The mass of iron (III) nitrate needed to prepare a 125 mL solution of 0.250 M is approximately 7.56 grams.
To calculate the mass of iron (III) nitrate needed to prepare a 125 mL solution of 0.250 M, we can use the formula:
mass (in grams) = volume (in liters) x concentration (in moles/liter) x molar mass (in grams/mole)
First, let's convert the volume from milliliters (mL) to liters (L):
125 mL = 0.125 L
Next, we can use the given concentration of 0.250 M to calculate the number of moles of Fe(NO3)3 needed:
moles = concentration x volume
moles = 0.250 mol/L x 0.125 L
moles = 0.03125 mol
Finally, we can use the molar mass of Fe(NO3)3 to convert from moles to grams:
mass = moles x molar mass
mass = 0.03125 mol x 241.86 g/mol
mass ≈ 7.56 g
Learn more about moles, here:
https://brainly.com/question/20486415
#SPJ1
Select the correct answer. What effect does increasing the temperature have on a reaction? A. The rate constant and reaction rate are both decreased. B. The rate constant and reaction rate are both increased. C. The rate constant is increased and the reaction rate is decreased. D. The rate constant is decreased and the reaction rate is increased.
Answer:
The correct answer is B
Explanation:
The rate constant and reaction are both increased
In a coffee-cup calorimeter, 130.0 mL of 1.3 M NaOH and 130.0 mL of 1.3 M HCl are mixed. Both solutions were originally at 21.8°C. After the reaction, the final temperature is 30.5°C. Assuming that all the solutions have a density of 1.0 g/cm^3 and a specific heat capacity of 4.18 J/°C · g, calculate the enthalpy change for the neutralization of HCl by NaOH. Assume that no heat is lost to the surroundings or to the calorimeter.
H = ? kJ/mol
The heat capacity of a substance or system is defined as the amount of heat required to raise the temperature through 1°C. It is an extensive property and its value depends on the quantity of matter present.
The heat needed to raise the temperature of 1 gram of the substance through 1°C is the specific heat capacity.
Heat required is:
q = mc (T₂ - T₁)
m = V × ρ
q = (130 + 130) × 1.0 × 4.18 ( 30.5 - 21.8) = 9455.16 J
9455.16 J = 9.45516 kJ
To know more about heat capacity, visit;
https://brainly.com/question/29766819
#SPJ1
How do characteristics of the planets,moons, and smaller objects in the solar system compare?
The planets, moons, and smaller objects in the solar system have several characteristics are; Size, Composition, Orbits, Atmosphere, and Evolution.
Planets are generally much larger than moons and smaller objects in the solar system. For example, the largest planet in our solar system, Jupiter, has a diameter of about 143,000 kilometers, while the Moon, Earth's natural satellite, has a diameter of about 3,474 kilometers.
Planets are typically made up of a combination of rock and/or gas, while moons and smaller objects can have a variety of compositions. Moons can be rocky, icy, or a mix of both, while smaller objects such as asteroids and comets can also have diverse compositions including rock, metal, ice, and other materials.
Planets and moons have different orbits around the Sun or their respective planets. Planets orbit the Sun in nearly elliptical paths, while moons orbit their parent planet in elliptical or nearly circular orbits.
Planets and some moons can have substantial atmospheres, while smaller objects in the solar system may have little to no atmosphere. For example, Earth has a dense atmosphere composed mainly of nitrogen, oxygen, and trace gases, while the Moon has no significant atmosphere.
Planets, moons, and smaller objects in the solar system have different origins and evolutionary histories. Planets are thought to have formed from the solar nebula, a cloud of gas and dust left over from the formation of the Sun. Moons can form throuugh various mechanisms, such as accretion, capture, or giant impacts. Smaller objects, such as asteroids and comets, are remnants from the early solar system and can provide valuable information about its history and evolution.
To know more about solar system here
https://brainly.com/question/12075871
#SPJ1
We've figured out what part of the salt causes the flame to change color, so now let's measure the wavelengths created with four metals.
