How do I do this without U-sub using trig sub
14 √ ₁ x ³ √T-x² dx J вл 0 Use Theta = arcsin to convert x bounds to theta bounds (edited)

Answers

Answer 1

The solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

What is trigonometry?

One of the most significant areas of mathematics, trigonometry has a wide range of applications. The study of how the sides and angles of a right-angle triangle relate to one another is essentially what the field of mathematics known as "trigonometry" is all about.

To solve the integral ∫(0 to 1) x³√(T - x³) dx using a trigonometric substitution, you can follow these steps:

Step 1: Identify the appropriate trigonometric substitution. In this case, let's use x = √T sinθ, which implies dx = √T cosθ dθ.

Step 2: Convert the given bounds of integration from x to θ. When x = 0, sinθ = 0, which gives θ = 0. When x = 1, sinθ = 1, which gives θ = π/2.

Step 3: Substitute x and dx in terms of θ in the integral:

∫(0 to π/2) (√T sinθ)³ √(T - (√T sinθ)²) (√T cosθ) dθ

= ∫(0 to π/2) [tex]T^{(3/2)}[/tex] sin³θ cos²θ dθ

Step 4: Simplify the integrand using trigonometric identities. Recall that sin²θ = 1 - cos²θ.

=[tex]T^{(3/2)}[/tex] ∫(0 to π/2) sin^3θ (1 - sin²θ) cosθ dθ

Step 5: Expand the integrand and split it into two separate integrals:

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (sin³θ - [tex]sin^5[/tex]θ) cosθ dθ

Step 6: Integrate each term separately. The integral of sin³θ cosθ can be evaluated using a u-substitution.

Let u = sinθ, du = cosθ dθ.

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) u³ du

= [tex]T^{(3/2)} [u^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [(sinθ)^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [1/4] - T^{(3/2)} [0][/tex]

= [tex]T^{(3/2)}/4[/tex]

The integral of [tex]sin^5[/tex]θ cosθ can be evaluated using integration by parts.

Let dv = [tex]sin^5[/tex]θ cosθ dθ, u = sinθ, v = -1/6 cos²θ.

=[tex]T^{(3/2)}[/tex][-1/6 cos²θ sinθ] (0 to π/2) - [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (-1/6 cos²θ) cosθ dθ

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}[/tex]/6 ∫(0 to π/2) cos³θ dθ

Using the reduction formula for the integral of cos^nθ, where n is a positive integer, we have:

∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ - (1/4) ∫(0 to π/2) cos³θ dθ

Rearranging the equation:

(5/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) [sinθ] (0 to π/2)

= (3/4) [1 - 0]

= 3/4

Substituting back into the expression:

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}/6 (3/4)[/tex]

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^({3/2)}/8[/tex]

= [tex]T^{(3/2)} [-1/6 (0) (1) - (-1/6) (1) (0)] + T^{(3/2)}/8[/tex]

=[tex]T^{(3/2)}/8[/tex]

Step 7: Combine the results from both integrals:

∫[tex](0 to 1) x^3√(T - x^2) dx = T^{(3/2)}/4 + T^{(3/2)}/8[/tex]

= [tex](3T^{(3/2)})/8[/tex]

Therefore, the solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

Learn more about trigonometry on:

https://brainly.com/question/31614326

#SPJ4


Related Questions

A relative frequency distribution is given below for the size of families in one U.S.
city.
Size Relative frequency
2 0.372
3 0.25
4 0.207
5 0.117
6 0.035
7+ 0.019
A family is selected at random. Find the probability that the size of the family is less than 5. Round approximations to three decimal places.
OA. 0.574
OB. 0.829
OC. 0.117
OD. 0.457

Answers

The probability that the size of the family is less than 5 is approximately 0.829. The correct answer is OB. 0.829.

To find the probability that the size of the family is less than 5, you need to add the relative frequencies of family sizes 2, 3, and 4.


1. Identify the relative frequencies of family sizes less than 5:
  - Size 2: 0.372
  - Size 3: 0.25
  - Size 4: 0.207

2. Add the relative frequencies:
  Probability (Size < 5) = 0.372 + 0.25 + 0.207

3. Calculate the sum:
  Probability (Size < 5) = 0.829

Know more about the probability here:

https://brainly.com/question/25839839

#SPJ11








Consider the following. (If an answer does not exist, enter DNE.) f(x) = x3 – 9x² * 244 – 8 (a) Find the interval(s) on which f is increasing. (Enter your answer using interval notation.) (-0,2)

Answers

The function f(x) = [tex]x^3 - 9x^2[/tex] - 244x - 8 is increasing on the interval (-∞, 2).

