Using functions, it is found that:
a. The costs for two years are as follows:
Option A: $4,600.Option B: $1,720.b. The pros and cons are as follows:
Option A: pro is the lower fixed fees, con is the higher hourly fee.Option B: pro is the lower hourly fee, con is the higher fixed fees.Option A functionThe cost of $2,600 for the first year is obtained as follows:
$500 set up fee.$2,000 of the 100 hours at $20 per hour.$100 of the hosting fee.For the second year, only the hourly cost will be paid, hence $2,000 will be added and the total cost is of:
$2,600 + $2,000 = $4,600.
The pros of Option A are the lower initial fees, hence for a lower number of hour, the cost is smaller, while the con is the high hourly price, meaning that for a high number of hours, option B is better.
Option B functionThe cost of $2,600 for the first year is obtained as follows:
$1,000 set up fee.$30 a month of hosting fee.For the second year, only the hosting fee is paid, meaning that $360 is added to the cost, thus:
$1,360 + $360 = $1,720.
The pros and cons are basically opposite of option A, higher basic fees with lower hourly/monthly fees, meaning that it is better over longer periods.
More can be learned about functions at https://brainly.com/question/24808124
#SPJ1
You pick a card at random.
1 2 3 4
What is P(factor of 24)?
Write your answer as a percentage rounded to the nearest tenth
Answer:
100%
Step-by-step explanation:
All of the numbers are factors of 24. So, picking a factor of 24 is guaranteed, so the probability is 1.
This is equal to 100%.
I need help This is from my trig prep guide
From the question given, we have the following data;
Height of the tree = 80 feet
Angle of elevation to the top of the tree = 68 degrees
Distance from Corey to the tree = unknown
We shall now call the unknown variable x.
With that we shall have the following diagram;
We now have a diagram detailing the triangle and the dimensions showing Corey, the tree and the eagle at the tree top.
To get a better look, Corey moves several steps away from the tree and now determines his new angle of elevation to be 41 degrees.
This can now be illustrated as follows;
From triangle EDC, we shall calculate the distance from point C to point D using trigonometric ratios. The reference angle is at point C, which means the opposite side is side ED. The adjacent side is side CD (labeled x). Using trig ratios we have;
[tex]\begin{gathered} \tan \theta=\frac{\text{opp}}{\text{adj}} \\ \tan 68=\frac{80}{x} \end{gathered}[/tex]We cross multiply and we now have;
[tex]\begin{gathered} x=\frac{80}{\tan 68} \\ U\sin g\text{ a calculator, we have tan 68 as 2.475086}\ldots \\ x=\frac{80}{2.475086} \\ x=32.322109\ldots \\ \text{Rounded to the nearest hundredth of a foot;} \\ x=32.32ft \end{gathered}[/tex]Looking at triangle EDB;
The reference angle is 41 which makes the opposite side ED and the adjacent side BD. To calculate the distance BD, we'll have;
[tex]\begin{gathered} \tan \theta=\frac{\text{opp}}{\text{adj}} \\ \tan 41=\frac{80}{BD} \\ We\text{ cross multiply and we now have;} \\ BD=\frac{80}{\tan 41} \\ BD=\frac{80}{0.869286} \\ BD=92.02955\ldots \\ \text{Rounded to the nearest hundredth;} \\ BD=92.03 \end{gathered}[/tex]Take note that the distance Corey moved before he had a new angle of elevation is line segment CD which is indicated as y. Note also that
[tex]\begin{gathered} BC+CD=BD \\ CD=x=32.32ft \\ BC+32.32=92.03 \\ \text{Subtract 32.32 from both sides;} \\ BC=59.71 \end{gathered}[/tex]The distance Corey stepped back is indicated as y (line segment BC).
ANSWER:
Corey stepped back 59.71 feet
Elena has two aquariums each shaped like a rectangular prism. For each question explain or show your reasoning. A) One aquarium has a length of 7/2 feet a width of 4/3 feet and a height of 3/2 feet. What is the volume of the aquarium.
According to a 2017 Wired magazine article, 40% of emails that are received are tracked using software that can tell the email sender when, where, and on what type of device the email was opened (Wired magazine website). Suppose we randomly select 70 received emails.