Use the ruler under the "tools" icon in the upper right of the video player to measure the wavelengths of light released by each compound.
Around 450 nm is the wavelength of the spectral line for potassium chloride. The distance among identical spots between two succeeding waves is known as the wavelength.
The distance among identical spots between two succeeding waves is known as the wavelength, which is a feature of waves. The wavelength of a wave is the distance across one wave's peak (or trough) and the next. In mathematics, the Greek symbol lambda () is used to denote wavelength. The colour of light is determined by its wavelength, and the pitch of sound is determined by its wavelength. Around 450 nm is the wavelength of the spectral line for potassium chloride.
To know more about wavelength, here:
https://brainly.com/question/31143857
#SPJ1
Can anyone please name this compound?
Answer:
Fluorobenzene
Explanation: Fluorobenzene is an organic compound, which is a derivative of benzene. It has a fluorine atom attached to one of the carbon atoms in the benzene ring. It appears as a colorless liquid and has a slightly sweet odor. Fluorobenzene is used as a solvent and catalyst in various chemical reactions. It is also used in the production of agrochemicals and pharmaceuticals. Due to its high solubility in water, it can contaminate groundwater and pose a risk to human health and the environment.
Please help 100 points can be made. And first answer would be marked brainiest.
Write what you know about chemical reactions in living things.
Answer:
Chemical reactions in living things are the chemical processes that occur within living organisms to maintain their biological functions. These reactions are essential for metabolism, growth, reproduction, and response to stimuli. They involve the conversion of one or more substances into new substances with different physical and chemical properties.
Some examples of chemical reactions in living things include:
Cellular respiration: the process by which cells convert nutrients into energy in the form of ATP. This process involves the oxidation of glucose to produce carbon dioxide, water, and ATP.
Photosynthesis: the process by which plants and other organisms convert light energy into chemical energy in the form of glucose. This process involves the conversion of carbon dioxide and water into glucose and oxygen.
Digestion: the process by which food is broken down into simpler substances that can be absorbed and used by the body. This process involves the hydrolysis of complex carbohydrates, proteins, and lipids into simpler molecules such as glucose, amino acids, and fatty acids.
DNA replication: the process by which cells make copies of their DNA before cell division. This process involves the synthesis of new strands of DNA from existing strands.
Chemical reactions in living things are regulated by enzymes, which are biological catalysts that speed up chemical reactions by lowering the activation energy required for the reaction to occur. Enzymes are specific to particular substrates and are critical for the proper functioning of metabolic pathways. Any disruption in these chemical reactions can lead to metabolic disorders and diseases.
Explanation:
When you write the formula for sodium hydroxide, you do not have to put parentheses around the hydroxide polyatomic ion. However, when writing the formula for aluminum hydroxide, you must put parentheses around the hydroxide polyatomic ion. a) Write each formula. b) Explain why the parentheses are necessary for aluminum hydroxide.
(a). Sodium hydroxide: NaOH, aluminum hydroxide: [tex]Al(OH)_3[/tex]
(b). The parentheses are necessary for aluminum hydroxide because the hydroxide polyatomic ion has a subscript of 3, indicating that there are three hydroxide ions for every one aluminum ion.
a) The formula for sodium hydroxide is NaOH, and the formula for aluminum hydroxide is [tex]Al(OH)_3[/tex]
b) Aluminum hydroxide requires brackets because there are three hydroxide ions for every one aluminum ion, according to the hydroxide polyatomic ion's subscript of 3. Without the parentheses, it would be unclear whether the subscript of 3 applies to only the oxygen or to the entire hydroxide ion. By enclosing the entire hydroxide ion in parentheses and placing the subscript outside the parentheses.
To know more about aluminum ion, here
brainly.com/question/21373859
#SPJ1
Magnesium (Mg) has nine electrons. Which of the following shows the correct electron configuration for an atom of Mg? 1, 8
The correct electron configuration for an atom of Magnesium (Mg) is 2, 7.