To find the intervals on which a function is increasing, we need to determine where the derivative of the function is positive.

If the derivative is positive, it means the function is getting larger as x increases.

First, we need to find the derivative of f(x).

Taking the derivative of f(x) = [tex]x^3 - 9x^2[/tex] - 244x - 8, we get f'(x) = 3[tex]x^2[/tex] - 18x - 244.

Next, we set f'(x) > 0 to find where the derivative is positive.

Solving the inequality 3[tex]x^2[/tex] - 18x - 244 > 0, we can use factoring or the quadratic formula to find the critical points.

By factoring, we have (3x + 2)(x - 10) > 0. Setting each factor greater than zero, we get two intervals: x > -2/3 and x > 10.

However, we need to consider the signs of the factors.

We want both factors to be positive or both negative for the inequality to hold.

Since (3x + 2) is positive for x > -2/3 and (x - 10) is positive for x > 10, the intersection of these intervals is x > 10.

Therefore, the function f(x) is increasing on the interval (-∞, 2) as it satisfies the condition x > 10.

Learn more about Derivative here:

https://brainly.com/question/30401596

#SPJ11

PLEASE HELP ASAP WILL GIVE THUMBS UP
Let L be the line parallel to the line x+1 Y = =2-2 3 and containing the point (2.-5. 1). Determine whether the following points lie on line L. 1. (-1,0.2) 2. (-1. -7,0) 3. (8.9.3) (enter yes in lower

Answers

Out of the three given points, only the point (-1, -7, 0) lies on line L and the other two points (-1, 0, 2) and (8, 9, 3) do not lie on line L. So, option 2 is correct.

To determine whether the given points lie on the line L, we need to check if their coordinates satisfy the equation of the line L, which is parallel to the line "x + y = 2" and passes through the point (2, -5, 1).

The equation of a line parallel to "x + y = 2" can be written as "x + y = k", where k is a constant. To find the value of k, we substitute the coordinates of the point (2, -5, 1) into the equation: "2 + (-5) = k". This gives us k = -3.

Therefore, the equation of line L is "x + y = -3".

Now, let's check whether the given points satisfy this equation:

1. Point (-1, 0, 2):

  (-1) + 0 = -3

  The point does not satisfy the equation, so it does not lie on line L.

2. Point (-1, -7, 0):

  (-1) + (-7) = -3

  The point satisfies the equation, so it lies on line L.

3. Point (8, 9, 3):

  8 + 9 ≠ -3

  The point does not satisfy the equation, so it does not lie on line L.

So, option 2 is correct.

Learn more about line:

https://brainly.com/question/24644930

#SPJ11

Convert the following in index form of 2: (a) 64 ​

Answers

Answer:

64 in index form is : 2^6

Step-by-step explanation:

That is :

64 = 2^6

64 = 2 x 2 x 2 x 2 x 2 x 2

64 = 64

Use the formula for S, to find the sum of the first five terms of the geometric sequence. 5, 20, 80, 320, ... A. 1705 B. 1709 OC. 1715 OD. 1707

Answers

To find the sum of the first five terms of the geometric sequence 5, 20, 80, 320, ..., we can use the formula for the sum of a geometric series. The correct answer is option B, 1709.

In a geometric sequence, each term is obtained by multiplying the previous term by a common ratio. In this case, the common ratio can be found by dividing any term by its previous term. Let's calculate the common ratio:

Common ratio = 20/5 = 80/20 = 320/80 = 4

The formula for the sum of a geometric series is given by S = a * (r^n - 1) / (r - 1), where a is the first term, r is the common ratio, and n is the number of terms.

Plugging in the values, we have:

a = 5 (first term)

r = 4 (common ratio)

n = 5 (number of terms)

S = 5 * (4^5 - 1) / (4 - 1)

S = 5 * (1024 - 1) / 3

S = 5 * 1023 / 3

S = 1705

Therefore, the sum of the first five terms of the geometric sequence is 1705, which corresponds to option A.

To learn more about geometric series click here : brainly.com/question/23897653

#SPJ11

Given points A(2, -3), B(3; -1), C(4:1). Find the general equation of a straight line passing... 1....through the point perpendicularly to vector AB 2. ...through the point B parallel to vector AC 3.

Answers

1. The general equation of a straight line passing through point A(2, -3) and perpendicular to vector AB is y + 3 = (1/2)(x - 2).

