\ A=\pi\cdot2.2^2 \\ A=4.8\pi units^2 \\ Or,\text{ since }\pi=3.14 \\ A=4.8\cdot3.14 \\ A=15.2\text{ }units^2 \end{gathered}[/tex]A painting is worth $9000 in 2007. The value of the painting increases by 12% eachyear.Estimate the length of time it takes for the value of the painting to double.
Step 1
State the formula for exponential growth
[tex]P(0)=P(1+r)^t[/tex]where;
[tex]\begin{gathered} P=\text{ worth in 2007=\$9000} \\ r=rate=\frac{12}{100}=0.12 \\ t=\text{ time for growth in years} \\ P(0)=\text{ Required value of growth in t years} \end{gathered}[/tex]Step 2
Find double the value of the painting.
[tex]2P=9000\times2=\text{ \$18000}[/tex]Step 3
Estimate the length of time it takes for the value of the paint to double
[tex]\begin{gathered} 18000=9000(1+0.12)^t \\ \frac{18000}{9000}==\frac{9000(1+0.12)^t}{9000} \\ 2=(1+0.12)^t \end{gathered}[/tex][tex]\begin{gathered} \ln 2=\ln (1.12)^t \\ \ln 2=t\ln (1.12) \\ \frac{t(\ln1.12)}{\ln1.12}=\frac{\ln2}{\ln1.12} \\ t=6.116255374\text{ years} \\ t\approx6.1163years\text{ approxi}mately\text{ to 4 decimal places} \end{gathered}[/tex]Hence, it will take approximately 6.1163 years for the value of the paint to double.
For the simple harmonic motion equation d=5sin (pi/4^+), what is the period?
the period is 8
Explanation
the function sin has the form
[tex]\begin{gathered} y=Asin(B(x+c))+D \\ where \\ Period=\frac{2\pi}{B} \end{gathered}[/tex]so
Step 1
a) identify B in the given function
given
[tex]d=5\text{ sin\lparen}\frac{\pi}{4}t)[/tex]hence
[tex]\begin{gathered} \frac{\pi}{4}t\Rightarrow B(t+c) \\ so \\ c=0 \\ \frac{\pi}{4}t=Bt \\ therefore \\ B=\frac{\pi}{4} \end{gathered}[/tex]b) now, replace in the formula to find teh period
[tex]\begin{gathered} Per\imaginaryI od=\frac{2\pi}{B} \\ Period=\frac{2\pi}{\frac{\pi}{4}}=\frac{2\pi *4}{1*\pi}=\frac{8\pi}{\pi}=8 \\ so \\ Period=8 \end{gathered}[/tex]therefore, the period is 8
I hope this helps you
Answer:
8
Step-by-step explanation:
A
P
E
X
A triangular banner has an area 2000 square yards. Find the measures of the base and height of the triangle if the base is five-eighths of the height. What are the units of measurement.
ANSWER:
Height = 80 yds
Base = 50 yds
STEP-BY-STEP EXPLANATION:
Given:
Area = 2000 square yards
Height = h
Base = 5/8h
We can calculate the value of the height using the triangle area formula, just like this:
[tex]\begin{gathered} A=\frac{b\cdot h}{2} \\ \text{ We replacing} \\ 2000=\frac{h\cdot \frac{5}{8}h}{2} \\ h^2=\frac{2000\cdot2\cdot8}{5} \\ h=\sqrt{6400} \\ h=80\text{ yd} \\ \text{ therefore, the base is:} \\ b=\frac{5}{8}\cdot80 \\ b=50\text{ yd} \end{gathered}[/tex]Height = 80 yds
Base = 50 yds
The number line below shows the values of x that make the inequality x > 1 true. Select all the values of x from this list that make the inequality x> 1 true. a. 3 b. -3c. 1 d. 700 e. 1.052. Name two more values of x that are solutions to the inequality.
Answer:
(a)3, 1, 700 and 1.05
(b)6 and 9
Explanation:
(a)The values of x from the list that make the inequality x> 1 true are:
3, 1, 700 and 1.05
(b)Two more values of x that are solutions to the inequality x>1 are:
6 and 9.
The adult skeleton consist of 206 Bones in the school and 30 bones in the arm and legs. Out of the 28th skull bones, 14 are facial bones. Six or ear bones and eight are cardinal bones. How many more bones are there in the arm and legs than in the faceA) 2B) 6C) 14D) 16
We need to compare the number of bones in the arms and legs with the number of bones in the face.
The question says that there are 30 bones in the arms and legs.
The question also says that there are 14 bones on the face.
