The following are the primary factors that the Cvp analysis employs to determine if the sales price per unit and variable costs per unit are impacted
Describe CVP Analysis?This is the term used to describe the cost-volume-profit analysis, which is used to determine how changes in cost and volume might directly affect operating costs.With this in mind, it is clear that the primary component that businesses utilize in their CVP analyses to ensure that their operational costs don't fluctuate arbitrary is cost changes. Profit = revenue - costs is the fundamental CVP formula. Naturally, you must understand how to calculate your revenue in order to use this formula:(Retail price * Units Sold)Additionally, you must understand how to calculate your costs: fixed costs plus (unit variable cost x number of units). Y = a + bx is the cost volume formula. Y = Total expense = Total fixed expense (that is, a cost that does not vary in proportion to activity)B is the variable cost per unit of activity; this cost does vary in relation to activity. Contribution/Sales is the P/V ratio. It is employed to gauge the company's profitability. The surplus of sales over variable costs is known as contribution. In essence, the P/V ratio is utilized to assess the level of contribution provided at various sales volumes.To learn more about Cpv analysis refer
https://brainly.com/question/26654564
#SPJ13
the radius of the circle is 5 inches. what is the area?give the exact answer in simplest form.
The area is 25π square inches
Explanation:Given a radius, r = 5 in.
The area of a circle is given by the formula:
[tex]A=\pi r^2[/tex]Substituting the value of r, we have:
[tex]A=\pi(5^2)=25\pi[/tex]The area is 25π square inches
What is the solution to the equation below?A.x = B.x = C.x = D.x =
Explanation
We are given the following equation:
[tex]\sqrt{5x-2}-1=3[/tex]We are required to determine the value of x.
This is achieved thus:
[tex]\begin{gathered} \sqrt{5x-2}-1=3 \\ \text{ Add 1 to both sides} \\ \sqrt{5x-2}-1+1=3+1 \\ \sqrt{5x-2}=4 \\ \text{ Square both sides } \\ (\sqrt{5x-2})^2=4^2 \\ 5x-2=16 \\ \text{ Collect like terms } \\ 5x=16+2 \\ 5x=18 \\ \text{ Divide both sides by 5} \\ \frac{5x}{5}=\frac{18}{5} \\ x=\frac{18}{5} \end{gathered}[/tex]Hence, the answer is:
[tex]x=\frac{18}{5}[/tex]Find the slope of the line that goes through the given points 9,7 and 8,7
we have the points
(9,7) and (8,7)
Note that: The y-coordinates of both points are equal
that means
we have a horizontal line
therefore
The slope is zeroFind the first three terms of this sequence Un=5n-2n3.
The first three terms of the sequence defined by the formula; Un=5n-2n³ as in the task content are; 3, -6 and -39 respectively.
What are the first three terms of the sequence given by the formula; Un=5n-2n³?It follows from the task content that the first three terms of the sequence defined by the formula be determined.
On this note, it follows that the first three terms are at; n = 1, n = 2 and n = 3 respectively.
Hence we have;
1st term; U(1) = 5(1) - 2(1)³ = 3.2nd term; U(2) = 5(2) - 2(2)³ = -6.3rd term; U(3) = 5(3) - 2(3)³ = -39.Hence, the first three terms are; 3, -6 and -39.
The first three terms of the sequence are as listed above.
Read more on terms of a sequence;
https://brainly.com/question/28036578
#SPJ1
Consider the following functions. Find the domain. Express your answer in interval notation.
Explanation:
[tex]\begin{gathered} f(x)\text{ = - }\sqrt[]{6-x} \\ g(x)\text{ = 4 - x} \\ (g\text{ - f)(x) = g(x) - f(x)} \end{gathered}[/tex][tex]\begin{gathered} (g\text{ -f)(x) = }4-\text{ x - (-}\sqrt[]{6\text{ - x}}) \\ (g\text{ -f)(x) = 4 - x + }\sqrt[]{6-x} \end{gathered}[/tex][tex]undefined[/tex]select the reason that best supports statement 6 in the given proof please help me image attached
Answer:
B. Distributive Property
Step-by-step explanation:
You want to know the reason in the proof that best supports the transition from 5. 99-3x = 12(x+2) to 6. 99-3x = 12x+24.