What is electron configuration?The distribution of electrons among an atom's or ion's energy levels and sublevels is referred to as electron configuration. It outlines how electrons are grouped in numerous shells and subshells surrounding an atom's nucleus.
The electron configuration is frequently expressed in shell and subshell notation, such as 1s², 2s², 2p⁶, 3s², 3p², where the numbers represent the energy level or shell and the letters s, p, d, and f represent the sublevels or orbitals inside each shell.
Find out more on electron configuration here: https://brainly.com/question/15489693
#SPJ1
ties there khat is Chemical Compound?
Answer:
In chemistry, a compound is a substance made up of two or more different chemical elements combined in a fixed ratio. When the elements come together, they react with each other and form chemical bonds that are difficult to break.
Explanation:
brainlist
Question 2 of 10
You read a primary source and a secondary source that discuss the same
experiment. There is a difference in the conclusions made by these two
sources. Which should you trust more, and why?
OA. The primary source, because it was written by the researcher
OB. The primary source, because it contains more charts
OC. The secondary source, because it was printed on paper
OD. The secondary source, because it is easier to understand
SUBMIT
It is the primary source which helps the students to relate in a personal way to events of the past and promote a deeper understanding of history as a series of human events. The primary source is better, because it contains more charts. The correct option is B.
The sources which are closest to the origin of the information and contain raw information which must be interpreted by the researches are called the primary sources. The secondary sources are closely related to the primary sources and often interpret them.
A direct access to the subject of our research is given by the primary source whereas the secondary source provides only second hand information and comments of other researches.
Thus the correct option is B.
To know more about primary source, visit;
https://brainly.com/question/24172115
#SPJ1
Describe how to use Le Chatelier’s principle to predict the possible ways a chemical system can respond to changes.
When an equilibrium system is put under stress, Le Chatelier's principle may constitute used to forecast changes in equilibrium concentrations.
A rule that states that if a system is in equilibrium and a constraint is given to it (such as a change within pressure, temperature, or reactant concentration), the equilibrium will shift and tend to compensate for the effect caused by the constraint. This is Le Chatelier's principle.
When an equilibrium system is put under stress, Le Chatelier's principle may constitute used to forecast changes in equilibrium concentrations. However, the adjustments required to reach equilibrium might not be as evident if we have a combination of reactants and byproducts that are still not at equilibrium.
To know more about Le Chatelier's principle, here:
https://brainly.com/question/29009512
#SPJ1
In the following reaction, what quantity in moles of CH₃OH are required to give off 6106 kJ of heat?
2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJ
To generate 6106 kJ of heat, 9.5 moles of CH₃OH are required.
The given reaction releases -1280 kJ of heat. We need to find how many moles of CH₃OH are required to release 6106 kJ of heat.
From the given balanced equation, we know that 2 moles of CH₃OH releases 1280 kJ of heat.
Therefore, 1 mole of CH₃OH will release 1280 kJ / 2 = 640 kJ of heat.
To release 6106 kJ of heat, we can use the following proportion:
2 moles CH₃OH / 1280 kJ = x moles CH₃OH / 6106 kJ
Solving for x, we get:
x = (2 moles CH₃OH x 6106 kJ) / 1280 kJ = 9.5 moles CH₃OH
Therefore, 9.5 moles of CH₃OH are required to release 6106 kJ of heat.
To know more about the Reaction, here
https://brainly.com/question/13016616
#SPJ1
40n and 53n what is the magnitude of the net force on the crate
The magnitude of the net force on the crate is 13 N.
Generally, in science, the word 'force' has a very precise meaning. Force is usually described as a push or a pull.
Generally the magnitude of the force is described as the number which is used to represent the strength of the force. Let's consider an example, suppose the force is equal to 10 N towards the east direction and 'towards east' indicates direction while '10' indicates the magnitude of the force. So we can say that basically, Magnitude is the 'value' or 'amount' of any physical quantity.
