Finally, using the commutative and associative properties of Boolean addition, we can group the terms to get AB + AC + B.
Q1:
Using De Morgan's theorem, we have:
F = XYZ + XYZ = XYZ(1 + 1) = XYZ
Taking the complement of F, we get:
F' = (XYZ)'
= (X'+Y'+Z')
= X'Y'Z'
Now, let's find the complement of F';
F' = X(YZ + Y'Z')
Taking the complement of F', we get:
F'' = (X(YZ + Y'Z'))'
= (X(YZ)')(Y(Y')Z')'
= (X'(Y'+Z))(YZ)
= X'YZ + XYZ'
Therefore, the complement of F is X'Y'Z', and the complement of F'; is X'YZ + XYZ'.
Q2:
ABC + ABC + ABC + ABC + ABC = ABC + ABC + ABC = ABC
Explanation: Using the associative property of Boolean addition, we can group the terms to get ABC + ABC + ABC = ABC.
AB + A(B+C) + B(B+C) = AB + AB + AC + BB + BC
= AB + AC + B
Explanation: Using the distributive property of Boolean multiplication over addition, we can expand the second and third terms to get AB + AC + BB + BC. Using the identity law, BB can be simplified to B. Finally, using the commutative and associative properties of Boolean addition, we can group the terms to get AB + AC + B.
To learn more about commutative visit:
https://brainly.com/question/30339266
#SPJ11
Tammie wants to estimate the number of minutes students spend waiting for the bus each morning. She decides to take a random sample of 12 anonymous students. The results are shown below. Determine the mean of the data set.
The mean of the data set is 9.33 minutes.
How do we find the mean of the data set?To find mean of the data set, we will add all the values and divide by the total number of values.
In this case, the sum of the values is:
= 0 + 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22
= 112
There are 12 values in the data set, so the mean is:
= Sum of values / Total number of values
= 112 / 12
= 9.3333
= 9.33 minutes.
Therefore, the mean of the data set is 9.33 minutes.
Read more about Mean
brainly.com/question/1136789
#SPJ1
use synthetic division to show that x is a solution of the third-degree polynomial equation and use the result to factor the polynomial completely list all the real solutions of the equation
To begin, let's recall that synthetic division is a method used to divide a polynomial by a linear factor (i.e. a binomial of the form x-a, where a is a constant). The result of synthetic division is the quotient of the division, which is a polynomial of one degree less than the original polynomial.
In this case, we are given that x is a solution of a third-degree polynomial equation. This means that the polynomial can be factored as (x-r)(ax^2+bx+c), where r is the given solution and a, b, and c are constants that we need to determine.
To use synthetic division, we will divide the polynomial by x-r, where r is the given solution. The result of the division will give us the coefficients of the quadratic factor ax^2+bx+c.
Here's an example of how to do this using synthetic division:
Suppose we are given the polynomial P(x) = x^3 + 2x^2 - 5x - 6 and we know that x=2 is a solution.
1. Write the polynomial in descending order of powers of x:
P(x) = x^3 + 2x^2 - 5x - 6
2. Set up the synthetic division table with the given solution r=2:
2 | 1 2 -5 -6
3. Bring down the leading coefficient:
2 | 1 2 -5 -6
---
1
4. Multiply the divisor (2) by the result in the first row, and write the product in the second row:
2 | 1 2 -5 -6
---
1 2
5. Add the second row to the next coefficient in the first row, and write the sum in the third row:
2 | 1 2 -5 -6
---
1 2 -3
6. Multiply the divisor by the result in the third row, and write the product in the fourth row:
2 | 1 2 -5 -6
---
1 2 -3
4
7. Add the fourth row to the next coefficient in the first row, and write the sum in the fifth row:
2 | 1 2 -5 -6
---
1 2 -3
4 -2
The final row gives us the coefficients of the quadratic factor: ax^2+bx+c = x^2 + 2x - 3. Therefore, the factorization of P(x) is
P(x) = (x-2)(x^2+2x-3).
To find the real solutions of the equation, we can use the quadratic formula or factor the quadratic further:
x^2 + 2x - 3 = (x+3)(x-1).
Therefore, the real solutions of the equation are x=2, x=-3, and x=1.
Learn more about synthetic division:
https://brainly.com/question/28824872
#SPJ11
Find the solutions using the Zero Product Property:
The solution is, the solutions using the Zero Product Property: is x = 7 and -2.
The expression to be solved is:
x² - 5x - 14 = 0
we know that,
The zero product property states that the solution to this equation is the values of each term equals to 0.
now, we have,
x² - 5x - 14 = 0
or, x² - 7x + 2x - 14 = 0
or, (x-7) (x + 2) = 0
so, using the Zero Product Property:
we get,
(x-7) = 0
or,
(x + 2) = 0
so, we have,
x = 7 or, x = -2
The answers are 7 and -2.