(a)
What is the expected number of these emails that are tracked?
(b)
What are the variance and standard deviation for the number of these emails that are tracked? (Round your answers to three decimal places.)
Var(x)
=
=
Using the binomial distribution, the measures are given as follows:
a) Expected value: 28.
b) Variance of 16.8 and standard deviation of 4.099.
What is the binomial distribution formula?The formula for the probability of x successes is:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are given by:
n is the number of trials of the experiment.p is the probability of a success on a single trial of the experiment.Hence, in the context of this problem, the values of these parameters are given as follows:
p = 0.4, n = 70.
The expected value of the distribution is calculated as follows:
E(X) = np.
Hence:
E(X) = 70 x 0.4 = 28.
The variance of the distribution is calculated as follows:
V(X) = np(1 - p) = 70 x 0.4 x 0.6 = 16.8.
The standard deviation of the distribution is calculated as follows:
sqrt(V(X)) = sqrt(16.8) = 4.099.
Learn more about the binomial distribution at https://brainly.com/question/28919589
#SPJ1
Which of the following actions will best help her find out whether the two equations in the system are in fact parallel
Check to see whether the slope of both lines are the same (option A)
Explanation:[tex]\begin{gathered} \text{Given} \\ y\text{ - x = }21 \\ 2y\text{ = 2x + 16} \end{gathered}[/tex]When two system of equations do not intersect, the lines are said to be parallel lines.
This means there is no solution.
To determine if the lines are trully parallel, the slope of each equation need to be determined.
For parallel lines, the slope will be the same
The best action to help her find out whether the two equations are inded parallel, Check to see whether the slope of both lines are the same (option A)
2/4 turn into decimal
Answer:
The decimal form of 2/4 is;
[tex]0.5[/tex]Explanation:
We want to turn the fraction to decimal.
[tex]\frac{2}{4}=0.5[/tex]it can be obtained by;
Therefore, the decimal form of 2/4 is;
[tex]0.5[/tex]There are 11 oranges, 7 apples, 9 bananas and 13 peaches in the fruit bowl. If you pick a fruit at random, what is the probability you will pick an apple or banana? (give answer as a percentage rounded to the nearest tenth) Plapple or banana)=[answer]
we get that:
[tex]\frac{7+9}{11+7+9+13}=\frac{16}{40}=\frac{2}{5}=0.4\rightarrow40\text{ \%}[/tex]Evaluate the following definite integral using a geometric formula. You must show all work including the geometry area formula .
Given the Definite Integral:
[tex]\int_0^1\sqrt{1-x^2}dx[/tex]You can identify that the interval is:
[tex]\lbrack0,1\rbrack[/tex]By definition, if the function is continuous and positive in a closed interval, then:
[tex]\int_a^bf(x)dx=Area[/tex]In this case, you can identify that the function is:
[tex]y=\sqrt{1-x^2}[/tex]You can graph it using a graphic tool:
Since the closed interval goes from 0 to 1, you need to find this area:
You can identify that you have to find the area of a quarter circle. In order to do it, you can use this formula:
[tex]A=\frac{\pi r^2}{4}[/tex]Where "r" is the radius of the circle.
In this case, you can identify that:
[tex]r=1[/tex]Therefore, you get:
[tex]A=\frac{\pi(1)^2}{4}=\frac{\pi}{4}[/tex]Then:
[tex]\int_0^1\sqrt{1-x^2}dx=\frac{\pi}{4}[/tex]Hence, the answer is: Option D.
Describe the difference on table, graph and equation between discrete and continuous functions.
REmember that
A continuous function allows the x-values to be ANY points in the interval, including fractions, decimals, and irrational values
A discrete function allows the x-values to be only certain points in the interval, usually only integers or whole numbers.
Discrete functions have scatter plots as graphs and continuous functions have lines or curves as graphs
please show me how to solve this triangle, thank you!
Statement Problem: Solve for the missing sides of the triangle;
Solution:
The sum of angles in a triangle is 180degrees. Thus,
[tex]\begin{gathered} \angle A+\angle B+\angle C=180^o \\ \angle B=180^o-\angle A-\angle C \\ \angle B=180^o-42^o-96^o \\ \angle B=42^o \end{gathered}[/tex]Since measure angle A and measure angle B are equal. Thus, the triangle is isosceles and the two sides are equal.