Here, assuming that the two forces are acting opposite,
Net force = 53 N - 40 N = 13 N
The given question is incomplete and the complete question is given in the image attached below.
Learn more about force from the link given below.
https://brainly.com/question/13191643
#SPJ1
105.0 mL of alcohol is dissolved in water and the solution is diluted to a
total final volume of 250 mL. What is the final concentration of ethanol?
105.0 mL of alcohol is dissolved in water and the solution is diluted to a total final volume of 250 mL the final concentration of ethanol in the solution is 0.00722 M.
To calculate the final concentration of ethanol in the solution, we need to know the amount of ethanol present in the solution before and after dilution. We can use the following formula to calculate the final concentration:
Cfinal = Cinitial x (Vinitial / Vfinal)
where Cinitial is the initial concentration of ethanol, Vinitial is the initial volume of the solution, Vfinal is the final volume of the solution, and Cfinal is the final concentration of ethanol.
First, let's find the initial concentration of ethanol in the solution. We know that 105.0 mL of alcohol is dissolved in water, but we don't know the concentration of the alcohol.
Let's assume that the alcohol is pure ethanol (which is not always the case in reality), which has a density of 0.789 g/mL at room temperature. Therefore, the mass of ethanol in 105.0 mL of alcohol is:
mass of ethanol = volume of alcohol x density of ethanol
= 105.0 mL x 0.789 g/mL
= 82.845 g
The molar mass of ethanol is 46.07 g/mol, so the number of moles of ethanol in 82.845 g of ethanol is:
moles of ethanol = mass of ethanol / molar mass of ethanol
= 82.845 g / 46.07 g/mol
= 1.797 mol
The initial volume of the solution is 105.0 mL, so the initial concentration of ethanol is:
Cinitial = moles of ethanol / initial volume of solution
= 1.797 mol / 105.0 mL
= 0.0171 M
Now, let's calculate the final concentration of ethanol. We know that the final volume of the solution is 250 mL. Using the formula above, we get:
Cfinal = Cinitial x (Vinitial / Vfinal)
= 0.0171 M x (105.0 mL / 250 mL)
= 0.00722 M
Therefore, the final concentration of ethanol in the solution is 0.00722 M.
For more details regarding ethanol, visit:
https://brainly.com/question/25002448
#SPJ1
Why are Plinian eruptions more violent than Hawaiian eruptions?
OA. Plinian volcanoes have more viscous magma.
B. Hawaiian volcanoes are made of limestone instead of granite.
OC. Hawaiian volcanoes have less magma.
OD. Plinian volcanoes have stronger rocks.
Exoplanets are usually....
O big, bright and close to the sun.
O gigantic, fireballs that are close to the sun.
O not a planet.
O small, dark, and far from the sun.
Exoplanets are usually gigantic, fireballs that are close to the sun. Therefore, the correct option is option B.
Any planet outside of our solar system is an exoplanet. The majority of exoplanets orbit other stars, while rogue planets—free-floating exoplanets that are unattached to any star—orbit the galactic centre.
The majority of the exoplanets found so far are in the Milky Way, which is a rather tiny area of our galaxy. The Kepler Space Telescope of NASA has revealed that the galaxy has more planets than stars. Exoplanets are usually gigantic, fireballs that are close to the sun.
Therefore, the correct option is option B.
To know more about exoplanets, here:
https://brainly.com/question/29837455
#SPJ1
A test tube with a cell length of 2.0 cm is filled with a solution that has a molar absorptivity of 0.47 L/(mol*cm)* and a concentration 0.215 M. What should this solutions absorbance be?
/*hint, this L/(mol*cm) is just the unit of molar absorptivity. It will not be included in the calculation
The molar absorptivity of the solution is 1.093 L/(mol*cm).
What is the absorbance of a solution?The Beer-Lambert rule, which states that absorbance is equal to molar absorptivity (a constant that indicates how strongly a material absorbs light) times the substance's concentration times the length of the light's passage through the solution, describes this relationship.