So, the difference between these will be how many more bones there are in the arms and legs than in the face:
[tex]30-14=16[/tex]3. Which of the following points would produce a negative slope? (A) (B) (C) (D) (-1,2) and (4,2) (-2,-2) and (0,4) (1,3) and (-1,4) (2,4) and (-2,-1)
The sequation to calculate the slope is,
[tex]m=\frac{y2-y1}{x2-x1}[/tex]The solpe of line joining (-1,2) and (4,2) is,
[tex]\begin{gathered} m=\frac{2-2}{4+1} \\ m=0 \end{gathered}[/tex]The slope of the line joining (-2,-2) and (0,4) is,
[tex]\begin{gathered} m=\frac{4+2}{0+2} \\ m=3 \end{gathered}[/tex]The slope of the line joining (1,3) and (-1,4) is,
[tex]\begin{gathered} m=\frac{4-3}{-1-1} \\ m=-\frac{1}{2} \end{gathered}[/tex]Negative slope.
The slope of the line joining (2,4) and (-2,-1) is,
[tex]\begin{gathered} m=\frac{-1-4}{-2-2} \\ m=\frac{5}{4} \end{gathered}[/tex]Positive slope.
Use the Pythagorean Theorem to find the missing side length. *A. 12B. 144C. 10D. 24
We use the Pythagorean theorem formula to find the missing side length.
[tex]\begin{gathered} a^2+b^2=c^2 \\ \text{ Where} \\ a\text{ and }b\text{ are the sides} \\ c\text{ is the hypotenuse} \end{gathered}[/tex]Then, we have:
[tex]\begin{gathered} a=x \\ b=16 \\ c=20 \end{gathered}[/tex][tex]\begin{gathered} a^{2}+b^{2}=c^{2} \\ x^2+16^2=20^2 \\ x^2+256=400 \\ \text{ Subtract 256 from both sides} \\ x^2+256-256=400-256 \\ x^2=144 \\ $$\text{ Apply square root to both sides of the equation}$$ \\ \sqrt{x^2}=\sqrt{144} \\ x=12 \end{gathered}[/tex]AnswerThe length of the missing side is 12.
A real estate agent has 18 properties that she shows. She feels that there is a 50% chance of selling any one property during a week. The chance of selling any one property is independent of selling another property. Compute the probability of selling more than 4 properties in one week. Round your answer to four decimal places.
The probability of selling more than 4 properties in one week is 0.985.
What is probability?A probability formula can be used to calculate the likelihood of an occurrence by simply dividing the favorable number of possibilities by the entire number of possible outcomes.
The binomial distribution is a discrete probability distribution in probability theory and statistics that gives only two possible outcomes in an experiment: success or failure.
In this case, the real estate agent has 18 properties. Therefore, n = 18. p = 50% = 0.5.
The probability will be:
= P(X > 4)
= 1-0.0154 by using Excel command
= 0.985
The probability is 0.985.
Learn more about probability on:
https://brainly.com/question/24756209
#SPJ1
Given rectangle BCDE below. If BF = 22, find EF.
Okay, here we have this:
Considering the provided graph, we are going to find the requested measure, so we obtain the following:
Let us remember that a rectangle besides having the properties of a parallelogram also stands out because it has congruent diagonals. So considering this we have:
BD=EC
EF=BF
EF=22
Finally we obtain that EF is equal to 22 units.
The cost of 15 toys is $225. Identify the equation that represents this situation.
Question:
Solution:
Let us denote by c the cost of each toy. Then, according to the problem, the cost of 15 toys would be:
[tex]15c\text{ = 225}[/tex]So, we can conclude that the correct answer is:
[tex]15c\text{ = 225}[/tex]Which of the following values have 3 significant figures? Check all that apply.A. 10.1B. 100.05C. 120D. 129
The number of significant figures in 10.1 is 3 as there are two digits before the decimal and one digit after the decimal.
The number of significant digit in 100.05 is 5 as there are 3 digits before the decimal and two digits after the decimal.
The number of significant digits in 120 is 2.
The number of significant digits in 129 is 3.
Hence, the correct answers are (A) and (D)digit
A leaking pond loses 16 gallons of water in 47 hours. How many gallons of water will it lose in 33 hours?
A leaking pond loses 16 gallons of water in 47 hours.
How many gallons of water will it lose in 33 hours?
