Given
x = 0.5; y = 0.8
The constant of proportionality has to be calculated to estimate the other values.
The constant of proportionality "k" determines the relation of x and y, which can be represented as: y = kx.
So, in this exercise,
[tex]\begin{gathered} 0.8=k\cdot0.5 \\ \frac{0.8}{0.5}=k \\ k=1.6 \end{gathered}[/tex]y = 1.6y
(1) From this, we can estimate the value of y when x = 3.
[tex]\begin{gathered} y=1.6\cdot3 \\ y=4.8\text{gallons} \end{gathered}[/tex](2) If we want how long it will take to fill the tank with 40 gallons:
[tex]\begin{gathered} 40=1.6\cdot x \\ \frac{40}{1.6}=x \\ 25=x \end{gathered}[/tex]It will take 25 minutes.
(3) Finally, the constant of proportionality is 1.6 (as calculated above).
It tells us that the ratio between the gallons water of water and time. In other words, it tells us that for each 1 minute, 1.6 gallons are filled.
NEED HELP DUE BY WEDNESDAY OR TOMMOROW. Solve each of the equations and select the numbers that represent solutions to more than one of the six equations. Select all that apply. 4x-3=17. 8(x + 1) = 24. 5(x - 2) = 20. 34 - 7x = 20. 31 - x = 29. 3x +6=21. A. x=1. B. x=2. C. x=3. D. x=4.E. x=5. F. X = 6.
We are to solve for x in all the equations and select the ones that occur more than one solution.
Hence,
[tex]\begin{gathered} 4x-3=17 \\ 4x=17+3 \\ 4x=20 \\ x=\frac{20}{4}=5 \\ \therefore x=5 \end{gathered}[/tex]Next,
[tex]\begin{gathered} 5(x-2)=20 \\ x-2=\frac{20}{5} \\ x-2=4 \\ x=4+2=6 \\ \therefore x=6 \end{gathered}[/tex]Next,
[tex]\begin{gathered} 31-x=29 \\ 31-29=x \\ 2=x \\ \therefore x=2 \end{gathered}[/tex]Next,
[tex]\begin{gathered} 8(x+1)=24 \\ x+1=\frac{24}{8} \\ x+1=3 \\ x=3-1=2 \\ \therefore x=2 \end{gathered}[/tex]Next,
[tex]\begin{gathered} 34-7x=20 \\ 34-20=7x \\ 14=7x \\ \frac{14}{7}=\frac{7x}{7} \\ 2=x \\ \Rightarrow x=2 \end{gathered}[/tex]Lastly,
[tex]\begin{gathered} 3x+6=21 \\ 3x=21-6 \\ 3x=15 \\ x=\frac{15}{3}=5 \\ \therefore x=5 \end{gathered}[/tex]Hence, the numbers that represent solutions to more than one of the six equations are
[tex]\begin{gathered} x=2\text{ \lparen Option 2\rparen} \\ x=5\text{ \lparen Option 5\rparen} \end{gathered}[/tex]What is the slope of the line that passes through (5,4) and (7,10)a.3b. -3 C. 2D.-2
To find a slope of a line we need two points, so we will do it as follows.
[tex]m=\frac{\Delta y}{\Delta x}=\frac{10-4}{7-5}=\frac{6}{2}=3[/tex]Therefore it is (a) the slope is 3.
Answer:
a.3
Step-by-step explanation:
To find the slope, use the slope formula
m = ( y2-y1)/(x2-x1)
= ( 10-4)/(7-5)
= 6/2
= 3
URGENT!!! help!!!!!!!!!!!!!
Triangles' resemblance is reflected by their congruence. If the matching sides and angles of two triangles match, the triangles are said to be congruent.
For triangles, there are five primary congruency rules: Side-Side-Side is an SSS criterion. The side-angle-side SAS criterion. Angle, Side, Angle is an ASA criterion. Angle-Angle-Side is an AAS criterion.