TransformationYou will notice that in the transition from
5. 99-3x = 12(x+2)
to
6. 99-3x = 12x+24
the expression 12(x+2) has been replaced by the expression 12x+24.
Distributive propertyThe property of addition and multiplication that makes it true that ...
12(x +2) = 12x +24
is the distributive property of multiplication over addition. That property tells you that parentheses can be eliminated by multiplying each of the terms inside by the factor outside.
which example would be likely to give a valid conclusion?
Given: Different statement
To Determine: Which of the statement would give a valid conclusion
Solution
Please note that the statement must be a true representation of the population
Please help me my answer is correct or no
Answer:
the answer is c actully
Step-by-step explanation:
iv'e took that test b4 so you welcome
Hey I just need someone to check my work and see what else i might need to add on. This is algebra 2
To answer this question we will use the following property of sets:
[tex]|A\cup B|=|A|+|B|-|A\cap B|[/tex](a) Since Ash has 153 cards in his collection (without any duplicates), Brock has 207 cards in his collection (also without any duplicates) and they have 91 cards in common, then:
[tex]\begin{gathered} |AshCards\cup BrockCards|=|AshCards|+|BrockCards|-|AshCards\cap BrockCards| \\ =153+207-91. \end{gathered}[/tex]Simplifying the above result we get:
[tex]|AshCards\cup BrockCards|=269.[/tex](b) Expressing the above result using set notations:
[tex]|A\cup B|=269.[/tex]Answer:
(a) There are 269 unique cards in between them.
(b)
[tex]|A\cup B|=269.[/tex]
A square room has a floor area of 49 square meters. The height of the room is 8 meters. What is the total area of all four walls?
The total area of all four walls is 224 square meters.
According to the question,
We have the following information:
A square room has a floor area of 49 square meters.
So, we have:
Area of square = 49 square meters
Side*side = 49
Side = [tex]\sqrt{49}[/tex] m
Side of the square = 7 m
Now, the side of the floor will be the width of the wall.
So, we have the width of the wall = 7 m.
The height of the room is 8 meters.
It means that the height of the wall is 8 m.
Area of 1 rectangular wall = length*width
Area of wall = 8*7
Area of 1 wall = 56 square meters
Now, the are of 4 walls will be (4*56) square meters or 224 square meters.
Hence, the total are of all four walls is 224 square meters.
To know more about total area of all four walls here
https://brainly.com/question/16836796
#SPJ1
Question 2, please let me know if you have any questions regarding the materials, I'd be more than happy to help. Thanks!
Mean Value Theorem
Supposing that f(x) is a continuous function that satisfies the conditions below:
0. f(x) ,is continuous in [a,b]
,1. f(x) ,is differentiable in (a,b)
Then there exists a number c, s.t. a < c < b and
[tex]f\mleft(b\mright)-f\left(a\right)=f‘\left(c\right)b-a[/tex]However, there is a special case called Rolle's theorem which states that any real-valued differentiable function that attains equal values at two distinct points, meaning f(a) = f(b), then there exists at least one c within a < c < b such that f'(c) = 0.
As in our case there is no R(t) that repeats or is equal to other R(t), then there is no time in which R'(t) = 0 between 0 < t < 8 based on the information given.
Answer: No because of the Mean Value Theorem and Rolle's Theorem (that is not met).
in triangle ABC, point E (5, 1.5) is the circumcenter, point He (4.3, 2.3) is the incente, and point I (3.6, 2.6) is the centroid.what is the approximate length of the radius that circumscribes triangle ABC?
1) Gathering the data
E (5,1.5) Circumcenter
H (4.3,2.3) incenter
I (3.6, 2.6) is the centroid.