To find a line perpendicular to vector AB, we need to find the negative reciprocal of the slope of AB, which is given by (y2 - y1)/(x2 - x1) = (-1 - (-3))/(3 - 2) = 2. Therefore, the slope of the line perpendicular to AB is -1/2. Using the point-slope form, we can write the equation as

y + 3 = (-1/2)(x - 2).

2. The general equation of a straight line passing through point B(3, -1) and parallel to vector AC is y + 1 = 2(x - 3).

To find a line parallel to vector AC, we need to find the slope of AC, which is given by (y2 - y1)/(x2 - x1) = (1 - (-1))/(4 - 3) = 2. Therefore, the slope of the line parallel to AC is 2. Using the point-slope form, we can write the equation as y + 1 = 2(x - 3).

LEARN MORE ABOUT vector here: brainly.com/question/24256726

#SPJ11

suppose 82% of all students at a large university own a computer. if 6 students are selected independently of each other, what is the probability that exactly 4 of them owns a computer?

Answers

The probability that exactly 4 out of 6 selected students own a computer is approximately 0.3493, or 34.93%.

What is probability?

Probability is a way to gauge how likely something is to happen. Many things are difficult to forecast with absolute confidence. Using it, we can only make predictions about how probable an event is to happen, or its chance of happening.

To calculate the probability of exactly 4 out of 6 selected students owning a computer, we can use the binomial probability formula:

[tex]P(X = k) = C(n, k) * p^k * (1 - p)^{(n - k)[/tex],

where:

- P(X = k) is the probability of exactly k successes (4 students owning a computer),

- C(n, k) is the number of combinations of selecting k items from a set of n items (also known as the binomial coefficient),

- p is the probability of success (the proportion of students owning a computer), and

- n is the total number of trials (number of students selected).

In this case, n = 6, k = 4, and p = 0.82.

Using the formula, we can calculate the probability:

[tex]P(X = 4) = C(6, 4) * 0.82^4 * (1 - 0.82)^{(6 - 4)[/tex],

C(6, 4) = 6! / (4! * (6-4)!) = 15,

[tex]P(X = 4) = 15 * 0.82^4 * 0.18^2[/tex],

P(X = 4) ≈ 0.3493.

Therefore, the probability that exactly 4 out of 6 selected students own a computer is approximately 0.3493, or 34.93%.

Learn more about probability on:

https://brainly.com/question/13604758

#SPJ4

find the distance between the two parallel planes x−2y 2z = 4 and 4x−8y 8z = 1.

Answers

The distance between the two parallel planes x - 2y + 2z = 4 and 4x - 8y + 8z = 1 is 1/√21 units.

To find the distance between two parallel planes, we can consider the normal vector of one of the planes and calculate the perpendicular distance between the planes.

First, let's find the normal vector of one of the planes. Taking the coefficients of x, y, and z in the equation x - 2y + 2z = 4, we have the normal vector n1 = (1, -2, 2).

Next, we can find a point on the other plane. To do this, we set z = 0 in the equation 4x - 8y + 8z = 1. Solving for x and y, we get x = 1/4 and y = -1/2. So, a point on the second plane is P = (1/4, -1/2, 0).

The distance between the planes is the perpendicular distance from the point P to the plane x - 2y + 2z = 4. Using the formula for the distance between a point and a plane, we have:

distance = |(P - P0) · n1| / |n1|

where P0 is any point on the plane. Let's choose P0 = (0, 0, 2), which satisfies the equation x - 2y + 2z = 4.

Substituting the values, we get distance = |(1/4, -1/2, -2) · (1, -2, 2)| / |(1, -2, 2)| = 1/√21 units.

Therefore, the distance between the two parallel planes is 1/√21 units

Learn more about parallel planes here:

https://brainly.com/question/16835906

#SPJ11




Find the value of the integral -16.x²yz dx + 25z dy + 2xy dz, where C is the curve parameterized by r(t) = {t,t", t3) on the interval 1

Answers

The value of the integral is -7.

Find the integral value?

To find the value of the integral ∫C [tex](-16x^2yz dx + 25z dy + 2xy dz)[/tex], where C is the curve parameterized by r(t) = (t, t^2, t^3) on the interval [1, 2], we need to substitute the parameterized curve into the integral.

