The set numbers from 1 to 12(inclusive) is:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
The set even numbers are:
2, 4, 6, 8, 10, 12
Given that the event E is "the number is even"
Therefore, the set representing the event E as a bracketed set is:
[tex]E=\mleft\lbrace2,4,6,8,10,12\mright\rbrace[/tex]
Question 3 of 14What are the factors of the product represented below?TILESX2 X2 X2 X2X X X XA. (2x + 1)(4x + 3)B. (4x + 2)(3x + 1)C. (8x + 1)(x+2)D. (4x + 1)(2x + 3)
Hi!
To solve this exercise, we can analyze the sides of this rectangle, which indicate the size of each side.
Let's do it:
On the superior side, we have: x+x+x+x+1, which means 4x+1, right?
On the left side, we have: x+x+1+1+1, or 2x+3
So, we can say that the factors of this rectangle are (4x+1)*(2x+3), last alternative.
help please A sandwich shop has three kinds of bread, seven types of meat, and four types of cheese. How many different sandwiches can be made using one type of bread, one meat, and one cheese?
Types of combinations of
Bread, Meat , CHeese
How many combinations of B M CH can be made.
There are 3, 7 and 4 types of food , respectively
Made a tree of possibilities
Then, for every 3 , there are 7 possibilities. Multiply both
3 x 7 = 21
And for every 7 , there are 4 possibilities . Multiply then
3x 7 x 4 = 84 possible type of sandwiches
During a Super Bowl day, 19 out of 50 students wear blue-colored jersey upon entering the campus. If there are 900 students present on campus that day, how many students could be expected to be wearing a blue-colored jersey? T T
Is 4b-2c leqslant 12 inequalities or not inequalities[tex] ax+by \leqslant c[/tex]
First, let's write the expression below:
[tex]4b-2c\leqslant12[/tex]Since the expression contains the symbol "<=" (that is, "lesser than or equal to") between two terms, the complete expression is an inequality.
In order to solve this inequality for a given variable, we need to rewrite the inequality such as one side of the inequality has only the wanted variable.
For example, solving the inequality for b, we have:
[tex]\begin{gathered} 4b-2c\leqslant12\\ \\ 4b\leq12+2c\\ \\ b\leq\frac{12+2c}{4}\\ \\ b\leq3+0.5c \end{gathered}[/tex]q(v)= int 0 ^ v^ prime sqrt 4+w^ 5 dw ther; q^ prime (v)=
ANSWER
[tex]q^{\prime}(v)=\sqrt{4+(v^7)^5}[/tex]EXPLANATION
We want to find the derivative of the given function:
[tex]q(v)=\int_0^{v7}\sqrt{4+w^5}dw[/tex]When the lower limit of an integral is a constant and the upper limit of the integral is a variable, the derivative of this is the function inside the integral in terms of the upper limit of the integral.
In other words, the derivative of the given integral function is:
[tex]q^{\prime}(v)=\sqrt{4+(v^7)^5}[/tex]That is the answer.
find the sum.(7-b) + (3) +2 =
The sum of three consecutive integers is −387. Find the three integers.
Answer:
-130, -129, -128
Step-by-step explanation:
consecutive integers are when one integer is greater than the previous one and so on... so assuming the smallest integer which we start with is "x", the next integer is "x+1", and the next integer is "x+1+1".
Adding all these together will give us the sum of three consecutive integers:
[tex]x+(x+1)+(x+1+1)[/tex]
Simplifying inside the parenthesis gives us
[tex]x+(x+1)+(x+2)[/tex]
Simplifying the entire expression gives us the following:
[tex]3x+3[/tex]
This is equal to -387 as stated in the problem, so let's set it equal to -387
[tex]3x+3=-387[/tex]
Subtract 3
[tex]3x=-390[/tex]
Divide by 3
[tex]x=-130[/tex]
Since the consecutive integers are just +1, then +2, we can define the three consecutive integers as
-130, -130 + 1, -130 + 2
which simplifies to
-130, -129, -128
A grocer mixed grape juice which costs $1.50 per gallon with cranberry juice whichcosts $2.00 per gallon. How many gallons of each should be used to make 200 gallons of cranberry/grape juice which will cost $1.75 per gallon?