[tex]a=b[/tex]We would apply sine rule to find the missing side a.
[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \\ \frac{\sin A}{a}=\frac{\sin C}{c} \end{gathered}[/tex][tex]\begin{gathered} \frac{\sin42^o}{a}=\frac{\sin96^o}{12} \\ a=\frac{12\sin42^o}{\sin96^o} \\ a=8.07 \\ a\approx8.1 \end{gathered}[/tex]Thus,
[tex]a=b=8.1[/tex]CORRECT ANSWERS:
[tex]\begin{gathered} a=8.1 \\ b=8.1 \\ m\angle B=42^o \end{gathered}[/tex]which of the following describe ✓2) Irrational number) Whole number ) Integer) Real number
Okay, here we have this:
Considering that a real number is said to be irrational if it cannot be expressed as a quotient of whole numbers. ✓2 is an irrational number, and as all the irrational number are real numbers ✓2 is also a real number.
Question 12 pls help
The equation of the line is found as y + 2 = (-2/3)(x - 5).
What is termed as the equation of a line?The equation of line is just an algebraic representation of a set of points in a coordinate system that form a line. The numerous points in the coordinate axis that form a line are depicted as a set of factors x, y to form an algebraic expression known as an equation of a line.For the given question.
The passing coordinates of the line is given as;
(x1, y1) = (-1, 7)
(x2, y2) = (5, -2)
Find the slope using the equation.
slope = m = (y2 - y1)/(x2 - x1)
Put the values.
m = (-2 - 7)/(5 + 1)
m = -9/6
m = -3/2
Use the point slope formula to find the equation of line in slope intercept form.
y - y1 = m(x - x1)
y + 2 = (-2/3)(x - 5)
Thus, the equation of the line is found as y + 2 = (-2/3)(x - 5).
To know more about the equation of a line, here
https://brainly.com/question/25969846
#SPJ13
What value of Y makes this equation true?6y/-2 = 8 (-4/2)
Step 1
Given;
[tex]\frac{6y}{-2}=8(-\frac{4}{2})[/tex]Required; To find the value of y that makes the equation true
Step 2
Find the value of y
[tex]\begin{gathered} \text{Simplify} \\ -3y=4(-4) \end{gathered}[/tex][tex]\begin{gathered} \text{expand} \\ -3y=-16 \end{gathered}[/tex][tex]\begin{gathered} \text{Divide both sides by -3} \\ \frac{-3y}{-3}=\frac{-16}{-3} \end{gathered}[/tex][tex]\begin{gathered} \text{Simplify} \\ y=\frac{16}{3} \end{gathered}[/tex]Hence, the value of y that makes the equation true is 16/3
Write an inequality:Carlos was going to sell all of his stamp collection to buy a video game. After selling half of them he changed his mind. He then bought twelve more. How many did he start with if he now has at least 29?
Answer:
He started with at least 34 stamp collection
Explanation:
Let x represent Carlos' initial stamp collection.
From the question, we're told that he sold half of them, bought twelve more, and currently has at least 29, we can go ahead and set up an inequality as shown below;
[tex]\frac{x}{2}+12\ge29[/tex]We can go ahead and solve for x following the below steps;
Step 1: Subtract 12 from both sides of the equation;
[tex]\begin{gathered} \frac{x}{2}+12-12\ge29-12 \\ \frac{x}{2}\ge17 \end{gathered}[/tex]Step 2: Multiply both sides by 2;
[tex]\begin{gathered} \frac{x}{2}\times2\ge17\times2 \\ x\ge34 \end{gathered}[/tex]From the above, we can say that Carlos started with at least 34 stamp collection
Suppose that an item regularly costs $100.00 and is discounted 22%. If it is then marked up 22%, is the resulting price $100.00? If not, what is it? Choose the correct answer below and, if necessary, fill in the answer box to complete your choice.
Suppose that an item regularly costs $100.00 and is discounted 22%. If it is then marked up 22%, is the resulting price $100.00? If not, what is it? Choose the correct answer below and, if necessary, fill in the answer box to complete your choice.