First, let's find the differentials dx, dy, and dz:

[tex]dx = dtdy = 2t dtdz = 3t^2 dt[/tex]

Substituting these differentials into the integral:

[tex]\int C (-16x^2yz dx + 25z dy + 2xy dz)\\= \int[1, 2] (-16(t^2)(t^2)(t^3) dt + 25(t^3) (2t dt) + 2(t)(t^2) (3t^2 dt))[/tex]

Simplifying the expression:

[tex]= \int[1, 2] (-16t^7 dt + 50t^4 dt + 6t^5 dt)[/tex]

Now, integrate term by term:

[tex]\int [1, 2] (-16t^7 dt + 50t^4 dt + 6t^5 dt)\\= [-16 * (t^8)/8 + 50 * (t^5)/5 + 6 * (t^6)/6] [1, 2]\\= [-2t^8 + 10t^5 + t^6] [1, 2]\\= (-2(2^8) + 10(2^5) + (2^6)) - (-2(1^8) + 10(1^5) + (1^6))\\= (-512 + 320 + 64) - (-2 + 10 + 1)\\= -128 + 128 - 7\\= -7[/tex]

Therefore, the value of the integral [tex]-16x^2yz dx + 25z dy + 2xy dz[/tex] over the curve C parameterized by r(t) = ([tex]t, t^2, t^3[/tex]) on the interval [1, 2] is -7.

To know more about integral, refer here:

https://brainly.com/question/31059545

#SPJ4

in 2017 the value of a home is 450,000 since then its value has increased 4% per year what is the approximate value of the home in the year 2025

Answers

The approximate value of the home in the year 2025 would be $594,000.

How to solve for the value of the home

Initial value in 2017: $450,000

Annual increase rate: 4%

Number of years from 2017 to 2025: 2025 - 2017 = 8 years

Now, let's calculate the accumulated increase:

Increase in 2018: $450,000 * 0.04 = $18,000

Increase in 2019: $450,000 * 0.04 = $18,000

Increase in 2020: $450,000 * 0.04 = $18,000

Increase in 2021: $450,000 * 0.04 = $18,000

Increase in 2022: $450,000 * 0.04 = $18,000

Increase in 2023: $450,000 * 0.04 = $18,000

Increase in 2024: $450,000 * 0.04 = $18,000

Increase in 2025: $450,000 * 0.04 = $18,000

Total accumulated increase: $18,000 * 8 = $144,000

Final value in 2025: $450,000 + $144,000 = $594,000

Therefore, the approximate value of the home in the year 2025 would be $594,000.

Read more on  value of a home  here:https://brainly.com/question/7244069

#SPJ1

find all relative extrema of the function. use the second derivative test where applicable. (if an answer does not exist, enter dne.) y = x2 log2 x

Answers

The function y = x²log2(x) has a relative minimum at x = 1 and no other relative extrema.

To find the relative extrema of the function y = x²log2(x), we need to determine the critical points and apply the second derivative test where applicable. First, we find the derivative of the function using the product rule:

dy/dx = 2x log2(x) + x²* 1/x * ln(2)

      = 2x log2(x) + x ln(2)

To find the critical points, we set the derivative equal to zero:

2x log2(x) + x ln(2) = 0

Simplifying the equation, we have:

x log2(x) + x ln(2) = 0

x(log2(x) + ln(2)) = 0

Since x cannot be equal to zero, we solve the equation log2(x) + ln(2) = 0:

log2(x) = -ln(2)

[tex]x = 2^{(-ln(2))[/tex]

The critical point is [tex]x = 2^{(-ln(2))[/tex], which is approximately 0.2413.

Next, we check the second derivative to determine the nature of the critical point. Taking the derivative of the first derivative, we get:

d²y/dx² = 2 log2(x) + 2 + ln(2)

Evaluating the second derivative at [tex]x = 2^{(-ln(2))[/tex], we find:

d²y/dx²=

[tex]=2 log2(2^{(-ln(2))}) + 2 + ln(2) \\=-2 ln(2) + 2 + ln(2) \\=2 - ln(2)[/tex]

Since the second derivative is positive (2 - ln(2) > 0), the critical point at [tex]x = 2^{(-ln(2))[/tex] is a relative minimum.

In conclusion, the function [tex]y = x^2 log2(x)[/tex]  has a relative minimum at x = 1 and no other relative extrema.

Learn more about derivative here: https://brainly.com/question/29144258

#SPJ11

Set up, but do not simplify or evaluate, the integral that gives the shaded area. (10 points) r = 5sin 20 5 5 8 95 e Fl+ ( AN этуц

Answers

The shaded area is given by: ∫[0,π/4] [(25/2)sin^2(2θ) - (25π/32 - (25√2)/16)(π/8 - θ)] dθ.