Let x be the amount of gallons of grape juice we are using to get the mixture we want. Let y be the amount of gallons of cranberry juice used to get the desired mixture.
Since we are told that we want a total of 200 gallons of the new mixture, this amount would be the sum of gallons of each liquid. So we have this equation
[tex]x+y=200[/tex]To find the values of x and y, we need another equation relating this variables. Note that since we have 200 gallons of the new mixture and the cost per gallon of the new mixture is 1.75, the total cost of the new mixture would be
[tex]1.75\cdot200=350[/tex]As with quantities, the total cost of the new mixture would be the cost of each liquid. In the case of the grape juice, since we have x gallons and a cost of 1.50 per gallon, the total cost of x gallons of grape juice is
[tex]1.50\cdot x[/tex]In the same manner, the total cost of the cranberry juice would be
[tex]2\cdot y[/tex]So, the sum of this two quantites should be the total cost of the new mixture. Then, we get the following equation
[tex]1.50x+2y=350[/tex]If we multiply this second equation by 2 on both sides, we get
[tex]3x+4y=700[/tex]Using the first equation, we get
[tex]x=200\text{ -y}[/tex]Replacing this value in the second equation, we get
[tex]3\cdot(200\text{ -y)+4y=700}[/tex]Distributing on the left side we get
[tex]600\text{ -3y+4y=700}[/tex]operating on the left side, we get
[tex]600+y=700[/tex]Subtracting 600 on both sides, we get
[tex]y=700\text{ -600=100}[/tex]Now, if we replace this value of y in the equation for x, we get
[tex]x=200\text{ -100=100}[/tex]Thus we need 100 gallons of each juice to produce the desired mixture.
a mother duck lines her 8 ducklings up behind her. in how many ways can the ducklings line up?
In position one, we can have any of the 8 ducks
In position two, we can have 7 ducks, since one has to occupy position one
and so on
then, we have:
[tex]8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1=8![/tex]the factorial of 8 is 40320
The figure below is a trapezoid:10011050mZ1 =m2 =mZ3=Blank 1:Blank 2:Blank 3:
STEP 1: Identify and Set Up
We have a trapezoid divided by a straight line that divides it assymetrically. We know from the all too famous geometric rule that adjacent angles in a trapezoid are supplementary. Mathematically, we can express thus:
[tex]100^o+<2+<3^{}=180^o=50^o+110^o+<1[/tex]Hence, from this relation, we can find our unknown angles.
STEP 2: Execute
For <1
[tex]\begin{gathered} 180^o=50^o+110^o+<1 \\ 180^o=160^o+<1 \\ \text{Subtracting 160}^o\text{ from both sides gives} \\ <1=180-120=60^o \end{gathered}[/tex]<1 = 60 degrees
For <2 & <3
We know from basic geometry that a transversal across two parallel lines gives a pair of alternate angles and as such, <1 = <3 = 60 degrees
We employ our first equation to solve for <2 as seen below:
[tex]\begin{gathered} 100^o+<2+<3^{}=180^o \\ 100^o+<2+60^o=180^o \\ 160^o+<2=180^o \\ \text{Subtracting 160}^{o\text{ }}\text{ from both sides gives:} \\ <2=180-160=20^o \end{gathered}[/tex]Therefore, <1 = <3 = 60 degrees and <2 = 20
In 2011, an earthquake in Chile measured 8.3 on the Richter scale. How many times more intense was thisearthquake then than the 2011 earthquake in Papa, New Guinea that measured 7.1 on the Richter scale? Roundthe answer to the nearest integer.
SOLUTION:
Step 1:
In this question, we are given that:
In 2011, an earthquake in Chile measured 8.3 on the Richter scale. How many times more intense was this earthquake then than the 2011 earthquake in Papa, New Guinea that measured 7.1 on the Richter scale?
Round the answer to the nearest integer.