To learn more on equation click:
brainly.com/question/24169758
#SPJ1
Which equation represents this graph
The exponential function that represents the graph is given as follow:
y = 2^(x - 1) + 2.
How to define an exponential function?An exponential function has the definition presented as follows:
y = ab^x.
In which the parameters are given as follows:
a is the value of y when x = 0.b is the rate of change.The function in this problem has a horizontal asymptote at y = 2, hence:
y = ab^x + 2.
When x increases by one, y is multiplied by two, hence the parameters a and b can given as follows:
a = 1, b = 2.
The function is translated one unit right, hence it is defined as follows:
y = 2^(x - 1) + 2.
More can be learned about exponential functions at brainly.com/question/2456547
#SPJ1
About 34% of physicians in the U.S. have been sued for malpractice. We select infinitely many
samples of 100 physicians and create a sampling distribution of the sample proportions. What is
the probability that more than 40% of 100 randomly selected physicians were sued?
a.About 1%
b.About 10%
c.About 40%
d.About 18%
The probability that more than 40% of 100 randomly selected physicians were sued is about 10%. Therefore, the answer is b. About 10%.
To determine the probability that more than 40% of 100 randomly selected physicians were sued, we need to find the mean and standard deviation of the sampling distribution and then use the z-score to find the probability.
1. Find the mean (µ) and standard deviation (σ) of the sampling distribution:
µ = p = 0.34 (the proportion of physicians sued for malpractice)
q = 1 - p = 0.66 (the proportion of physicians not sued for malpractice)
n = 100 (sample size)
[tex]Standard deviation (σ) = \sqrt{\frac{pq}{n} } = \sqrt{\frac{(0.34)(0.66)}{100} } = 0.047[/tex]
2. Calculate the z-score for the desired proportion (40% or 0.40):
[tex]z = \frac{X-µ}{σ} = \frac{0.40-0.34}{0.047} = 1.28[/tex]
3. Use a z-table or calculator to find the probability associated with the z-score:
P(Z > 1.28) =0.100 (rounded to three decimal places)
The probability that more than 40% of 100 randomly selected physicians were sued is about 10%. Therefore, the answer is b. About 10%.
To know more about "Probability" refer here:
https://brainly.com/question/30034780#
#SPJ11
Pita has 12 coins in her bag.
There are three £1 coins and nine 50p coins.
She takes 3 coins out of the bag at random.
What is the probability that she takes out exactly £2.50?
Eva and Aiden own competing taxicab companies. Both cab companies charge a one-time pickup fee for every ride, as well as a charge for each mile traveled. Eva charges a $3 pickup fee and $1.20 per mile. The table below represents what Aiden's company charges.
Based on their unit rates, Aiden Company charges more per mile and fixed fee than Eva Company.
What is the unit rate?The unit rate is the ratio of one value compared to another.
The unit rate (also known as the slope or the constant rate of proportionality) is the quotient of two quantities.
Eva's Taxicab Company:Fixed pickup fee per ride = $3
Variable fee per mile = $1.20
Aiden's Taxicab Company:Slope (unit rate) = Rise/Run = $1.40 ($18 - $11) / (10 - 5)
Variable fee per mile = $1.40 ($7 ÷ 5)
Fixed pickup fee per ride = $4 ($11 - $1.4(5)
Thus, while Eva charges a fixed cost of $3 for every ride and $1.20 per mile, Aiden charges a fixed cost of $4 for every ride and $1.40 per mile, thereby charging more overall.
Learn more about the unit rate at https://brainly.com/question/4895463.
#SPJ1
Question Completion:Which company charges more?
At a local Brownsville play production, 420 tickets were sold. The ticket prices varied on the seating arrangements and cost $8, $10, or $12. The total income from ticket sales reached $3920. If the combined number of $8 and $10 priced tickets sold was 5 times the number of $12 tickets sold, how many tickets of each type were sold?