The midpoint of a line segment is known as the midpoint in geometry. It is the centroid of the segment and of the ends, and it is equally distant from both of them. It cuts the section in half.
An isosceles triangle in geometry is one with at least two equal-length sides. It is sometimes stated as having exactly two equal-length sides and other times as having at least two equal-length sides, with the latter version adding the equilateral triangle as one of the possible configurations.
To learn more about Congruent refer to:
https://brainly.com/question/2938476
#SPJ13
1. Evaluate the following expressions if a = 2. b = 3, x = 4, and y = 5.+3(27-»
When a=2, b=3, x=4, and y=5,
evaluate:
[tex]b^2+3(2x-y)[/tex]Let's replace b, x and y by the appropriate values:
[tex](3)^2+3(2(4)-5)[/tex]now let's solve what is inside the parenthesis:
[tex]9+3(8-5)[/tex]again more solving inside the second parenthesis:
[tex]9+3(3)[/tex]and again, first multiplying what is indicated. Recall that the rule PEMDAS for order of operations indicates that Parenthesis have to be solved first, then exponents, then multiplications and divisions, and the VERY LAST is additions and subtractions:
[tex]9+9=18[/tex]You do the same type of replacement of variables wit numbers, and then use of the rules for order of operations to evaluate the rest.
Like:
[tex]ab+ya^3[/tex]and then evaluate:
[tex]\frac{y+ab}{b+x}[/tex]A spinner can land on either red or blue You spin seven times and then roll a six sided die. Find the number of possible outcomes in the sample space?
If we spin the spinner once, we can get two possible outcomes (red or blue).
If we spin it twice, the outcomes can be (blue, blue), (blue, red), (red, blue), (red, red); this is, 4 different results.
Then, if we spin the spinner 7 times, there are 2^7=128 possible outcomes.
Finally, we can get any of the 128 possible outcomes from the spinner and rolling a 1; similarly, for rolling a 2, 3,..., 6.
Therefore, the number of possible outcomes of spinning the spinner seven times and rolling a die is
[tex]2^7\cdot6=128\cdot6=768[/tex]There are 768 possible outcomes in the sample space.
How many terms are existed in between 10 to 1000 which are divisible by 6?
Answer:166
Step-by-step explanation: There are 166 integers between 1 and 1,000 which are divisible by 6
A bus travels 8.4 miles eastand then 14.7 miles north.What is the angle of the bus'resultant vector?Hint: Draw a vector diagram.O[?]
A bus travels 8.4 miles east and then 14.7 miles north.
What is the angle of the bus resultant vector?
see the figure below to better understand the problem
The angle of the bus resultant vector R is equal to
tan(x)=14.7/8.4
mm
In a blood testing procedure, blood samples from 6 people are combined into one mixture. The mixture will only test negative if all the individual samples are negative. If the probability that an individual sample tests positive is 0.11. What is the probability that the mixture will test positive?
From the information available, the mixture will test negative if all 6 samples are negative.
The probability of each is independent of the other for all 6 samples.
The probability of a sample testing positive is 0.11. That means the probability of a sample testing negative would be
[tex]\begin{gathered} P\lbrack neg\rbrack=1-P\lbrack pos\rbrack \\ P\lbrack\text{neg\rbrack}=1-0.11 \\ P\lbrack\text{neg\rbrack}=0.89 \end{gathered}[/tex]However, for all 6 samples, the probability of having a negative result would be a product of probabilities, that is;
[tex]\begin{gathered} P\lbrack tests\text{ negative}\rbrack=0.89\times0.89\times0.89\times0.89\times0.89\times0.89 \\ P\lbrack\text{tests negative}\rbrack=0.89^6 \\ P\lbrack\text{tests negative\rbrack}=0.4969 \end{gathered}[/tex]Therefore if we have the probability of the mixture testing negative as
[tex]P_{\text{neg}}=0.4969[/tex]The probability of the mixture testing positive would be;
[tex]\begin{gathered} P_{\text{pos}}=1-P_{\text{neg}} \\ P_{\text{pos}}=1-0.4969 \\ P_{\text{pos}}=0.5031 \end{gathered}[/tex]ANSWER:
The probability that the mixture will test positive is 0.5031
Rounded to 2 decimal places,
[tex]P_{\text{pos}}=0.50[/tex]Hello, I need some assistance with the following question. Q1.