Step 2:
From the question, we are to use this formula:
Now, we have that:
[tex]\begin{gathered} M_2-M_1=\log (\frac{I_2}{I_1}) \\ \text{where M}_2=\text{ 8.3} \\ \text{and} \\ M_1=\text{ 7. 1} \end{gathered}[/tex]Hence, we have that:
[tex]\begin{gathered} \text{8. 3 - 7. 1 = log ( }\frac{I_2}{I_1}) \\ 1.2=log_{10}\text{ (}\frac{I_2}{I_1}) \\ (\frac{I_2}{I_1})\text{ = }10^{1.2} \end{gathered}[/tex]CONCLUSION:
The final answer is:
[tex](\frac{I_2}{I_1})=10^{1.\text{ 2}}[/tex]Which equation represents the values in the table? x–1012y–13711A.y = 4x + 3B.y = −x − 1C.y = 3x − 1D.y = 1/4x − 3/4
We know it's a linear function, which is like
[tex]f(x)=mx+b[/tex]We can find the slope "m" of the linear function doing
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]There the points x₂, x₁, y₂ and y₁ we can take what's more convenient for us, just be careful, if you do x₁ = 0, you must take the correspondent y₁, the value of y on the same column, therefore y₁ = 3, for example.
I'll do x₁ = 0 which implies y₁ = 3 and x₂ = 1 which implies y₂ = 7. Therefore
[tex]\begin{gathered} m=\frac{7_{}-3}{1_{}-0_{}} \\ \\ m=\frac{7_{}-3}{1_{}}=4 \end{gathered}[/tex]Therefore the slope is m = 4, then
[tex]y=4x+b[/tex]To find out the "b" value we can use the fact that when x = 0 we have y = 3, therefore
[tex]\begin{gathered} y=4x+b \\ \\ 3=4\cdot0+b \\ \\ 3=b \\ \end{gathered}[/tex]Then b = 3, our equation is
[tex]y=4x+3[/tex]The correct equation is the letter A.
A seamstress has three colours of ribbon; the red is 126cm, the blue is 196cm and the green
is 378cm long. She wants to cut them up so they are all the same length, with no ribbon
wasted. What is the greatest length, in cm, that she can make the ribbons?
Answer:
14cm is the greatest length
Step-by-step explanation:
Hi!
So the question is basically asking for the greatest common factor between each of these numbers (if I understood the question right so here we go) :
The GCF in this case is 14:
126 / 14 = 9
196 / 14 = 14
378 / 14 = 27
Please feel free to ask me any more questions that you may have!
and Have a great day! :)
The speedometer on Leona's car shows the speed in both miles per hour and kilometers per hour. Using 1.6 km as the equivalent for 1 mi, find the mile per hour rate that is equivalent to 40 kilometers per hour.
To find the mile per hour rate equivalent to 40 km per hour, let's convert 40km to miles using the given equivalence in the question.
[tex]\begin{gathered} 1.6\operatorname{km}=1mi \\ 40\operatorname{km}\times\frac{1mi}{1.6\operatorname{km}}=\frac{40\operatorname{km}mi}{1.6\operatorname{km}}=25mi \end{gathered}[/tex]Therefore, 40 km = 25 miles.
The mile per hour rate equivalent to 40km per hour is 25 miles per hour.
I haven’t got a clue about what it is or what to do
EXPLANATION
Rotating the shape , give us the third shape form.
Rationalize the denominator and simplify:
√5a+√5
Find the probability of obtaining exactly seven tails when flipping seven coins. Express your answer as a fraction in lowest terms or a decimal rounded to the nearest millionth.
Answer:
Concept:
If you flip a coin once, there are
[tex]\text{2 possiblities}[/tex]Using the binomial probability formula below, we will have
[tex]P(x)=^nC_rp^xq^{x-r}[/tex]Where
[tex]\begin{gathered} p=probability\text{ of success} \\ q=probability\text{ of failure} \end{gathered}[/tex][tex]\begin{gathered} p=\frac{1}{2} \\ q=\frac{1}{2} \\ n=7 \\ x=7 \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} P(x)=^nC_rp^xq^{x-r} \\ P(x=7)=^7C_7(\frac{1}{2})^7(\frac{1}{2})^{7-7} \\ P(x=7)=(\frac{1}{2})^7 \\ P(x=7)=\frac{1}{128} \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow\frac{1}{128}[/tex]Look at the graphs and their equations below. Then fill in the information about the coefficients A, B, C, and D.
Given:
Aim:
We need to find the coordinates and The sign of the equation.