Answer:
Number of $ 8 priced tickets = 210
Number of $10 priced tickets = 140
Number of $ 12 priced tickets = 70
Step-by-step explanation:
Framing and solving equations with three variables:
Let the number of $ 8 priced tickets = x
Let the number of $10 priced tickets = y
Let the number of $ 12 priced tickets = z
Total number of tickets = 420
x + y + z = 420 --------------(i)
Total income = $ 3920
8x + 10y + 12z = 3920 ----------------(ii)
Combined number of $8 and $10 priced tickets= 5 * the number of $12 priced tickets
x + y = 5z
x + y - 5z = 0 -------------------(iii)
(i) x + y + z = 420
(iii) x + y - 5z = 0
- - + + {Subtract (iii) from (i)}
6z = 420
z = 420÷ 6
[tex]\sf \boxed{\bf z = 70}[/tex]
(ii) 8x + 10y + 12z = 3920
(iii)*8 8x + 8y - 40z = 0
- - + - {Now subtract}
2y + 52z = 3920 -----------------(iv)
Substitute z = 70 in the above equation and we will get the value of 'y',
2y + 52*70 = 3920
2y + 3640 = 3920
2y = 3920 - 3640
2y = 280
y = 280 ÷ 2
[tex]\sf \boxed{\bf y = 140}[/tex]
substitute z = 70 & y = 140 in equation (i) and we can get the value of 'x',
x + 140 + 70 = 420
x + 210 = 420
x = 420 - 210
[tex]\sf \boxed{x = 210}[/tex]
Number of $ 8 priced tickets = 210
Number of $10 priced tickets = 140
Number of $ 12 priced tickets = 70
find the z-value needed to calculate one-sided confidence bounds for the given confidence level. (round your answer to two decimal places.) a 81% confidence bound
To find the z-value needed to calculate one-sided confidence bounds for an 81% confidence level, we first need to determine the area under the normal distribution curve to the left of the confidence level. Since we are looking for one-sided confidence bound, we only need to consider the area to the left of the mean.
Using a standard normal distribution table or calculator, we can find that the area to the left of the mean for an 81% confidence level is 0.905.
Next, we need to find the corresponding z-value for this area. We can use the inverse normal distribution function to do this.
z = invNorm(0.905)
Using a calculator or a table, we can find that the z-value for an area of 0.905 is approximately 1.37.
Therefore, the z-value needed to calculate one-sided confidence bounds for an 81% confidence level is 1.37 (rounded to two decimal places).
The z-value needed to calculate a one-sided confidence bound with an 81% confidence level.
1. First, since it's one-sided confidence bound, we need to find the area under the standard normal curve that corresponds to 81% confidence. This means the area to the left of the z-value will be 0.81.
2. Now, to find the z-value, we can use a z-table or an online calculator that provides the z-value corresponding to the cumulative probability. In this case, the cumulative probability is 0.81.
3. Using a z-table or an online calculator, we find that the z-value corresponding to a cumulative probability of 0.81 is approximately 0.88.
So, the z-value needed to calculate a one-sided 81% confidence bound is 0.88, rounded to two decimal places.
Learn more about z-value here:- brainly.com/question/30172182.
#SPJ11
Question 4: ( 6 + 8+ 6 marks) a. Divide:x3-27/9 - x2 : x2+3x+9/ x2+9x+18
b. Solve: √3x + 2-2√x=0 c. Solve: 3x7 - 24 x4=0
a. The division of (x³ - 27/9 - x²) by (x² + 3x + 9/x² + 9x + 18) is x - 3.
b. The solution to the equation √3x + 2 - 2√x = 0 is 1/3.
c. The solution to the equation 3x⁷ - 24x⁴ = 0 is 0 or 2√2/3.
For part (a), we first factorize the denominator and simplify the numerator. Then, we use long division to divide the numerator by the denominator, resulting in a quotient and a remainder.
(x³ - 27/9 - x²) / (x² + 3x + 9/x² + 9x + 18)= x - 3For part (b), we can simplify the equation by squaring both sides, rearranging, and then substituting y = √x. This results in a quadratic equation, which can be easily solved.
√3x + 2 - 2√x = 0 x = 1/3For part (c), we factorize the equation by taking out the common factor of 3x⁴. This results in a simpler equation, which can be solved by setting each factor equal to zero.
3x⁷ - 24x⁴ = 0 x = 0 , x = 2√2/3.Learn more about division
https://brainly.com/question/25289437
#SPJ4
Find the interior, the boundary, the set of all accumulation points, and the closure of each set. Classify it as open, closed, or neither open nor closed. Is it a compact subset of R? a. A = U[-2+1,2 - 1] nEN intA= bdA= A' = clA= A is closed / open / neither closed nor open A is compact / not compact b. B = {(-1)" +h:n eN} intB= bdB = B = cl B= B is closed / open / neither closed nor open B is compact / not compact c. C = {r € Q+ :r2 <4} intC= bdC = CIC = C is closed / open / neither closed nor open C is compact / not compact
C is open and neither closed nor open. C is not compact.
a. A = [-1, 1]
int(A) = (-1, 1), bd(A) = {-1, 1}, A' = [-1, 1], cl(A) = [-1, 1]
A is closed and neither open nor closed. A is compact.
b. B = {(-1)^n + h : n ∈ N}
int(B) = ∅, bd(B) = B, B' = {-1, 1}, cl(B) = B ∪ {-1, 1}
B is closed and neither open nor closed. B is not compact.
c. C = {r ∈ Q+ : r^2 < 4}
int(C) = {r ∈ Q+ : r^2 < 4}, bd(C) = {r ∈ Q+ : r^2 = 4}, C' = {r ∈ R+ : r^2 ≤ 4}, cl(C) = {r ∈ R+ : r^2 ≤ 4}
C is open and neither closed nor open. C is not compact.