We know that we can use the formula;
A = εcl
A = Absorbance
ε = absorptivity
c = concentration
l = path length
ε= A/cl
ε= 0.47/0.215 * 2
ε = 1.093 L/(mol*cm)
Learn more about absorbance:https://brainly.com/question/29439014
#SPJ1
Why are some Hydro flow rolling pins HFO refrigerants classified as a a2l
Hydro flow rolling pins HFO refrigerants classified as a A2L because they contain a fluorine.
Some Hydro Fluoro Olefin (HFO) refrigerants are classified as A2L according to the ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers) classification system for refrigerants. The "A" in A2L stands for "lower toxicity," and the "2" indicates "lower flammability."
The classification of refrigerants is based on their potential toxicity and flammability. A2L refrigerants are considered to have lower toxicity and lower flammability compared to other types of refrigerants. They have specific thermodynamic properties that make them suitable for use in refrigeration and air conditioning systems.
Fluorine makes HFO refrigerants less flammable than hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). which are highly flammable. A2L refrigerants have lower global warming potential (GWP) and ozone depletion potential (ODP), which makes them a more sustainable choice for certain applications.
To know more about refrigerants here
https://brainly.com/question/28265596
#SPJ1
Hydro flow rolling pins HFO refrigerants are a type of refrigerant used in air conditioning systems. The 'a2L' is a safety classification from ASHRAE that indicates these refrigerants are mildly flammable but have lower flammability. Such classifications are used for safety considerations.
Explanation:The Hydro flow rolling pins HFO refrigerants are designed for use in refrigeration and air conditioning systems. An HFO refrigerant is a hydrofluorolefin refrigerant; they are a new class of refrigerants that have a very low planet-warming potential.
The designation a2L is actually a safety classification set by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) and it means that these refrigerants are mildly flammable but exhibit lower flammability. The '2' indicates that the refrigerant has low flammability and the 'L' means it has a lower burning velocity. These classifications inform technicians and engineers about the safety considerations they need to be aware of when handling and working with these substances.
Learn more about HFO refrigerants here:https://brainly.com/question/32754819
#SPJ11
The activation energy, Ea, for a particular reaction is 37.8 kJ/mol. If the rate constant at 280 K is 0.178 M/s, then what is the value of the rate constant at 381 K? (R = 8.314 J/mol • K)
The rate constant that we have at 381 K will be 2.19 M/s.
What is the Arrhenius equation?The Arrhenius equation suggests that the rate of a reaction increases with temperature, because higher temperatures provide more kinetic energy to the reactant molecules, making them more likely to react.
By the use of the Arrhenius equation, we have that;
ln k2/k1 = -Ea/R(1/T2 - 1/T1)
ln k2/0.178 = -37.8 * 10^3/8.314 (1/381 - 1/280)
ln k2/0.178 = - 4647 * (2.62 - 3.57) * 10^-3
lnK2 = 0.786
k2 =e^0.786
k2 = 2.19 M/s
Learn more about Arrhenius equation:https://brainly.com/question/12907018
#SPJ1
9.0 mol Al reacts with 6.0 mol O2 to
form Al2O3 according to the
reaction below:
4A1+302 → 2Al2O3
How many moles of Al2O3 form from
6.0 mol O2?
[?] mol Al₂O3
Round your answer to the tenths place.
mol ALO
HELP PLS TO MOVE ON !!
4.0 moles of Al₂O₃ will be form from 6.0 moles of O₂.
How to solve for the amout that would form oxygen(2 moles Al₂O₃) / (3 moles O₂)
= (x moles Al₂O₃) / (6.0 moles O₂)
To solve for x, we can cross-multiply:
(2 moles Al₂O₃) * (6.0 moles of O₂)
= (3 moles of O₂) * (x moles of Al₂O₃)
12.0 moles Al₂O₃ = 3x moles Al₂O₃
Now, divide both sides by 3:
x = 4.0 moles Al₂O₃
So, 4.0 moles of Al₂O₃ form from 6.0 moles of O₂.