Explanation:
[tex]We\text{ know that y=a\mid x\mid is upside and y}\ge\text{0 when a >0 and downside and y}\leq\text{owhen a<0}[/tex]The coefficient of the given functions are
[tex]y=A|x|\text{ is positive}[/tex][tex]y=B|x|\text{ is positive}[/tex][tex]y=C|x|\text{ is negative}[/tex][tex]y=D|x|\text{ is negative}[/tex]The coefficient is closest to zero.
Comparing the graph of y=A|x| and y=B|x|, we get y=A|x| is wider than y=B|x|.
[tex]A
Comparing the graph of y=C|x| and y=D|x|, we get y=D|x| is wider than y=C|x|.
[tex]CComparing the graph of y=A|x| and y=C|x|, we get y=C|x| is wider than y=A|x|.
[tex]C The coefficient is closest to zero y=C|x|.The coefficient with the greatest value.
Comparing the graph of y=B|x| and y=D|x|, we get y=D|x| is wider than y=B|x|.
[tex]D The coefficient with the greatest value is y=B|x|. .A chemist needs to strengthen a 34% alcohol solution with a 50% solution to obtain a 44% solution. How much of the 50% solution should be added to 285 millilitres of the 34% solution? Round your final answer to 1 decimal place.
Answer: 475 ml of 50% solution is needed
Explanation:
Let x represent the volume of the 50% solution needed.
From the information given,
volume of 34% alcohol solution = 285
Volume of the mixture of 34% solution and 50% solution = x + 285
Concentration of 44% mixture = 44/100 * (x + 285) = 0.44(x + 285)
Concentration of 34% alcohol solution = 34/100 * 285 = 96.9
Concentration of 50% solution = 50/100 * x = 0.5x
Thus,
96.9 + 0.5x = 0.44(x + 285)
By multiplying the terms inside the parentheses with the term outside, we have
96.9 + 0.5x = 0.44x + 125.4
0.5x - 0.44x = 125.4 - 96.9
0.06x = 28.5
x = 28.5/0.06
x = 475
Find a degree 3 polynomial that has zeros -2,3 and 6 and in which the coefficient of x^2 is -14. The polynomial is: _____
Given:
The zeros of degree 3 polynomial are -2, 3 , 6.
The coefficient of x² is -14.
Let the degree 3 polynomial be,
[tex]\begin{gathered} p(x)=(x-x_1)(x-x_2)(x-x_3) \\ =(x-(-2))(x-3)(x-6) \\ =\mleft(x+2\mright)\mleft(x-3\mright)\mleft(x-6\mright) \\ =\mleft(x^2-x-6\mright)\mleft(x-6\mright) \\ =x^3-x^2-6x-6x^2+6x+36 \\ =x^3-7x^2+36 \end{gathered}[/tex]But given that, coefficient of x² is -14 so, multiply the above polynomial by 2.
[tex]\begin{gathered} p(x)=x^3-7x^2+36 \\ 2p(x)=2(x^3-7x^2+36) \\ =2x^3-14x^2+72 \end{gathered}[/tex]Answer: The polynomial is,
[tex]p(x)=2x^3-14x^2+72[/tex]which is an incorrect rounding for 53.864a) 50b) 54c) 53.9d) 53.87
The incorrect rounding is 53.87
Explanations:The given number is 53.864
If the number is approximated to 2 decimal places
53.864 = 53.86
If the number is approximated to 1 decimal place
53.864 = 53.9
If the number is approximated to the nearest unit
53.864 = 54
If the number is approximated to the nearest tens:
53.864 = 50
Note: 53.864 cannot be approximated to 53.87 because the third decimal place (4) is not up to 5
Growth Models 19515. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wagewas $2.30 per hour. Assume the minimum wage grows according to an exponentialmodel where n represents the time in years after 1960.a. Find an explicit formula for the minimum wage.b. What does the model predict for the minimum wage in 1960?c. If the minimum wage was $5.15 in 1996, is this above, below or equal to whatthe model predicts?
In general, the exponential growth function is given by the formula below
[tex]f(x)=a(1+r)^x[/tex]Where a and r are constants, and x is the number of time intervals.