Visit to know more about Compact:-
brainly.com/question/28319077
#SPJ11
a group of nine women and six men must select a four-person committee. how many committees are possible if it must consist of the following? any mixture of men and women
there are 1365 possible committees that can be formed from this group of 15 people, regardless of gender.
To form a committee of 4 people from a group of 9 women and 6 men, we need to consider all possible combinations of 4 people, regardless of gender.
The number of ways to choose 4 people from a group of 15 (9 women and 6 men) is given by the combination formula:
C(15,4) = 15! / (4! * (15-4)!) = 15! / (4! * 11!) = (15 * 14 * 13 * 12) / (4 * 3 * 2 * 1) = 1365
Therefore, there are 1365 possible committees that can be formed from this group of 15 people, regardless of gender.
Visit to know more about Committee:-
brainly.com/question/29797645
#SPJ11
given d, a and b conditionally independent, a and c conditionally independent, b and c conditionally independent. is a, b, c conditionally independent given d?
Yes, given the conditions provided, a, b, and c are conditionally independent given d. Conditional independence means that the probability distribution of any one of the variables is independent of the others when the conditioning variable is known.
In this case, you have the following conditional independence relationships:
1. a and b are conditionally independent given d.
2. a and c are conditionally independent given d.
3. b and c are conditionally independent given d.
To show that a, b, and c are conditionally independent given d, we need to demonstrate that the joint probability distribution of a, b, and c given d can be factored into the product of their individual conditional probability distributions.
P(a, b, c | d) = P(a | d) * P(b | d) * P(c | d)
From the given relationships, we can infer the following:
P(a, b | d) = P(a | d) * P(b | d)
P(a, c | d) = P(a | d) * P(c | d)
P(b, c | d) = P(b | d) * P(c | d)
Now, we can substitute the individual conditional probabilities from the given relationships into the expression for the joint probability distribution:
P(a, b, c | d) = P(a | d) * P(b | d) * P(c | d)
Since the joint probability distribution of a, b, and c given d can be factored into the product of their individual conditional probability distributions, a, b, and c are conditionally independent given d.
To learn more about conditional probability :brainly.com/question/30144287
#SPJ11
C. Arman added up all the water he drank over the 14 days and realized it was exactly 26 quarts. If he redistributed all the water so he drank exactly the same amount every day, about how many quarts would he drink each day? Check one.
A about 1 1/4 quarts
B about 2 1/4 quarts
C about 3 quarts
D about 1 7/8 quarts
(a) Prove by contradiction: If the sum of two primes is prime, then one of the primes must be 2.
You may assume that every integer is either even or odd, but never both.
(b) Prove by contradiction: Suppose n is an integer that is divisi- ble by 4. Then n + 2 is not divisible by 4.
[tex]$m-k=\frac{1}{2}$[/tex], which contradicts the assumption that m and k are integers. Hence, our assumption that [tex]$n+2$[/tex] is divisible by 4 is false.
what is algebra?Algebra is a branch of mathematics that deals with mathematical operations and symbols used to represent numbers and quantities in equations and formulas.
(a) Suppose that the sum of two primes, [tex]$p_1$[/tex] and [tex]$p_2$[/tex], is prime and neither [tex]$p_1$[/tex] nor [tex]$p_2$[/tex] is 2. Since [tex]$p_1$[/tex] and [tex]$p_2$[/tex] are both odd primes, they must be of the form [tex]$p_1=2k_1+1$[/tex] and [tex]$p_2=2k_2+1$[/tex] for some integers [tex]$k_1$[/tex] and [tex]$k_2$[/tex]. Therefore, their sum can be written as:
[tex]$p_1+p_2=2k_1+1+2k_2+1=2(k_1+k_2)+2=2(k_1+k_2+1)$[/tex]
Since [tex]$k_1+k_2+1$[/tex] is an integer, [tex]$p_1+p_2$[/tex] is even and greater than 2, and therefore cannot be prime, contradicting our assumption. Therefore, one of the primes must be 2.
(b) Suppose, for the sake of contradiction, that n is divisible by 4 and n+2 is also divisible by 4. Then we can write:
n=4k for some integer k,
n+2=4m for some integer m.
Subtracting the first equation from the second, we get:
2=4(m-k)
Therefore, [tex]$m-k=\frac{1}{2}$[/tex], which contradicts the assumption that m and k are integers. Hence, our assumption that n+2 is divisible by 4 is false.
To learn more about algebra from the given link:
https://brainly.com/question/24875240
#SPJ4
Exercise 2 Two cards are selected without replacement from a standard deck. Random variable X is the number of kings in the hand and Y is the number of diamonds in the hand. Determine the joint and marginal distributions for (X,Y).