1)
we have
100%-22%=78%=78/100=0.78
so
If is discounted 22%
the new price is 100,000*0.78=$78,000
2) If it is then marked up 22%
the new price is
100%+22%=122%=122/100=1.22
78,000*1.22=$95,160
therefore
The new price is not $100,000
the new price is $95,160
help me please if you can A.(0, 3)B. (-1, 5)C.(1, 1.5)
Answer:
A. (0, 3)
C. (1, 1.5)
Explanation:
A point is a solution to the system if it satisfies both inequalities.
So for each option, we get:
Replacing (x, y) = (0, 3)
y ≥ -2x + 3
3 ≥ -2(0) + 3
3 ≥ 3
y ≤ -x² - x + 4
3 ≤ -0² - 0 + 4
3 ≤ 4
Since both inequalities are satisfied, (0, 3) is a solution.
For (x, y) = (-1, 5)
y ≥ -2x + 3
5 ≥ -2(-1) + 3
5 ≥ 2 + 3
5 ≥ 5
y ≤ -x² - x + 4
5 ≤ -(-1)² - (-1) + 4
5 ≤ -1 + 1 + 4
5 ≤ 4
Since 5 is not lower than 4, (-1, 5) is not a solution
For (x, y) = (1, 1.5)
y ≥ -2x + 3
1.5 ≥ -2(1) + 3
1.5 ≥ -2 + 3
1.5 ≥ 1
y ≤ -x² - x + 4
1.5 ≤ -(1)² - (1) + 4
1.5 ≤ -1 - 1 + 4
1.5 ≤ 2
Since both inequalities are satisfied, (1, 1.5) is a solution.
Therefore, the answers are
A. (0, 3)
C. (1, 1.5)
Select the correct location on the image. Click the digit in the hundred millions place. 7,7 7 8,7 6 8,2 4.9 Reset Next
In this case you need to click the 7 which is in the hundred millions place
Find the (x , y) coordinate(s) of any hole(s) in h( x ). If there is none, write “n/a”.Round to two decimals.
The hole appears in the rational function when the numerator and the denominator have the same zeroes
Since the rational function is
[tex]h(x)=\frac{x+7}{x^2-49}[/tex]Factorize the denominator
[tex]x^2-49=(x+7)(x-7)[/tex]The rational function h(x) is
[tex]h(x)=\frac{x+7}{(x+7)(x-7)}[/tex]Since (x + 7) is in both numerator and denominator
Then there is a hole at x + 7 = 0
Let us find the value of x
[tex]\begin{gathered} x+7=0 \\ x+7-7=0-7 \\ x=-7 \end{gathered}[/tex]The whole is at x = -7
Then simplify the fraction to find the value of y at x = -7
[tex]h(x)=\frac{(x+7)}{(x+7)(x-7)}[/tex]Cancel the bracket (x+7) up by the same bracket down
[tex]h(x)=\frac{1}{x-7}[/tex]Substitute x by -7
[tex]\begin{gathered} h(-7)=\frac{1}{-7-7} \\ h(-7)=\frac{1}{-14} \\ y=-\frac{1}{14} \end{gathered}[/tex]The hole is at (-7, -1/14)
give the quadratic function a graph for the function f (x)= -(x-3)^2-2
Answer
The graph of the function f(x) = -(x - 3)² - 2, is presented below
Explanation
We are told to graph a given function
f(x) = -(x - 3)² - 2
The first step into making this easy is to open the bracket.
f(x) = - (x² - 6x + 9) - 2
f(x) = -x² + 6x - 9 - 2
f(x) = -x² + 6x - 11
The next step is then to insert different values of x into the function and obtain the corresponding value of the function. This set of ordered pairs arethen plotted to form the graph.
The graph is then plotted and presented under 'Answers' above.
Hope this Helps!!!