Given the expression f/g
Which is a rational expression.
The domain is all real numbers of (x) except the zeros of the denominators
The zeros of the denominators can be calculated using the equation g(x)=0
So, the answer will be as follows:
The domain of f/g consists of numbers (x) for which g(x) ≠ 0 that are in the domains of both f and g
B>DGiven:. E is the midpoint of ADE is the midpoint of BCProve: ΔΑΕΒΑ ΔDECE is the midpoint of ADGiven
We are given a mid-point for segments AD and BC, we have the following:
segments AE and DE are congruent, that is:
[tex]AE\cong DE[/tex]By definition of mid-point.
Segments BE and CE are congruent, that is:
[tex]BE\cong CE[/tex]By definition of mid-point.
We also have that angles AEB and DEC are congruent, that is:
[tex]\angle AEB\cong\angle DEC[/tex]By the vertical angles theorem, which states that when two lines intercept their vertical or opposite angles are equal or congruent.
Now we can conclude that triangles AEB and DEC are congruent, that is:
[tex]\Delta AEB\cong\Delta DEC[/tex]Due to the Side-Angle-Side Theorem, which states that when two triangles have two congruent sides and the angle between the congruent sides also congruent, then the triangles are congruent.
If y varies directly with x and y = 90 when 3 = 15, then what is y when = 4?y =+
Recall than a direct variation implies the following type of relationship between y and x:
y = k * x
where k is a constant value
Then you have (by dividing by x, the following:
y / x = k (the constant)
then, we are told that when y = 90 , x = 15, so we have:
90 / 15 = k
6 = k
so,now that we know what the constant k is (6), we can answer the question: What is y when x = 4?
so we write:
y = k * x
y = 6 * 4
y = 24
This is the value of y when x is 4 since the constant k is 6 as we found above.
Another example:
We need to find the variation relationship for a case that when y = 6, x = 12
We think the same way we did before, starting with the fact that a direct variation is of the form:
y = k * x
given the info that when x = 12, y = 6, we can find the constant k:
6 = k * 12
divide by 12 both sides:
6/12 = k
1/2 = k
So k is 1/2 (one half)
Then we can write the variation as:
y = (1/2) x
(the product of 1/2 times x)
Find the negative member of the solution set for |2x -4| =6
The negative solution of the absolute value function is x = - 1.
What is the negative solution of an absolute value set?In this problem we need to solve for x in an absolute value function, whose procedure is done by the use of algebra properties:
Step 1 - Initial condition:
|2 · x - 4| = 6
Step 2 - By definition of absolute value:
2 · x - 4 = 6 or - 2 · x + 4 = 6
Step 3 - By compatibility with addition, existence of additive inverse, associative, commutative and modulative properties:
2 · x = 10 or - 2 · x = 2
Step 4 - By compatibility with multiplication, existence of multiplicative inverse, associative, commutative and modulative properties we get this result:
x = 5 or x = - 1
The negative solution of the function is x = - 1.
To learn more on absolute value functions: https://brainly.com/question/14364803
#SPJ1
A piece of paper is folded into half repeatedly. The thickness of the paper in inches is modeled by the function y = 2x/1000, where x is the number of folds. How thick will the paper be if you could fold it 10 times?About an inchAbout 2 inchesAbout 3 inchesAbout 4 inches
Given: A piece of paper is folded into half repeatedly. The thickness of the paper in inches is modeled by the function y = 2x/1000, where x is the number of folds.
Required: To determine the thickness of the paper if the paper is folded 10 times.