2) Examining the figure we can see point C and B as the vertices of the
triangle, to find the radius let's use the distance formula between point E and C
E(5, 1.5) and C(3,5)
[tex]\begin{gathered} d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)}^2 \\ \\ d=\sqrt[]{(5-3_{})^2+(1.5_{}-2.6_{})}^2 \\ d=2.28 \end{gathered}[/tex]Since the radius is a line segment from the origin to the circumference then the distance BC = radius of the circumscribed triangle
Radius = 2.28
What is the area of the composite figure? 9 in. 12 in. 24 in 20 in 12 in 15 in 30 in. O 1,182 square inches O 1,236 square inches O 978 square inches O 924 square inches
Given data:
The given figure is shown.
The area of the given figure is,
[tex]\begin{gathered} A=(24\text{ in)}(30\text{ in)+}\frac{1}{2}(24\text{ in)(9 in)+}\frac{1}{2}(15\text{ in)}(20\text{ in)} \\ =720\text{ sq-inches+108 sq-inches+150 sq-inches} \\ =978\text{ sq-inches} \end{gathered}[/tex]Thus, the area of the composite figure is 978 sq-inches.
Which factoring do we use and why and how to know the difference between factoring simple trinomial and perfect square
By definition, a perfect square trinomial is a trinomial that can be written as the square of a binomial. It is in the form:
[tex]a^2+2ab+b^2=(a+b)(a+b)[/tex]The simple trinomial is in the form:
[tex]ax^2+bx+c[/tex]Not all the simple trinomials can be written as the square of a binomial, then we need to check if the trinomial follows the structure of the perfect square trinomial. If it doesn't, then the factors won't be the same, and this is the main difference.
a. The given trinomial is:
[tex]x^2+5x+6[/tex]If it is a perfect square trinomial then:
[tex]\begin{gathered} a^2=x^2 \\ a=x \\ b^2=6 \\ b=\sqrt[]{6} \\ 2ab=5x \\ 2\cdot x\cdot\sqrt[]{6}\ne5x \\ \text{Then it is not a perfect square trinomial} \\ x^2+5x+6=(x+3)(x+2)\text{ It is a simple trinomial} \end{gathered}[/tex]b. The given trinomial is:
[tex]x^2+6x+9[/tex]Let's check if it is a perfect square trinomial:
[tex]\begin{gathered} a^2=x^2\to a=x \\ b^2=9\to b=\sqrt[]{9}=3 \\ 2ab=2\cdot x\cdot3=6x \\ \text{This is a perfect square trinomial, then } \\ x^2+6x+9=(x+3)(x+3)=(x+3)^2 \end{gathered}[/tex]I have tried but but there is some part that i keep getting wrong
we have that
K is the center of circle
J -----> point of tangency
segment IK is a radius
segment JL is a chord
segment GI is a secant
segment JI is a diameter
segment GJ is a tangent
arc JIL is a major arc
arc JL is a minor arc
arc JLI is a half circle (180 degrees)
Part 2
we have that
arc TU=87 degrees -------> by central anglearc ST
Remember that
arc ST+87+72=180 degrees ------> by half circle
so
arc ST=180-159
arc ST=21 degreesarc WV
we have
arc WV+arc UV=180 degrees -----> by half circle
arc UV=72 degrees
so
arc WV=180-72
arc WV=108 degreesarc VUT
arc VUT=arc VU+arc UT
substitute given values
arc VUT=72+87
arc VUT=159 degreesarc WU=180 degrees -----> by half circle deThe distance from the Old North Church in Boston to Charlestown is approximately 1,410 meters . Even on fast horse , that distance would take several minutes to travel . On April 18 , 1775 , lanterns were shown from the steeple of the Old North Church across the Charles River to warn American patriots that British soldiers were travelling Inland via water . The speed of light is approximately 3 x 10 to the power of 8 meters per second . How many seconds did it take for the light to be visible in Charlestown ?
We were told that the distance from the Old North Church in Boston to Charlestown is approximately 1,410 meters.
Given that the speed of light is approximately 3 x 10 to the power of 8 meters per second and
speed = distance/time
It means that the number of seconds it took for the light to be visible in Charlestown is also the time it took the light to travel through 1410 meters
Therefore,
time = distance/speed
time = 1410/3 * 10 ^8 = 0.0000047 seconds
time = 4.7 * 10^-6 seconds
Yesterday Ali had n Baseball cards. Today he gave away 6. Using n, Write an expression for the number of cards Ali has left
Yesterday Ali had n Baseball cards.