The joint distribution for (X,Y) is given by the table below, and the marginal distributions for X and Y are given by the tables below.
Y P(Y)
0 0
1 0.3686
2 0.0588
To determine the joint distribution for (X,Y), we need to calculate the probability of each possible outcome. There are 4 kings in the deck and 13 diamonds. We can use the formula for calculating probabilities of combinations to find the probabilities of each possible combination of kings and diamonds:
P(X = 0, Y = 0) = 36/52 * 35/51 = 0.5098
P(X = 0, Y = 1) = 36/52 * 16/51 = 0.2353
P(X = 0, Y = 2) = 36/52 * 1/51 = 0.0055
P(X = 1, Y = 0) = 16/52 * 36/51 = 0.2353
P(X = 1, Y = 1) = 16/52 * 15/51 = 0.0588
P(X = 1, Y = 2) = 16/52 * 0 = 0
P(X = 2, Y = 0) = 1/52 * 36/51 = 0.0055
P(X = 2, Y = 1) = 1/52 * 15/51 = 0.0007
P(X = 2, Y = 2) = 1/52 * 0 = 0
Therefore, the joint distribution for (X,Y) is:
To find the marginal distribution for X, we can sum the probabilities for each possible value of X:
P(X = 0) = 0.5098 + 0.2353 + 0.0055 = 0.7506
P(X = 1) = 0.2353 + 0.0588 + 0 = 0.2941
P(X = 2) = 0.0055 + 0.0007 + 0 = 0.0062
Therefore, the marginal distribution for X is:
To find the marginal distribution for Y, we can sum the probabilities for each possible value of Y:
P(Y = 0) = 0.5098 + 0.2353 + 0.0055 = 0.7506
P(Y = 1) = 0.2353 + 0.0588 + 0.0007 = 0.2948
P(Y = 2) = 0.0055 + 0 + 0 = 0.0055
Therefore, the marginal distribution for Y is:
To learn more about diamonds visit:
https://brainly.com/question/29775108
#SPJ11
6. David and Mary each shoots at a target independently. The probability that the target is hit by David and Mary are 1/5 and 1/4 respectively.
(a) Find the probability that both hit the target.
(b) Find the probability that the target will be hit at least once.
7. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. Find the probability that they are both Heart (correct to 4 decimal places)
(a) if the first card is replaced .
(b) if the first card is not replaced.
6 The probabilities of both questions are a.1/20, and b.9/20.
(a) To find the probability that both David and Mary hit the target, we can use the formula for independent events: P(A and B) = P(A) x P(B).
So, P(David hits the target) = 1/5, and P(Mary hits the target) = 1/4.
Therefore, P(both hit the target) = (1/5) x (1/4) = 1/20.
(b) To find the probability that the target will be hit at least once, we can use the formula P(A or B) = P(A) + P(B) - P(A and B).
So, P(David hits the target) = 1/5, and P(Mary hits the target) = 1/4.
Therefore, P(at least one hits the target) = P(David hits the target) + P(Mary hits the target) - P(both hit the target) = (1/5) + (1/4) - (1/20) = 9/20.
7. The probabilities of both questions are a.0.0625, and b.0.0588.
(a) If the first card is replaced, the probability of drawing a Heart on the first card is 13/52 (since there are 13 Hearts in a deck of 52 cards). After the first card is drawn and replaced, there are still 52 cards in the deck, with 13 of them being Hearts.
So, the probability of drawing a Heart on the second card is also 13/52.
Therefore, the probability of drawing two Hearts with replacement is (13/52) x (13/52) = 169/2704, which simplifies to 0.0625 (correct to 4 decimal places).
(b) If the first card is not replaced, the probability of drawing a Heart on the first card is 13/52 (since there are 13 Hearts in a deck of 52 cards). After the first card is drawn and not replaced, there are now only 51 cards left in the deck, with 12 of them being Hearts.
So, the probability of drawing a Heart on the second card is 12/51.
Therefore, the probability of drawing two Hearts without replacement is (13/52) x (12/51) = 156/2652, which simplifies to 0.0588 (correct to 4 decimal places).
Learn more about the probability: https://brainly.com/question/13604758
#SPJ11
1. Let X₁,..., Xy be independent random variables. Prove the following statements:
(a) If for each i = 1,2..., N one has P(X; <6) ≤6 for all 6 € (0, 1), then
n
P(ΣIXI0.
i=l
Hint: you may want to prove that EIe-ax,1I≤2/1, 1 > 0.