Read more on chemical reactions here:https://brainly.com/question/11231920
#SPJ1
A chemist wants to make a 17.85 %(m/m) solution of NaCl using a only 50.0 g of the salt. How much water is needed to make the solution? Numerical answer only. No units.
The mass percentage is an important method which is used to calculate the concentration of a solution. The amount of water needed to add in order to make 17.85 % NaCl solution is 230.1 g.
What is mass percentage?The mass percentage of a component in a solution is defined as the mass in grams of that component present per 100 g of the solution. The term mass percentage is denoted as w/w. It is used to calculate the concentration of a binary solution.
Mass percentage = Mass of the component in the solution / Total mass of solution × 100
17.85 = 50.0 / 50.0 + x × 100
0.1785 (50.0 + x) = 50.0
8.925 + 0.1785 x = 50.0
0.1785 x = 41.075
x = 230.1 g
Thus the amount of water added to make the solution is 230.1 g.
To know more about mass percentage, visit;
https://brainly.com/question/27429978
#SPJ2
Determine the mass of 2.62 mol of iron(III) sulfate.
The molar mass of 2.62 mol of iron(III) sulfate is 1050.8 g.
Thus, the molar mass of iron(III) sulfate can be calculated by summing the atomic masses of its constituent atoms. The molar mass of a compound is the sum of the atomic masses of all the atoms present in a chemical formula of the compound which is then multiplied by the number of atoms of each element in the formula.
In iron(III) sulfate, the atomic mass of iron will be 111.70 g/mol. The atomic masses of Sulphur and oxygen will be 96.18 g/mol and 192.0 g/mol, respectively. Adding atomic masses of its constituent atoms will be 400.88 g/mol. Therefore, the molar mass of 2.62 mol of iron(III) sulfate is 1050.8 g.
Learn more about the molar mass here:
https://brainly.com/question/17067547
#SPJ1
Trimethylamine is a weak base. A 0.150 M solution of trimethylamine has a pH of 11.5.
What is Kb for trimethylamine?
Kb for trimethylamine is 1.0 × 10^-2.5.
We can use the relationship between Kb and Ka for a conjugate acid-base pair:
Kb × Ka = Kw
The pKa is related to the pH :
pKa + pKb = 14.00
pKb = 14.00 - pKa
We can calculate the pKa using the relationship:
pH = pKa + log([base]/[acid])
Therefore, [base] = [acid], and we can simplify equation to:
pH = pKa + log(1)
Therefore, the pKa of trimethylammonium ion is 11.5.
Now :
Kb × Ka = Kw
Kb = Kw ÷ Ka
Since we know that Kw = [tex]1.0 * 10^{-14[/tex]and Ka =[tex]10^{-11.5[/tex] (from the pKa value we calculated earlier), we can substitute these values to get:
[tex]Kb = (1.0 * 10^{-14}) / (10^{-11.5}) = 1.0 * 10^{-2.5[/tex]
To know more about trimethylamine, here
brainly.com/question/14980991
#SPJ1
2 Pretest Unit 5 Question 22 of 30 Why are there so many carbon-based compounds? O A. Carbon can form compounds with any other element in the periodic table except noble gases. OB. Carbon can form up to six bonds with other carbon atoms and atoms of other elements. OC. Carbon can form single, double, or triple bonds and can bond with itself and other elements. D. Carbon can form ionic, covalent, and metallic compounds under the right conditions. ZA
The why there are so many carbon-based compounds is that B. Carbon can form up to six bonds with other carbon atoms and atoms of other elements.
What is the uniqueness of carbon?Carbon can be described as the element that posses 4 electrons in its outermost shell, and it has the asbility to gain or loss 4 electrons to so it can have nobel gas configuration.
It should be noted that Catenation is one of the unique ability of carbon which help it to form bonds with other atoms of carbon and due to this reason, it have the ability to record a long chains of different types of compounds.