In our case, n=0 for 1960; therefore, 1968 is n=8,
[tex]\begin{gathered} f(8)=a(1+r)^8 \\ \text{and} \\ f(8)=1.6 \\ \Rightarrow1.6=a(1+r)^8 \end{gathered}[/tex]And 1976 is n=16
[tex]\begin{gathered} f(16)=a(1+r)^{16} \\ \text{and} \\ f(16)=2.3 \\ \Rightarrow2.3=a(1+r)^{16} \end{gathered}[/tex]Solve the two equations simultaneously, as shown below
[tex]\begin{gathered} \frac{1.6}{(1+r)^8}=a \\ \Rightarrow2.3=\frac{1.6}{(1+r)^8}(1+r)^{16} \\ \Rightarrow2.3=1.6(1+r)^8 \\ \Rightarrow\frac{2.3}{1.6}=(1+r)^8 \\ \Rightarrow(\frac{2.3}{1.6})^{\frac{1}{8}}=(1+r)^{}^{} \\ \Rightarrow r=(\frac{2.3}{1.6})^{\frac{1}{8}}-1 \\ \Rightarrow r=0.0464078 \end{gathered}[/tex]Solving for a,
[tex]\begin{gathered} r=0.0464078 \\ \Rightarrow a=\frac{1.6}{(1+0.0464078)^8}=1.113043\ldots \end{gathered}[/tex]a) Thus, the equation is
[tex]\Rightarrow f(n)=1.113043\ldots(1+0.0464078\ldots)^n[/tex]b) 1960 is n=0; thus,
[tex]f(0)=1.113043\ldots(1+0.0464078\ldots)^0=1.113043\ldots[/tex]The answer to part b) is $1.113043... per hour
c)1996 is n=36
[tex]\begin{gathered} f(36)=1.113043\ldots(1+0.0464078\ldots)^{36} \\ \Rightarrow f(36)=5.6983\ldots \end{gathered}[/tex]The model prediction is above $5.15 by $0.55 approximately. The answer is 'below'
Over which interval(s) is the function decreasing?A) -4 < x < 3B) -0.5 < x < ∞C) -∞ < x < -0.5D) -∞ < x < -4
In the interval where the function is decreasingcreasing, the input or x values increase as the output or y values decrease. Looking at the graph, moving from the left to the right, the values of x are increasing whie the values of y are decreasing. This trend continued till we got to x = 0.5. Thus, in the interval from negative infinity to x = - 0.5, the function was decreasing.
The correct option is C
Si A = 5x 2 + 4 x 2 - 2 (3x2), halla su valor numérico para x= 2.
Based on the calculations, the numerical value of A is equal to 12.
How to determine the numerical value of A?In this exercise, you're required to determine the numerical value of A when the value of x is equal to 2. Therefore, we would evaluate the given equation based on its exponent as follows:
Numerical value of A = 5x² + 4x² - 2(3x²)
Numerical value of A = 5(2)² + 4(2)² - 2(3 × (2)²)
Numerical value of A = 5(4) + 4(4) - 2(3 × 4)
Numerical value of A = 20 + 16 - 24
Numerical value of A = 36 - 24
Numerical value of A = 12
Read more on exponent here: brainly.com/question/25263760
#SPJ1
Complete Question:
If A = 5x² + 4x² - 2(3x²), find its numerical value for x = 2.
The employees in a firm earn $8.50 an
hour for the first 40 hours per week, and
1.5 times the hourly rate for any hours
worked over 40. How much does an
employee who works 52 hours in one
week eam?
Using mathematical operations, we know that the salary of a person working for 52 hours a week will be $493.
What are mathematical operations?An operation is a function in mathematics that transforms zero or more input values into a clearly defined output value. The operation's arity is determined by the number of operands. The rules that specify the order in which we should solve an expression involving multiple operations are known as the order of operations. PEMDAS stands for Parentheses, Exponents, Multiplication, Division, and Addition Subtraction (from left to right).So, the amount earned by a person who works 52 hours a week:
Salary if a person works for 40 hours: $8.50 per hourSalary if a person works for more than 40 hours: 1.5 times $8.50 per hour that is, 8.50 × 1.5 = $12.75 per hour.So, if a worker works for 52 hours, his salary will be:
52 - 40 = 12 Hours40 × 8.50 = $34012 × 12.75 = $153Sum: $493Therefore, using mathematical operations, we know that the salary of a person working for 52 hours a week will be $493.