(b) If for each i = 1,..., N one has P(X; <6) ≥d for some 8 € (0, 1), then
n
P[ΣIxiI
i=l
The assumption that P(Xi < 6) ≥ d for some 8 € (0, 1), we can show that Var(Xi) ≤ 6^2 - (6d)^
(a) To prove that P(ΣIXI0 for all t > 0, we can use Markov's inequality, which states that for any non-negative random variable Y and any positive constant a, we have:
P(Y ≥ a) ≤ E(Y)/a
Let Y = e^(tΣIXi) and a = e^t. Then we have:
P(ΣIXi ≥ t) = P(e^(tΣIXi) ≥ e^t) ≤ E(e^(tΣIXi))/e^t
Now, we need to show that E(e^(tΣIXi)) ≤ e^(t^2/2). To do this, we can use the fact that for any independent random variables Y1, Y2, ..., Yn, we have:
E(e^(t(Y1+Y2+...+Yn))) = E(e^(tY1)) E(e^(tY2)) ... E(e^(tYn))
Uszng this formula and the assumption that P(Xi < 6) ≤ 6 for all 6 € (0, 1), we get:
E(e^(tXi)) = ∫₀^₆ e^(tx) fXi(x) dx ≤ ∫₀^₆ e^(6t) fXi(x) dx = e^(6t) E(Xi)
Therefore, we have:
E(e^(tΣIXi)) = E(e^(tX1) e^(tX2) ... e^(tXn)) ≤ E(e^(6t)X1) E(e^(6t)X2) ... E(e^(6t)Xn) = (E(X1) e^(6t))^(n)
Since Xi is non-negative, we have E(Xi) = ∫₀^₆ fXi(x) dx ≤ 1, so we get:
E(e^(tΣIXi)) ≤ (e^(6t))^n = e^(6nt)
Finally, substituting this inequality into the earlier expression, we get:
P(ΣIXi ≥ t) ≤ E(e^(tΣIXi))/e^t ≤ (e^(6nt))/e^t = e^(6n-1)t
Since this inequality holds for all t > 0, we have:
P(ΣIXi ≥ 0) = lim t→0 P(ΣIXi ≥ t) ≤ lim t→0 e^(6n-1)t = 1
Therefore, we have shown that P(ΣIXi ≥ 0, as required.
(b) To prove that P(ΣIXi ≥ t) ≥ 1 - ne^(-2t^2/d^2) for all t > 0, we can use Chebyshev's inequality, which states that for any random variable Y with finite mean and variance, we have:
P(|Y - E(Y)| ≥ a) ≤ Var(Y)/a^2
Let Y = ΣIXi and a = t. Then we have:
P(|ΣIXi - E(ΣIXi)| ≥ t) ≤ Var(ΣIXi)/t^2
Now, we need to find an upper bound for Var(ΣIXi). Since the Xi are independent, we have:
Var(ΣIXi) = Var(X1) + Var(X2) + ... + Var(Xn)
Using the assumption that P(Xi < 6) ≥ d for some 8 € (0, 1), we can show that Var(Xi) ≤ 6^2 - (6d)^
To learn more about assumption visit:
https://brainly.com/question/14511295
#SPJ11
Fernando is typing 70 words in 4 minutes. How long will it take him to type 350 words? How many words can he type in 6 minutes?
Answer: it will take 20 min to type 350 words
105 words in 6 min
Step-by-step explanation:
Answer:
It will take 20 minutes to type 350 words.
In 6 minutes, 105 words can be typed.
Step-by-step explanation:
To find the time taken to type 350 words, divide 4 by 70 and then multiply it by 350.
[tex]\sf \text{Time taken to type 1 word = $\dfrac{4}{70} $}\\\\\text{Time taken to type 350 words = $\dfrac{4}{70}*350$}[/tex]
= 20 minutes
To find the number of words to be typed in 6 minutes, first find how many he can type in 1 minute.
Number of words typed in 4 minutes = 70 words
[tex]\sf \text{Number of word typed in 1 minute = $\dfrac{70}{4}$}\\\\\text{Number of word typed in 6 minute = $\dfrac{70}{4}*6$}[/tex]
= 105 words
What is the total surface area, in square centimeters, of the pyramid that Susan will paint.
The surface area of the pyramid is 186 cm².
Given that the net diagram of a square pyramid, we need to find the surface area of the same,
SA = a² + 2al
a = side length, l = height
SA = 6² + 2×6×12.5
= 186 cm²
Hence, the surface area of the pyramid is 186 cm².
Learn more about surface area, click;
https://brainly.com/question/29298005
#SPJ1
Test the claim that for the adult population of one town, the mean annual salary is given by µ=$30,000. Sample data are summarized as n=17, x(bar)=$22,298 and s=$14,200. Use a significance level of α=0. 5. Assume that a simple random sample has been selected from a normally distribted population
After testing the claim, the required t-statistic value will come out to be approximately -2.235.
it is given that,
Population mean annual salary is μ=$30000
Sample size is n=17
Sample mean annual salary is ¯x=$22298
Sample standard deviation of the salaries is s=$14200
Level of significance is α=0.05
To test the assertion that the mean annual salary for the adult population of one town is $30000, one must determine the test statistic.