Learn more about carbon at:
https://brainly.com/question/1301348
#SPJ1
How much energy is required to heat 186 grams of water from 32 degrees Celsius to 90
degrees Celsius?
A reaction vessel contains an equilibrium mixture of SO2, O₂, and SO3. The reaction proceeds such that:
2SO₂(g) + O₂(g) <—>2SO3 (g)
The partial pressures at equilibrium are:
PS0₂ = 0.002318 atm
PO2 = 0.002930 atm
PS03 = 0.0166 atm
Calculate alp for the reaction
The Kp of the reaction is seen to be 1.75 * 10^4
What is the equilibrium constant?A high Kp value indicates that the equilibrium is in favor of the products, whereas a low Kp value suggests that the equilibrium is in favor of the reactants.
The relative concentrations of reactants and products at equilibrium are shown by the equilibrium constant.
We know that;
Kp = pSO3^2/pO2 . pSO2^2
Kp =(0.0166)^2/ 0.002930 (0.002318)^2
Kp = 2.8 * 10^-4/1.6 * 10^-8
Kp = 1.75 * 10^4
The Kp of the reaction is gotten as 1.75 * 10^4.
Learn more about equilibrium constant:https://brainly.com/question/10038290
#SPJ1
8. Base your answer to the following question on the equation below.
2H2(g) + O2(g) → 2H₂O()+571.6 kJ
Identify the information in this equation that indicates the reaction is exothermic.
The positive value of 571.6 kJwhich is the enthalpy change tells us that it is exothermic
What is an exothermic reaction?When energy is released into the surrounding area during a chemical reaction, it's considered an exothermic reaction with ΔH < 0. Conversely, endothermic reactions result from heat absorption with ΔH > 0.
The provided equation's positive value of 571.6 kJ reveals that heat is pouring out of the reaction, causing negative changes in enthalpy and firmly placing this chemical event as exothermic in nature.
Read more on exothermic reaction here:https://brainly.com/question/2924714
#SPJ1
Calculate the molar solubility, S , of CuS if it has a Ksp value of 6×10−37.
The molar solubility of CuS is 7.8 x 10⁻¹⁹ M.
The solubility product expression for CuS is:
Ksp = [Cu²⁺][S²⁻]Since CuS dissociates to form one Cu²⁺ ion and one S²⁻ ion, the molar solubility of CuS can be represented as x. Therefore, at equilibrium:
[Cu²⁺] = x[S²⁻] = xSubstituting these values in the Ksp expression:
Ksp = x²Solving for x, we get:
x = √(Ksp) = √(6 x 10⁻³⁷) = 7.8 x 10⁻¹⁹ MTherefore, the molar solubility of CuS is 7.8 x 10⁻¹⁹ M.
To learn more about molar solubility, here
https://brainly.com/question/28170449
#SPJ1
The complete question is:
Calculate the molar solubility, S , of CuS if it has a Ksp value of 6×10⁻³⁷.
A sample of gas occupies 50.0L at 15.0 Cand 640.0 mmHg pressure. What is the volume at STP?
Answer:
2.00 L of a gas is collected at 25.0°C and 745.0 mmHg
Explanation:
How is the kinetic energy of the particles of a substance affected during a phase change?
• Kinetic energy increases during exothermic changes and decreases during endothermic changes.
• Kinetic energy decreases during exothermic changes and increases during endothermic changes.
• Kinetic energy does not change, but the potential energy does.
• Kinetic energy changes in the opposite way that the potential energy changes.
The kinetic energy of the particles of a substance affected during a phase change is Kinetic energy does not change, but the potential energy does.
What is phase change?A phase change can be described as the physical process whereby the substance can be transformed from one phase to another.
It should be noted that the change do take place in a case whereby you are adding as well as removing heat which can be considered as melting point or the boiling point of the substance and this can be understood using phase change.
Learn more about phase change at:
https://brainly.com/question/29712919
#SPJ1