To solve this question we can use a rule of three:
16 gallons is to 47 hours as x gallons is to 33 hours:
[tex]\frac{16}{47}=\frac{x}{33}\Longrightarrow x=\frac{33\cdot16}{47}=\frac{528}{47}=\text{ 11.23}[/tex]Answer:
11.23 gallons
I need help in math can you please help me
We have the following:
[tex]\begin{gathered} \sin \theta=-\frac{8}{17} \\ \theta=\sin ^{-1}(-\frac{8}{17}) \\ \theta=-28.07 \end{gathered}[/tex]now, in Quadrant III (180° to 270°):
[tex]\theta=180+28.07=208.7[/tex]now, for cosine:
[tex]\cos 2\theta=\cos (2\cdot208.7)=0.538=\frac{539}{1000}[/tex]The answer is 539/1000
Please help me and tell me the process I have a test in an hour.Value of x.
Vertical angles are congruent.
From the figure, angle 3 and angle (7x + 3) are vertical angles, therefore angle 3 is (7x + 3)
Angle 1 and 127 degrees are supplementary angles and have a sum of 180 degrees.
That will be :
[tex]\begin{gathered} \angle1+127=180 \\ \angle1=180-127 \\ \angle1=53 \end{gathered}[/tex]Angle 2 and 133 degrees are also supplementary angles and have a sum of 180 degrees.
That will be :
[tex]\begin{gathered} \angle2+133=180 \\ \angle2=180-133 \\ \angle2=47 \end{gathered}[/tex]Now we have angles 1, 2 and 3 which are angles in a triangle, and the sum of interior angles in a triangle is 180 degrees.
[tex]\begin{gathered} \angle1+\angle2+\angle3=180 \\ 53+47+(7x+3)=180 \\ \text{Solve for x :} \\ 100+7x+3=180 \\ 7x+103=180 \\ 7x=180-103 \\ 7x=77 \\ x=\frac{77}{7} \\ x=11 \end{gathered}[/tex]ANSWER :
x = 11
The Jones family took a 12-mile canoe ride down the Indian River in 2 hours. After lunch, the return trip back up the river took 3 hours. Find the rate of the canoe in still water and the rate of the current.
Answer:
Step-by-step explanation:
As per the distance formula, the rate of the canoe in still water is 5 mph; the rate of the current is 1 mph.
Distance formula:
Distance is defined as the total movement of an object without any regard to direction. So, it is defined as the distance that covers how much ground an object despite its starting or ending point.
Distance = Speed x time
Given,
The Jones family took a 12-mile canoe ride down the Indian River in 2 hours. After lunch, the return trip back up the river took 3 hours.
Here we need to find the rate of the canoe in still water and the rate of the current.
According to the given question we know that,
Speed downriver = (12 mi)/(2 h) = 6 mph.
Speed upriver = (12 mi)/(3 h) = 4 mph.
Now, we need to find the canoe's rate in still water is the average of these speeds:
=> (6+4)/2 = 5 miles per hour.
Then the current's rate is calculated as the difference between the actual rate and the canoe's rate:
=> 6 - 5 = 1 miles per hour.
To know more about Distance formula here.
https://brainly.com/question/28956738
#SPJ1
O GRAPHS AND FUNCTIONSGraphically solving a system of linear equations
(-3,4)
Explanationhere we have a system of 2 linear functions, To solve a system of linear equations graphically we graph both equations in the same coordinate system. The solution to the system will be in the point where the two lines intersect.
so
Step 1
graph the function (1)
a)
[tex]y=-\frac{1}{3}x+3[/tex]to graph the line we need 2 poins, so
i) P1, when x=0
[tex]\begin{gathered} y=-\frac{1}{3}x+3 \\ y=-\frac{1}{3}(0)+3=3 \\ so \\ P1=(0,3) \end{gathered}[/tex]ii) P2; when x= 3
[tex]\begin{gathered} y=-\frac{1}{3}(3)+3=-1+3=2 \\ so \\ P2;\text{ \lparen3,2\rparen} \end{gathered}[/tex]iii) now, draw a line that passes trought P1 and P2
Step 2
now, graph line 2 ( function 2)
i) P3, when x= 0
[tex]\begin{gathered} 3x+y=-5 \\ replace\text{ and solve for y} \\ 3(0)+y=-5 \\ y=5 \\ so,P3=(0,-5) \end{gathered}[/tex]ii) P5, when x= 2
[tex]\begin{gathered} 3x+y=-5 \\ replace\text{ and solve for y} \\ 3(2)+y=-5 \\ 6+y=-5 \\ subtract\text{ 6 in both sides} \\ y=-6-5=-11 \\ y=-11 \\ so,\text{ P4=\lparen2,-11\rparen} \end{gathered}[/tex]iii) now, draw a line that passes trought P3 and P4
Step 3
finally, the solution is the orderede pair where the lines intersect each other
therefore, the solution is
(-3,4)
I hope this helps you
Suppose you have 40 shirts and 15 pairs of pants to choose from in your wardrobe. Using the fundamental counting principle, how many outfit combinations are possible?