Know more about mathematical operations here:
https://brainly.com/question/28937023
#SPJ13
Determine the measure of ∠BFE.Question options:1) 112°2) 111°3) 69°4) 224°
We apply tangent-tangent theorem:
[tex]\begin{gathered} one\text{ tangeht = 9} \\ 2nd\text{ tangent = 2x - 1} \end{gathered}[/tex]The tangent segement from the same external points are congruent:
[tex]9\text{ = 2x - 1}[/tex][tex]\begin{gathered} Add\text{ 1 to both sides:} \\ 9\text{ + 1 = 2x} \\ 10\text{ = 2x} \\ \text{divide both sides by 2:} \\ \frac{10}{2}\text{ = }\frac{2x}{2} \\ x\text{ = 5} \end{gathered}[/tex]Using the priority list T1, T6, T2, T7, T8, T5, T4, T3, Tg, schedule the project below with two processors.Tasks that must be completed firstTime Required34TaskT1T2T3T4T5T6T7T8T9423481111T1, T2T2T2, T3T4, T5T5, T6T6Task 6 is done by Select an answer starting at timeTask 8 is done by Select an answer starting at timeThe finishing time for the schedule is
Firstly, let's make a diagram of prerequisites:
Comment: The number within parenthesis denotes the time required to complete the corresponding task.
Now, let's make our schedule based upon the priority list:
[tex]T_1,T_6,T_2,T_7,T_8,T_5,T_4,T_3,T_9[/tex]First, we need to know which are the ready tasks (tasks without prerequisites). By the diagram is clear that they are T_1, T_2, and T_3. Then, we need to look at their priority in the priority list. Between them, T_1 has the greatest urgency; this implies that it must be the first in processor 1 (P1). Now, in terms of urgency, T_2 follows T_1; let's assign it to the second processor (P2).
Comment: In the priority list, T_6 is before T_2, but we can't assign it now for it has prerequisites that have not been completed.
After three seconds, the first processor will be free. Let's check the (new) ready tasks having completed T_1. Note that T_1 doesn't unlock any task by itself. Then, the unique ready task now is T_3; let's assign it to the first processor. By similar reasoning, after four seconds the second processor will be free, and we're going to assign T_5 to it... AND SO ON.
I'm going to finish the schedule following these reasonings, and after that, we're going to discuss the answer to the questions.
If the correlation coefficient is 1, then the relation is a __________________.perfect positive correlationperfect negative correlationweak negative correlationweak positive correlation
Given:
The correlation coefficient is 1.
Required:
What type of correlation is it?
Explanation:
A coefficient of -1.0 indicates a perfect negative correlation, and a correlation of 1.0 indicates a perfect positive correlation.
Answer:
Hence, correlation coefficient is 1 then relation is perfect positive correlation.
-Quadratic Equations- Solve each by factoring, write each equation in standard form first.
Answer
The solutions to the quadratic equations are
[tex]\begin{gathered} a^2-4a-45 \\ \text{Solution: }a=-5\text{ or }9 \\ \\ 5y^2+4y=0 \\ \text{Solution: }y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]SOLUTION
Problem Statement
The question gives us 2 quadratic equations and we are required to solve them by factoring, first writing them in their standard forms.
The quadratic equations given are:
[tex]\begin{gathered} a^2-4a-45=0 \\ 5y^2+4y=0 \end{gathered}[/tex]Method
To solve the questions, we need to follow these steps:
(We will represent the independent variable as x for this explanation. We know they are "a" and "y" in the questions given)
The steps outlined below are known as the method of Completing the Square.
Step 1: Find the square of the half of the coefficient of x.
Step 2: Add and subtract the result from step 1.
Step 3: Re-write the Equation. This will be the standard form of the equation
Step 4. Solve for x
We will apply these steps to solve both questions.