Today he gave away 6 cards.
We are asked to write an expression for the number of cards Ali has left.
Ali had a total of n cards and he gave away 6 from them.
So, we have to simply subtract 6 cards from the total n cards.
[tex]n-6[/tex]Therefore, the expression is n - 6 represents the number of cards Ali has left.
2x + 37 = 7x + 42x = ???
Solve;
[tex]\begin{gathered} 2x+37=7x+42 \\ \text{Collect all like terms and you'll have,} \\ 2x-7x=42-37 \\ \text{Note that a positive number becomes negative once it crosses the equality sign} \\ \text{And vice versa for a negative number} \\ 2x-7x=42-37 \\ -5x=5 \\ \text{Divide both sides by -5} \\ \frac{-5x}{-5}=\frac{5}{-5} \\ x=-1 \end{gathered}[/tex]Therefore, x = -1
what is the range of the number of goals scored?
The minimum number of goals scored is 0 and maximum number of goals scored is 7. The range is equal to difference between maximum number of goals and minimum number of goals.
Determine the range for the goals scored.
[tex]\begin{gathered} R=7-0 \\ =7 \end{gathered}[/tex]So answer is 7.
write your answer in exponential form. 3^9 * 3^-3
Step 1
Given;
[tex]3^9\times3^{-3}[/tex]Required; To write the answer in exponential form
Step 2
[tex]\begin{gathered} Using\text{ the index law below;} \\ a^b\times a^c=a^{bc} \\ Hence,\text{ 3}^9\times3^{-3}=3^{9-3}=3^6 \end{gathered}[/tex]Answer;
[tex]3^6[/tex]Help
Show work please
Answer:
check the attached files.
Use the law of detachment to determine what you can conclude from the given information
In mathematical logic, the Law of Detachment says that if the following two statements are true:
( 1 ) If p, then q.
( 2 ) p
Then we can derive a third true statement:
( 3 ) q.
In our question, we have
( 1 ) If 0º< A <90º, then A is an acute angle.
( 2 ) The measure of A is 58º.
Then, from the first statement, we can affirm
( 3 ) A is an acute angle.
without dividing, how can you tell which quotient is smaller, 30:5 or 30:6 ? eXPLAIN
Without dividing, we can tell that 30:6 has smaller quotient between 30:5 and 30:6.
According to the question,
We have the following two expressions:
30:5 and 30:6
Now, we can easily find which expression has a smaller quotient when the dividend is the same. We need to look at the divisor. If the dividend is the same then the quotient will be smaller for the one with the greater divisor.
In this case, 30:6 has a greater divisor than 30:5 (6 is larger than 5). So, it will have smaller quotient.
Now, we can prove this by dividing both the expressions.
30/6 = 5
(So, it has smaller quotient.)
30/5 = 6
Hence, 30:6 has smaller quotient than 30:5.
To know more about quotient here
https://brainly.com/question/16134410
#SPJ1
A line has slope 3. Through which two points could this line pass? a. (24. 19), (8, 10) b. (10, 8). (16, 0) C. (28, 10). (22, 2) d. (4, 20). (0, 17) Please select the best answer from the choices provided D
Step 1: Concept
You are going to apply the slope formula to find the slope of the line through each coordinate.
Step 2: Slope formula
[tex]\text{Slope = }\frac{y_2-y_1}{x_2-x_1}[/tex]The points −−5, 11 and r, 9 lie on a line with slope 2. Find the missing coordinate r.