Type the correct answer in the box. Use numerals instead of words.
By taking the product between the number of shirts and pants, we coclude that there are 600 different outfit combinations.
How many outfit combinations are possible?
The total number of outfit combinations is given by the product between the numbers of each type of clothes that you have.
you have 40 shirts.
Yo have 15 pairs of pants.
Then the number of different combinations is 40*15 = 600
Learn more about combinations:
https://brainly.com/question/11732255
#SPJ1
URGENT!! ILL GIVE
BRAINLIEST!!!!! AND 100 POINTS!!!!!
Answer:
True.
area of green square + area of purple square = area of red square
[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]
6.724x
Melinda went for a run. She was doing a great job until she got to a hill. She was so tired
running up the hill that she tripped over a rock at the top of the hill. She rolled all the way
down the hill. It took her 90 seconds to reach the bottom of the hill. She rolled for 225
feet. What is Melinda's rate of decent?
The Melinda's rate of decent from the top of the hill is 3.75 ft/sec.
What is termed as the rate of decent/speed?Speed is defined as the proportion of distance traveled to time spent traveling. Because it has only one direction and no magnitude, speed is a scalar quantity. When an object travels the same distance in equal time intervals, it is said to be moving at a uniform speed.For the given question;
The distance covered by the Melinda after she tripped over a rock at the top of the hill is 225 feet.
The time taken by Melinda to reach the bottom of the hill is 90 seconds.
Then, the rate of decent will be the speed at which she will fall.
Speed = distance/ time
Speed = 225/60
Speed = 3.75
Thus, the Melinda's rate of decent from the top of the hill is 3.75 ft/sec.
To know more about the speed, here
https://brainly.com/question/3004254
#SPJ10
the top ten medal- winning nations in a tournament in a particular year are shown in the table. use the given information and calculate the mean number of gold medals for all nations
An extrasolar planet is observed at a distance of
4.2 × 10⁹ kilometers away. A group of scientists
has designed a spaceship that can travel at the
speed of 7 × 108 kilometers per year. How many
years will the spaceship take to reach the extrasolar
planet? Enter the answer in the box.
After conducting some mathematical operations, we can conclude that it would take the spaceship 5555556 years to reach the extrasolar planet.
What do we mean by mathematical operations?A mathematical function known as an operation converts zero or more input values into a precisely defined output value.The quantity of operands affects the operation's arity.The four mathematical operations are functions that change one number into another by taking input values, or numbers, as inputs.They are addition, subtraction, multiplication, and division.So, years were taken by the ship to reach the extrasolar planet:
Distance of the planet: 4.2 × 10⁹ kmSpeed of the spaceship: 7 × 108 per/yearNow, calculate the number of years as follows:
= (4.2 × 10⁹)/(7 × 108)= (4.2 × 1000000000)/756= 4,20,00,00,000/756= 5555555.56Rounding off: 5555556 years
Therefore, after conducting some mathematical operations, we can conclude that it would take the spaceship 5555556 years to reach the extrasolar planet.
Know more about mathematical operations here:
brainly.com/question/28937023
#SPJ13
Question 5 Multiple Choice Worth 1 points)(05.02 MC)A nurse collected data about the average birth weight of babies in the hospital that month. Her data is shown using the dot plot. Create a box plot to represent the data.Monthly Birth Weight:8.28.3 8.4 8.5 8.6Birth Weight (in pounds)82 83 8.4 85 86 87 8.882 8384 8.5 86 87 60 6.982 83 84 8.5 8.6 8.7 8.0 8.9 98283 84 85 86 87 88 8.998.1816.181$F
Given:
Here we have data about the average birth weight of babies in the hospital that month.
Required:
We need to create a box plot to represent the data.
Explanation:
Here we have monthly birth weight in pounds as
8.2 , 8.2 , 8.3 , 8.3 , 8.4 , 8.4 , 8.5 , 8.5 , 8.5 , 8.7 , 8.9
now by data we get Q2 is 8.4
now for this data
8.2 , 8.2 , 8.3 , 8.3 , 8.4
we get Q1 is 8.3
by this data
8.5 , 8.5 , 8.5 , 8.7 , 8.9
we get Q3 is 8.5
and we have maximum 8.9 and minimum 8.2
now make a box plot
Final answer:
Andre drew a plan of a courtyard at a scale of 1 to 60. On his drawing, one side of the courtyard is 2.75 inches. What is the actual measurement of that side of the courtyard? Show your work.
Okay, here we have this:
Considering that the scale is of 1 to 60, we obtain the following:
2.75 inches * 60 =165.