Benjamin & Associates, a real estate developer, recently built 194 condominiums in McCall, Idaho. The condos were either two-bedroom units or three-bedroom units. If the total number of rooms in the entire complex is 494, how many two-bedroom units are there? How many three-bedroom units are there
x = number of 2 bedrooms units
y= number of 3 bedroom units
194 condominiums
x+y = 194 (a)
the total number of rooms in the entire complex is 494
2x + 3y = 494 (b)
We have the system of equations:
x+y = 194 (a)
2x + 3y = 494 (b)
Solve (a) for x
x = 194-y
Replace x on (b) and solve for y
2 (194-y ) + 3 y = 494
388 - 2y +3 y = 494
-2y+3y = 494-388
y= 106
Replace y on (a) and solve for x
x + 106 = 194
x = 194-106
x= 88
2-bedroom units = 88
3- bedrooms units = 106
A storm is moving at 30km/hr .it is 60 km away. What time will it arrive
From the information provided, the storm is travelling at a speed of 30km/hr. In other words, its travelling 30 kilometers every hour. If the storm is 60 kilometers away, then we have the following ratio;
[tex]undefined[/tex]Home Liquidators marks up its merchandise 35% on cost. What is the company’s equivalent markup on selling price?
Based on the fact that Home Liquidators marked up their merchandise by 35% on cost, the company equivalent markup on selling price is 26%.
How to find the equivalent markup?The equivalent markup by Home Liquidators on the selling price can be found by the formula:
= Percentage markup / Percentage selling price x 100%
The percentage markup = 35%
Percentage selling price = (100% + 35%) = 135%
The equivalent markup by Home Liquidators is therefore:
= 35% / 135% x 100%
= 26%
In conclusion, the Home Liquidators has an equivalent markup of 26% on selling price.
Find out more on equivalent markup at https://brainly.com/question/11999225
#SPJ1
Solve x4 + 8x2 + 15 = 0.X = +15 and x = 113x = 5 and x = 13x = 113 and x = 15X = 3/1/3 and x = 1115
Answer
Option D is correct.
x = ±i√(5) OR ±i√(3)
Explanation
The question wants us to solve
x⁴ + 8x² + 15 = 0
To solve this, we first say that
Let x² = y
So that,
x⁴ = (x²)² = y²
So, the equation becomes
y² + 8y + 15 = 0
This is a simple quadratic equation, we then solve this
y² + 8y + 15 = 0
y² + 3y + 5y + 15 = 0
y (y + 3) + 5 (y + 3) = 0
(y + 5) (y + 3) = 0
y + 5 = 0 OR y + 3 = 0
y = -5 OR y = -3
But, Recall that x² = y
If y = -5
x² = y = -5
x² = -5
x = √(-5)
If y = -3
x² = y = -3
x² = -3
x = √(-3)
So,
x = √(-5) OR x = √(-3)
Note that
√(-1) = i
√(-5) = √(-1) × √(5)
= i√5
And
√(-3) = √(-1) × √(3)
= i√3
Hence
x = ±i√(5) OR ±i√(3)
Hope this Helps!!!
help meeeee pleaseeeee!!!
thank you
The values of the given polynomial are:-
f(0) = 12
f(2) = 28
f(-2) = 52
Given polynomial:-
[tex]f(x)=-x^3+7x^2-2x+12[/tex]
We have to find the values of f(0), f(2) and f(-2).
Putting x = 0 in f(x), we get,
[tex]f(0)=-(0)^3+7(0)^2-2(0)+12[/tex]
f(0) = 0 +0 - 0 + 12 = 12
Hence, the value of f(0) is 12.
Putting x = 2 in f(x), we get,
[tex]f(2)=-(2)^3+7(2)^2-2(2)+12[/tex]
f(2) = -8 + 28 - 4 + 12 = 28
Hence, the value of f(2) is 28.
Putting x = -2 in f(x), we get,
[tex]f(-2)=-(-2)^3+7(-2)^2-2(-2)+12[/tex]
f(-2) = 8 +28 + 4 +12 = 52
Hence, the value of f(-2) is 52.
To learn more about polynomial, here:-
https://brainly.com/question/11536910
#SPJ1
sin(theta) = .754
What is theta
Answer: I believe it is representing the angular position of a vector
In short, it is a symbol to represent a measured angle.
What is the value of the x variable in the solution to the following system ofequations? (5 points)4x - 3y = 35x - 4y = 3O x can be any number as there are infinitely many solutions to this systemThere is no x value as there is no solution to this systemO-303
Step 1:
Write the two systems of equations
4x - 3y = 3
5x - 4y = 3
Step 2:
Use the elimination method to eliminate y.