Solution
[tex]\begin{gathered} Let\text{ }(x_1,y_1),\text{ }(x_2,y_2) \\ Let\text{ }m=slope \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex][tex]\begin{gathered} If(-5,-11)=\text{ }(x_1,y_1),then\text{ }x_1=-5,\text{ }y_1=-11 \\ (r,9)=\text{ }(x_2,y_2),then\text{ }x_2=r,\text{ }y_1=9 \end{gathered}[/tex]Using the Slope formula written above;
[tex]\begin{gathered} 2=\frac{9-(-11)}{r-(-5)} \\ 2=\frac{20}{r+5} \\ Cross\text{ }multiply \\ 2(r+5)=20 \\ Expansion\text{ }of\text{ }bracket \\ 2r+10=20 \\ 2r=20-10 \\ 2r=10 \\ Divide\text{ }both\text{ }sides\text{ }by\text{ }2 \\ \frac{2r}{2}=\frac{10}{5} \\ r=5 \end{gathered}[/tex]Therefore, the missing co-ordinate r is 5.
I need to figure out the easiest way to solve this and apply the method to every problem
The function is given as,
[tex]f(x_{)=-3x^2-7x}[/tex]It is asked to find the value of the expression,
[tex]f(7)[/tex]This can be obtained by replacing 'x' by 7 in the given expression of the function,
[tex]f(7)=-3(7)^2-7(7)[/tex]Resolve the parenthesis,
[tex]\begin{gathered} f(7)=-3(49)-49 \\ f(7)=-147-49 \end{gathered}[/tex]Simplify the terms further,
[tex]f(7)=-196[/tex]Thus, the value of the expression f(7) is obtained as,
[tex]=-196[/tex]= Homework: Module 17If r(x) =find r(a) and write the answer as one fraction.X-29r(a) =(Simplify your answer. Do not factor.)
As given by the question
There are given that function
[tex]r(x)=\frac{7}{x-2}[/tex]Now,
To find the value of r(a^2), put x = a^2 into the function
Then,
[tex]\begin{gathered} r(x)=\frac{7}{x-2} \\ r(a^2)=\frac{7}{a^2-2} \end{gathered}[/tex]Hence, the function is shown below:
[tex]r(a^2)=\frac{7}{a^2-2}[/tex]A bag contains 3 gold marbles, 10 silver marbles, and 23 black marbles. You randomly select one marblefrom the bag. What is the probability that you select a gold marble? Write your answer as a reduced fractionPlgold marble)
ANSWER
P(gold marble) = 1/12
EXPLANATION
In total, there are:
[tex]3+10+23=36[/tex]36 marbles in the bag, where only 3 are gold marbles.
The probability is:
[tex]P(\text{event)}=\frac{\#\text{times the event can happen}}{\#\text{posible outcomes}}[/tex]In this case, the number of posible outcomes is 36, because there are 36 marbles in the bag. The number of times the event can happen is 3, because there are 3 gold marbles:
[tex]P(\text{gold marble)}=\frac{3}{36}=\frac{1}{12}[/tex](1 point) For each trigonometric expression A,B,C,D, E, choose the expression from 1,2,3,4,5 that completes a fundamental identity. Enter the appropriate letter (A,B,C,D, or E) in each blank.
Answer:
Step-by-step explanation:
I would recommend looking up the magic trig hexagon, it has all of these identities and more within it.
1 - this corresponds with C as sin^2(x)+cos^2(x)=1
1-cos^2(x) - this corresponds with A, using the identity from number 1, we can rewrite it in the form sin^2(x)=1-cos^2(x)
cot(x) - for this it is important to know that cotangent is the inverse of tangent. Since tan(x)=sin(x)/cos(x), cot=cos(x)/sin(x) which is B.
sec^2(x) - much like the cos and sin pythagorean identity, sec and tan are related. sec^2(x)=tan^2(x)+1 which is answer choice E.
tan(x) - this is sin(x)/cos(x), choice D.
Approximately how old would you be in the years if you lived 1,000,000 hours? round your answer to the nearest whole number.
First let's see how many hours are in a year:
[tex]\begin{gathered} 1\text{ year }\rightarrow\text{ 365 days} \\ 1\text{ day }\rightarrow\text{ 24 hours} \\ \Rightarrow1\text{ year }\rightarrow365\cdot24=8760\text{ hours} \end{gathered}[/tex]We found that 1 year has 8769 hours, then if we lived 1,000,000 hours, we have to divide it by 8760 to know the number of years lived:
[tex]\frac{1000000}{8760}=114.15[/tex]therefore, you would have lived 114.15 years