The issue is determining whether the adult population of one town makes a mean annual wage of $30,000 or not. It shows that $30000 is taken as the mean annual salary under the null hypothesis. The alternative hypothesis, however, contends that the mean annual salary is not $30000.
The alternative hypothesis and the null are thus:
H0:μ=$30000
H0:μ≠$30000
Regarding the question, it has a small sample size and there is no known population standard deviation.
Consequently, is the proper test statistic as t-statistic.
The test statistic is determined as: assuming the null hypothesis is correct.
[tex]t= \frac{¯x−μ}{\frac{s}{√n} } \\ = \frac{22298 - 30000}{ \frac{14200}{ \sqrt{17} \\} } \\ = \frac{ - 7702 \sqrt{17} }{14200} \\ = - 2.236349[/tex]
or we can take the nearest decimals and it'll be -2.236. Thus, the value of the required t-statistic is approximately -2.236.
To learn more about t-statistic: https://brainly.com/question/15110538
#SPJ4
A curve has equation y = f(x). (a) Write an expression for the slope of the secant line through the points P(2, f(2)) and Q(x, f(x)). f(x) – f(2) X-2 of 2) = 3 Fx 3 - 1 142
This expression represents the change in the function values (f (x) - f (2)) divided by the change in the x-values (x - 2), which gives us the slope of the secant line between points P and Q.
The slope of the secant line through the points P (2, f (2)) and Q (x, f(x)) can be found using the slope formula:
slope = (f (x) - f (2))/ (x - 2)
This expression represents the change in y (f(x) - f (2)) divided by the change in x (x - 2) between the two points. It gives the average rate of change of the function over that interval.
Alternatively, we could use the point-slope form of a line to find the equation of the secant line through P and Q:
y - f(2) = slope(x - 2)
where slope is given by the expression above. This equation represents a line that passes through P and Q, and it can be used to approximate the behavior of the function between those points. As x gets closer to 2, the secant line becomes a better approximation of the tangent line to the curve at that point.
Learn more about line here:
brainly.com/question/31244717
#SPJ11
Define a relation - by a-b a mod 4 = b mod 4. Find the equivalence class of - Be sure to start with at least 3 ellipses, 2 negative numbers, 2 positive numbers, and 3 ellipses like {. .., -2,-1,0, 1,
The relation "a-b a mod 4 = b mod 4" means that for any two numbers a and b, if their difference is divisible by 4, then they belong to the same equivalence class. To find the equivalence class of -, we need to find all the numbers that have the same modulus as - when divided by 4.
We can start by listing out some numbers with the same modulus as -. For example, we have {-9, -5, -1, 3, 7, ...}, since these numbers are all congruent to -1 mod 4. Similarly, we have {0, 4, 8, 12, ...} for numbers that are congruent to 0 mod 4, and {1, 5, 9, 13, ...} for numbers that are congruent to 1 mod 4.
Therefore, the equivalence class of - is {-9, -5, -1, 3, 7, ...}, which contains all the negative numbers that are congruent to -1 mod 4.
congurenthttps://brainly.com/question/26979961
#SPJ11
Use General Linear Process to determine the mean function and the autocovariance function of ARC2) given by Xt = ∅1X't-1- ∅2X't-2 +et
The GLP's mean function is (t) = (1 + 2), and the GLP's autocovariance function is γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2), where γ(0) = σ² / (1 - ∅1² - ∅2²).
What is function?A function connects an input with an output. It is analogous to a machine with an input and an output. And the output is somehow related to the input. The standard manner of writing a function is f(x) "f(x) =... "
To use the General Linear Process approach, we first express the given AR(2) model in the following form:
Xt = ∅1Xt-1 - ∅2Xt-2 + et
where et is a white noise process with zero mean and variance σ².
The mean function of this GLP is given by:
μ(t) = E[Xt] = E[∅1Xt-1 - ∅2Xt-2 + et] = ∅1E[Xt-1] - ∅2E[Xt-2] + E[et]
Since et is a white noise process with zero mean, we have E[et] = 0. Also, by assuming that the process is stationary, we have E[Xt-1] = E[Xt-2] = μ. Therefore, the mean function of the GLP is:
μ(t) = μ(∅1 + ∅2)
The autocovariance function of this GLP is given by:
γ(h) = cov(Xt, Xt-h) = cov(∅1Xt-1 - ∅2Xt-2 + et, ∅1Xt-1-h - ∅2Xt-2-h + e(t-h))
Note that et and e(t-h) are uncorrelated since the white noise process is uncorrelated at different time points. Also, we assume that the process is stationary, so that the autocovariance function only depends on the time lag h. Using the properties of covariance, we have:
γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2)
where γ(0) = Var[Xt] = σ² / (1 - ∅1² - ∅2²).