Explanation: The thickness of the paper is given by the function
[tex]y=\frac{2x}{1000}[/tex]Here, x is the number of folds=10
Hence,
[tex]\begin{gathered} y=\frac{2\times10}{1000} \\ =0.02\text{ inches} \end{gathered}[/tex]Final Answer: After 10 folds, the thickness of the paper is 0.02 inches.
gB - N³B = d what does B equal?
Answer:
[tex]b \: = \frac{d}{(g - {n}^{3} )} [/tex]
I need help with my pre-calculus homework, the image of the problem is attached. Please show me how to solve this problem, thank you!
Given the following equation:
[tex]\text{ }\frac{\text{ 2}}{5x}\text{ + 4 = }\frac{2}{x}[/tex]Let's find x,
[tex]\text{ }\frac{\text{ 2}}{5x}\text{ + 4 = }\frac{2}{x}[/tex][tex]\text{ 5x( }\frac{\text{ 2}}{5x}\text{ + 4) = (}\frac{2}{x})5x[/tex][tex]\text{ 5x(}\frac{\text{ 2}}{5x})\text{ + 5x(4) = (}\frac{2}{x})5x[/tex][tex]\text{ 2 + 20x = 10}[/tex][tex]\text{ 2 + 20x - 2 = 10 - 2}[/tex][tex]\text{ 20x = 8}[/tex][tex]\text{ }\frac{\text{20x}}{20}\text{ = }\frac{\text{8}}{20}[/tex][tex]\text{ x = }\frac{8}{20}[/tex][tex]\text{ x = }\frac{\frac{8}{4}}{\frac{20}{4}}\text{ = }\frac{2}{5}[/tex]Therefore, the answer is letter A: 2/5
The formula Total cost=C+Shipping cost+Installation is used to find the total cost of a business asset. The formula can be written in symbols as T=C+S+I. Solve the formula for I, the Installation cost of the asset.
Formulas
The formula for the Total Cost is given as:
T = C + S + I
Where C is the shipping cost, I is t
hello can you help me with this trigonometry question and in the question I have to answer it in radians hopefully you can help me please
Answer
(34π/7) = (6π/7) in the range of 0 and 2π.
Explanation
We are asked to find an angle between 0 and 2π that are coterminal with (that is, equal to) (34π/7).
34π/7 is 4.857π in decimal form, indicating that it is outside the required range. To find its equivalent in the required range, we keep going a full revolution (2π) till we get there.
(34π/7) - 2π = (20π/7)
This is 2.857π, which is still outside the required range, so, we subtract another revolution from this
(20π/7) - 2π = (6π/7)
This is 0.857π and it is solidly in the required region.
Hope this Helps!!!
Eliza had $14 and Emma had $64 more than Eliza how much did Emma have?
Given
Eliza had $14
Emma had $64 more than Eliza
Find
how much did Emma have
Explanation
as we have given
Eliza has $14
so , Emma = $64 + $14 = $78
Final Answer
Therefore , the Emma had $78
Identify the word described by the following statement.The type of rule in which you can find any number of term in the sequence without knowing the first or previous term.
Recursive is the type of rule in which you can find any number of term in the sequence without knowing the first or previous term.
Hence, the answer is Recursive.
Find an equation of the line described below. Write the equation in slope-intercept form (solved for y), when possible Through (15,5) and (5,15)
Given that the required linepasses through the points (15, 5)and (5, 15).
Find the slope of the line using teo-point formula.
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ =\frac{15-5}{5-15} \\ =\frac{10}{-10} \\ =-1 \end{gathered}[/tex]Substitute the value of m into theslope-intercept form y = mx+c.
[tex]y=-x+c[/tex]Plug in the point (5, 15)to find c, the y-intercept.
[tex]\begin{gathered} 15=-5+c \\ c=20 \end{gathered}[/tex]Thus, y = -x + 20, which is the required equation of line.
Which graphed matches the equation y+6= 3/4 (x+4)?