[tex]\begin{gathered} 4x\text{ - 3y = 3} \\ 5x\text{ - 4y = 3} \\ \text{Use the elimination method to eliminate y} \\ 4x\text{ - 3y = 3 }\times\text{ 4} \\ 5x\text{ - 4y = 3 }\times\text{ 3} \\ 16x\text{ - 12y = 12} \\ 15x\text{ - 12y = 9} \\ 16x\text{ - 15x = 12 - 3} \\ \text{ x = 3} \end{gathered}[/tex]Final answer
x = 3
The current population of a threatened animal species is 1.3 million, but it is declining with a half-life of 25 years. How many animals will be left in 35 years? in 80 years?Question content area bottom(Round to the nearest whole number as needed.)
Given:
it is given that the current population of a threatened animal species is 1.3 million, but it is declining with a half-life of 25 years.
Find:
we have to find that how many animals will be left in 35 years and in 80 years.
Explanation:
we know 1.3million = 1300000
The decay law is
[tex]P(t)=1300000\times(\frac{1}{2})^{\frac{t}{25}}[/tex]
where t is in years and p(t) is the population at time t.
Now, the number of animals left in 35 years is
[tex]\begin{gathered} P(35)=1300000\times(\frac{1}{2})^{\frac{35}{25}} \\ P(35)=1300000\times(\frac{1}{2})^{1.4} \\ P(35)=492608(by\text{ rounded to nearest whole number\rparen} \end{gathered}[/tex]Therefore, 492608 animals will be left in 30 years.
Now, the number of elements left in 80 years is
[tex]\begin{gathered} P(80)=1300000\times(\frac{1}{2})^{\frac{80}{25}} \\ P(80)=1300000\times(\frac{1}{2})^{3.2} \\ P(80)=141464(by\text{ rounded to nearest whole number\rparen} \end{gathered}[/tex]The two angles shown are supplementary.162°Which equation can be solved to find the value of x, and what is the value of x?A.162° + Xo = 90°; x = 72B.162° + x° = 180°; x = 18C.162° + x = 360°; x= 198D.162° + x = 180°; x = 242
Supplementary angles are two angles whose sum is exactly 180, therefore:
162 + x = 180
Solving for x:
subtract 162 from both sides:
x = 180 - 162
x = 18
Can a triangle be formed with side lengths 13, 7, and 5? Explain.
Answer: The answer is no
Step-by-step explanation:
this is because the two short side lengths, which is 5 and 7, they have to be added together, which is 12, and 12 is smaller than 13 (the largest side)
Answer:
No, because 5 + 7 < 13
Step-by-step explanation:
Quadrilateral ABCD with vertices A(0,7) B(1,3), C(-1,-4), and D(-5,1): <7,-3>
We will have the following:
2)
A(0, 7) : <7, -3>
[tex]A^{\prime}(7,4)[/tex]B(1, 3) : <7, -3>
[tex]B^{\prime}(8,0)[/tex]C(-1, -4) : <7, -3>
[tex]C^{\prime}(6,-7)[/tex]D(-5, 1) : <7, -3>
[tex]D^{\prime}(2,-2)[/tex]3)
From the graph we will have the following:
a.
[tex](x,y)\to(x+7,y+5)[/tex]b.
[tex]\langle7,5\rangle[/tex]***Explanation***
For point 2, we will simply apply the vector to the corresponding coordinates, that is:
We have the coordinates:
[tex]A(a,b)[/tex]and the vector:
[tex]\langle c,d\rangle[/tex]So, in order to determine the final image we will have to follow the transformation rule:
[tex]A^{\prime}(a+c,b+d)[/tex]*For point 3, we will simply count the number of units the image has moved to the left or rigth and that will be our transformation rule for the x-axis, and the number of units the image has moved up or down and that will be our transformation rule for the y-axis.
In the case of the problem, the images moved 7 units to the rigth (+7) and then moved 5 units up (+5), so the transformation rule in coordinate notation is given by:
[tex](x,y)\to(x+7,y+5)[/tex]And in order to write it in vector notation, we simply write the units the images move:
[tex]\langle7,5\rangle[/tex]