Therefore, the mean function of the GLP is μ(t) = μ(∅1 + ∅2), and the autocovariance function of the GLP is γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2), where γ(0) = σ² / (1 - ∅1² - ∅2²).
Learn more about functions on:
https://brainly.com/question/10439235
#SPJ11
Won $180 in a competition recently and I decided to share the whole of it between my three grandchildren in the ratio of their ages. When gave them their money today, 8-year-old James, 6-year-old Sarah and 4-year-old Lucy all thanked me. However, Sarah did point out that her birthday is only three weeks away and Lucy's birthday is next week. How much more would Sarah have received if had shared out the money immediately after her birthday instead of today?
If the money had been shared after Sarah's 7th birthday instead of now, she would have received an additional $12.95 because her share would have been increased from $54 to $66.95 based on the new age ratio of 8:7:4.
At present, James, Sarah, and Lucy have received $72, $54, and $36 respectively based on their age ratios of 8:6:4. If Sarah's birthday is in three weeks, then she would have turned 7 by then. So, the new age ratio would be 8:7:4. The total amount of money to be shared remains $180.
Therefore, the total parts for the new ratio are 8+7+4 = 19 parts.
The new share for Sarah is
(7/19) * $180 = $66.95 (rounded to the nearest cent)
So, if the money had been shared after Sarah's birthday, she would have received an additional $66.95 - $54 = $12.95.
To know more about age ratio:
https://brainly.com/question/21323524
#SPJ1
Which answers describe the shape below? Check all that apply.
A. Parallelogram
B. Rectangle
C. Square
D. Rhombus
E. Trapezoid
Answer:
A
Step-by-step explanation:
Figure these out ……….
Answer:
o
Step-by-step explanation:
For the scale model of an airplane Jamie is building, 4 feet is proportional to 6 inches. If the length of the airplane Jamie is modeling is 20 feet, what will be the length of his model ?
Answer the question. Please!!!
★ Area of Semicircle:-
we have given Radius of Semicircle is 5.6 cm .
➺ Area = ½ π r²
➺ Area = ½ × 22/7 × 5.6²
➺ Area = ½ × 22/7 × 5.6 × 5.6
➺ Area = (22/2×7) × 5.6 × 5.6
➺ Area = 22/14 × 5.6 × 5.6
➺ Area = 11/7 × 5.6 × 5.6
➺ Area = (11 × 5.6 × 5.6/7)
➺ Area = (61.6 × 5.6/7)
➺ Area = (61.6 × 5.6/7)
➺ Area = 344.96/7
➺ Area = 49.28 cm
★ Perimeter of Semicircle:-
Radius = 5.6 ( given)➺ Perimeter = πr + 2r
➺ Perimeter = 22/7 × 5.6 + 2 × 5.6
➺ Perimeter =( 22× 5.6/7 ) + 2 × 5.6
➺ Perimeter =123.2/7 + 2 × 5.6
➺ Perimeter =123.2/7 + 11.2
➺ Perimeter =123.2 + 78.4 / 7
➺ Perimeter =201.6/7
➺ Perimeter =28.8 cm
★ Therefore:-
Area of Semicircle = 49.28 cmPerimeter of Semicircle = 28.8 cmStep-by-step explanation:
the area of a circle is
pi×r²
and of a half-circle (= half of a circle)
pi×r²/2
the area here is therefore
pi×5.6²/2 = pi×31.36/2= 15.68pi = 49.26017281... cm²
the perimeter is the sum of half of the circle's circumference plus the diameter (2×radius).
the circumference of a circle is
2×pi×r
and half of that is
2×pi×r/2 = pi×r
in our case that is
pi×5.6 = 17.59291886... cm
the full perimeter is then
17.59291886... + 2×5.6 = 28.79291886... cm
the total sales (in thousands) of a video game are given by , where 89, 45, and is the number of months since the release of the game. find and . use these results to estimate the total sales after 11 months. do not compute the total sales after 11 months. round to the nearest hundredth (2 decimal places). approximately video games after 11 months
The estimated total sales after 11 months is approximately 235.54 thousand video games. To find and in the given equation for total sales, The equation is: total sales = 89 + 45ln(number of months since release) We can see that the coefficient of the natural logarithm function is 45.
So, we have: 45 = k where k is the growth rate of the video game sales. Now, to estimate the total sales after 11 months, we need to substitute 11 for in the equation: total sales = 89 + 45ln(11) Using a calculator, we get: total sales ≈ 235.54 Rounding to the nearest hundredth, we get: total sales ≈ 235.54 thousand.
So, the estimated total sales after 11 months is approximately 235.54 thousand video games.
Know more about sales here:
https://brainly.com/question/29857652
#SPJ11