To start, it is important to find the slope intercept form of the equation
[tex]\begin{gathered} y+6=\frac{3}{4}(x+4) \\ y+6=\frac{3}{4}x+3 \\ y=\frac{3}{4}x+3-6 \\ y=\frac{3}{4}x-3 \end{gathered}[/tex]Once we have the slope intercept form we know that the y intercept is -3 and the slope is positive, it means the line is increasing
The graph will look like this
Property valued at $56,000 is assessed at of itsvalue. If the yearly tax is calculated as $3 per $100 ofassessed value, what is the yearly tax on this property?A. $ 420B. $1.120C. $1,260D. $1,680E $2,240
Since the yearly tax is calculated as $3 per $100 of assessed value, which is 3/4 of $56,000 , the yearly tax on this property can be calculated as: $56,000*3/4*$3/$100 = $ 1260. The answer is option C.
Can someone give me the answer for my last blank
Answer:
[tex]-\frac{1}{2}[/tex]Step-by-step explanation:
Since we have that:
[tex]p=-0.5[/tex]We'll have that:
[tex]\frac{1}{4p}\rightarrow\frac{1}{4(-0.5)}\rightarrow-\frac{1}{2}[/tex]Therefore, we can conclude that the answer is:
[tex]-\frac{1}{2}[/tex]ok my question is math algebra. consider the linear equation y-1=0 and grapthe two points
To find:
We need to find two points on the linear equation y-1=0 and to plot those points on graph.
Step by step solution:
We know that:
General coordinate of any two points on line y = 1:
= (x, 1)
So let us assume any two random points on the line:
= (1,1) and (2,1)
We will now mark them on the graph:
based on the data provided what was the rent expenses each month
From the table it can be observed that rate expense for a month is -$1,120.00. The negative value means that amount is reduced.
So rent expense is -$1,120.00, where negative sign is for decrease in amount.
Your friend Pat bought a fish tank that has a volume of 175 liters. The brochure for Pat's tank lists a "fun fact that it would take 7.43 x 1018 tanks of that sizeto fill all the oceans in the world. Pat thinks the both of you can quickly calculate the volume of all the oceans in the world using the fun fact and the size ofher tankPart a.) Given that 1 liter = 1.0 x 10-12 cubic kilometers, rewrite the size of the tank in cubic kilometers using scientific notation.b) Determine the volume of all the oceans in the world in cubic kilometers using the "fun fact"
The tank has a volume of 175 liters
Fun fact: it would take 7.43*10¹⁸ tanks that size to fill all the oceans in the world.
a) Using the convertion 1 liter = 1.0*10⁻¹²km³ you have to rewrite the size of the tank.
For this you have to use cross multiplication:
1 Lts = 1.0*10⁻¹²
175Lts=x
[tex]x=175\cdot1.0\cdot10^{-12}=1.75\cdot10^{-10}[/tex]The volume of the tank is equal to 1.75*10⁻¹⁰ km³
b)
You know that one tank has a volume of 1.75*10⁻¹⁰ km³
To know what volume would 7.43*10¹⁸ tanks of the same size have, multiply the volume of one tank by the number of tanks.
[tex]1.75\cdot10^{-10}\cdot7.43\cdot10^{18}=1300250000\operatorname{km}^3[/tex]Using the fun fact, the determined volume of all oceans in the world is 1300250000km³
Cynthia wants to buy a rug for a room that is 18ft wide and 28ft long. She wants to leave a uniform strip of floor around the rug. She can afford to buy 264 square feet of carpeting. What dimensions should the rug have ?