Implementation
Question 1:
[tex]\begin{gathered} a^2-4a-45=0 \\ \text{Step 1: Find the square of the half of the coefficient of }a \\ (-\frac{4}{2})^2=(-2)^2=4 \\ \\ \text{Step 2: Add and subtract 4 to the equation} \\ a^2-4a-45+4-4=0 \\ \\ \text{Step 3: Rewrite the Equation} \\ a^2-4a+4-45-4=0 \\ (a^2-4a+4)-49=0 \\ (a^2-4a+4)=(a-2)^2 \\ \therefore(a-2)^2-49=0 \\ \text{ In standard form, we have:} \\ (a-2)^2=49 \\ \\ \text{Step 4: Solve for }a \\ (a-2)^2=49 \\ \text{ Find the square root of both sides} \\ \sqrt[]{(a-2)^2}=\pm\sqrt[]{49} \\ a-2=\pm7 \\ \text{Add 2 to both sides} \\ \therefore a=2\pm7 \\ \\ \therefore a=-5\text{ or }9 \end{gathered}[/tex]Question 2:
[tex]\begin{gathered} 5y^2+4y=0 \\ \text{ Before we begin solving, we should factorize out 5} \\ 5(y^2+\frac{4}{5}y)=0 \\ \\ \text{Step 1: Find the square of the coefficient of the half of y} \\ (\frac{4}{5}\times\frac{1}{2})^2=(\frac{2}{5})^2=\frac{4}{25} \\ \\ \text{Step 2: Add and subtract }\frac{4}{25}\text{ to the equation} \\ \\ 5(y^2+\frac{4}{5}y+\frac{4}{25}-\frac{4}{25})=0 \\ \\ \\ \text{Step 3: Rewrite the Equation} \\ 5((y^2+\frac{4}{5}y+\frac{4}{25})-\frac{4}{25})=0 \\ 5(y^2+\frac{4}{5}y+\frac{4}{25})-5(\frac{4}{25})=0 \\ 5(y^2+\frac{4}{5}y+\frac{4}{25})-\frac{4}{5}=0 \\ \\ (y^2+\frac{4}{5}y+\frac{4}{25})=(y+\frac{2}{5})^2 \\ \\ \therefore5(y+\frac{2}{5})^2-\frac{4}{5}=0 \\ \\ \text{ In standard form, the Equation becomes} \\ 5(y+\frac{2}{5})^2=\frac{4}{5} \\ \\ \\ \text{Step 4: Solve for }y \\ 5(y+\frac{2}{5})^2=\frac{4}{5} \\ \text{ Divide both sides by 5} \\ \frac{5}{5}(y+\frac{2}{5})^2=\frac{4}{5}\times\frac{1}{5} \\ (y+\frac{2}{5})^2=\frac{4}{25} \\ \\ \text{ Find the square root of both sides} \\ \sqrt[]{(y+\frac{2}{5})^2}=\pm\sqrt[]{\frac{4}{25}} \\ \\ y+\frac{2}{5}=\pm\frac{2}{5} \\ \\ \text{Subtract }\frac{2}{5}\text{ from both sides} \\ \\ y=-\frac{2}{5}\pm\frac{2}{5} \\ \\ \therefore y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]Final Answer
The solutions to the quadratic equations are
[tex]\begin{gathered} a^2-4a-45 \\ \text{Solution: }a=-5\text{ or }9 \\ \\ 5y^2+4y=0 \\ \text{Solution: }y=0\text{ or }-\frac{4}{5} \end{gathered}[/tex]Elaina started a savings account
with $3,000. The account earned
$10 each month in interest over a
5-year period. Find the interest
rate.
Using the simple interest formula, the rate of interest is 0.67%.
In the given question,
Elaina started a savings account with $3,000. The account earned $10 each month in interest over a 5-year period.
We have to find the interest rate.
The money that Elaina have in her account is $3000.
The interest that she earned = $10
The time period is 5 year,
We find the interest rate using he simple interest formula.
The formula of simple interest define by
I = P×R×T/100
where I is the interest.
P is principal amount.
R is rate of interest.
T is time period.
From the question, P = $3000, I = $10, T = 5
Now putting the value
10 = 3000×R×5/10
Simplifying
10 = 300×R×5
10 = 1500×R
Divide by 1500 on both side
10/1500 = 1500×R/1500
0.0067 = R
R = 0.0067
To express in percent we multiply and divide with 100.
R = 0.0067×100/100
R = 0.67%
Hence, the rate of interest is 0.67%.
To learn more about simple interest link is here
https://brainly.com/question/25845758
#SPJ1