SOLUTION
Let us use a diagram to illustrate the information, we have
Now, from the diagram, let the length of the uniform strip of floor around the rug be x, So, this means the length and width of the rug is
[tex]\begin{gathered} \text{length = 2}8-x-x=28-2x \\ \text{width = }18-x-x=18-2x \end{gathered}[/tex]Now, since she can afford to buy a rug of 264 square feet for carpeting, this means that the area of the rug is 264, hence we have that
[tex]\begin{gathered} \text{area of rug = (2}8-2x)\times(18-2x) \\ 264=\text{(2}8-2x)(18-2x) \\ \text{(2}8-2x)(18-2x)=264 \end{gathered}[/tex]Solving for x, we have
[tex]\begin{gathered} \text{(2}8-2x)(18-2x)=264 \\ 504-56x-36x+4x^2=264 \\ 504-92x+4x^2=264 \\ 4x^2-92x+504-264=0 \\ 4x^2-92x+240=0 \end{gathered}[/tex]Dividing through by 4 we have
[tex]\begin{gathered} x^2-23x+60=0 \\ x^2-20x-3x+60=0 \\ x(x-20)-3(x-20)=0 \\ (x-3)(x-20)=0 \\ x=3\text{ or 20} \end{gathered}[/tex]So from our calculation, we go for x = 3, because 20 is large look at this
[tex]\begin{gathered} \text{From the length which is (2}8-2x) \\ 28-2(20) \\ =28-40=-12 \end{gathered}[/tex]length cannot be negative, so we go for x = 3.
Hence the dimensions of the rug becomes
[tex]\begin{gathered} \text{(2}8-2x) \\ =28-2(3) \\ =28-6=22 \\ \text{and } \\ 18-2x \\ 18-2(3) \\ 18-6=12 \end{gathered}[/tex]So the dimension of the rug should be 22 x 12 feet
MP and MN are tangents to the circle.What is the value of x?133M90940NxºР17286
To get x, we will use the equation below:
[tex]\frac{1}{2}\lbrack(360-x)-x\rbrack=94[/tex]open the inner paremthesis
[tex]\frac{1}{2}\lbrack360-2x\rbrack=94[/tex]
open the parenthesis
180 - x = 94
collect like term
180 - 94 = x
86 = x
complete the equation of the line through (-1,6) and (,7-2)
The two points given are
A(-1, 6)
B(7, -2)
We shall start by calculating the slope of the line, since we've been given two points.
[tex]\begin{gathered} \text{The slope which is m, is derived as;} \\ m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{-2-6}{7-\lbrack-1\rbrack} \\ m=\frac{-8}{7+1} \\ m=\frac{-8}{8} \\ m=-1 \end{gathered}[/tex]Next we shall derive the y-intercept, by inserting the known values into the equation in slope-intercept form.
[tex]\begin{gathered} y=mx+b \\ We\text{ shall use the first set of coordinates, that is (-1, 6)} \\ 6=-1(-1)+b \\ 6=1+b \\ 6-1=b \\ b=5 \end{gathered}[/tex]Having calculated the values of m (the slope) and b (the y-intercept), the equation is now;
[tex]\begin{gathered} y=mx+b \\ y=-1x+5 \\ y=-x+5 \end{gathered}[/tex]Write an equation and solve to find the value of your variable. 7.3 less than -2 times a number is the same as 16 1/2. n=?
The equation is -2n - 7.3 = 16 1/2
The value of the variable n = -11.9
STEP - BY - STEP EXPLANATION
What to find?
• Write the equation of the given statement.
,• The value of n.
Given:
find the value of your variable. 7.3 less than -2 times a number is the same as 16 1/2. n=?
To solve follow the steps below:
Step 1
Translate the given statement into equation.
Let n be the number.
-2n - 7.3 = 16 1/2
Step 2
Convert 16 1/2 to decimal.
-2n - 7.3 = 16.5
Step 3
Add 7.3 to both-side of the equation.
-2n = 16.5 + 7.3
Step 4
Simplify the right-hand side of the equation.
-2n =23.8
Step 5
Divide both-side of the equation by -2.
[tex]\frac{\cancel{-2}n}{\cancel{-2}}=\frac{23.8}{-2}[/tex]n = -11.9
Therefore, the value of the variable n = -11.9