To find the shaded area, we need to set up an integral that integrates the function for the area with respect to theta. Using the formula for the area of a sector of a circle, which is (1/2)r^2θ, where r is the radius and θ is the central angle in radians.

In this case, the radius r is given by r = 5sin(2θ), where θ ranges from 0 to π/4. The shaded area is bounded by two curves: the curve given by r = 5sin(2θ) and the line θ = π/8.

To set up the integral, we need to express the area as a function of θ. We can do this by finding the difference between the areas of two sectors: one with central angle θ and radius 5sin(2θ), and another with central angle π/8 and radius 5sin(2(π/8)) = 5sin(π/4) = 5/√2.

The area of the first sector is (1/2)(5sin(2θ))^2θ = (25/2)sin^2(2θ)θ, and the area of the second sector is (1/2)(5/√2)^2(π/8 - θ) = (25π/32 - (25√2)/16) (π/8 - θ).

To know more about sector of a circle refer here:

https://brainly.com/question/3403374#

#SPJ11

Find the perimeter and area of the regular polygon to the nearest tenth.

Answers

The perimeter of the regular pentagon is approximately 17.64 feet.

The area of the regular pentagon is approximately 5.708 square feet.

We have,

To find the perimeter and area of a regular polygon with 5 sides and a radius of 3 ft, we can use the formulas for regular polygons.

The perimeter of a regular polygon:

The perimeter (P) of a regular polygon is given by the formula P = ns, where n is the number of sides and s is the length of each side.

In a regular polygon, all sides have the same length.

To find the length of each side, we can use the formula for the apothem (a), which is the distance from the center of the polygon to the midpoint of any side. The apothem can be calculated as:

a = r cos (180° / n), where r is the radius and n is the number of sides.

Substituting the given values:

a = 3 ft x cos(180° / 5)

Using the cosine of 36 degrees (180° / 5 = 36°):

a ≈ 3 ft x cos(36°)

a ≈ 3 ft x 0.809

a ≈ 2.427 ft

Since a regular polygon with 5 sides is a pentagon, the perimeter can be calculated as:

P = 5s

However, we still need to find the length of each side (s).

To find s, we can use the formula s = 2 x a x tan(180° / n), where a is the apothem and n is the number of sides.

Substituting the values:

s = 2 x 2.427 ft x tan(180° / 5)

s ≈ 2 x 2.427 ft x 0.726

s ≈ 3.528 ft

Now we can calculate the perimeter:

P = 5s

P ≈ 5 x 3.528 ft

P ≈ 17.64 ft

Area of a regular polygon:

The area (A) of a regular polygon is given by the formula

A = (1/2)  x n x  s x a, where n is the number of sides, s is the length of each side, and a is the apothem.

Substituting the values:

A = (1/2) x 5 x 3.528 ft x 2.427 ft

A ≈ 5.708 ft²

Therefore,

The perimeter of the regular pentagon is approximately 17.64 feet.

The area of the regular pentagon is approximately 5.708 square feet.

Learn more about polygons here:

https://brainly.com/question/23846997

#SPJ1

Find the 26th term. -2, 0, 2, 4, 6,
26th term = [ ? }

Answers

The 26th term in the sequence is 48.

To find the 26th term in the given sequence, we need to identify the pattern and determine the formula that generates the terms.

Looking at the sequence -2, 0, 2, 4, 6, we can observe that each term is increasing by 2 compared to the previous term. Starting from -2 and adding 2 successively, we get the following terms:

-2, -2 + 2 = 0, 0 + 2 = 2, 2 + 2 = 4, 4 + 2 = 6, ...

We can see that the common difference between consecutive terms is 2. This indicates an arithmetic sequence. In an arithmetic sequence, the nth term can be expressed using the formula:

tn = a + (n - 1)d

where tn represents the nth term, a is the first term, n is the position of the term, and d is the common difference.

In this case, the first term a is -2, and the common difference d is 2. Plugging these values into the formula, we can find the 26th term:

t26 = -2 + (26 - 1) * 2

= -2 + 25 * 2

= -2 + 50

= 48

For more such question on term. visit :

https://brainly.com/question/7882626

#SPJ8

Answer:48

Step-by-step explanation: because i can do math.

consider the graph of the function f(x) = log2 x.​

Answers

The features of the function g(x) = f(x + 4) + 8 are:

Y-intercept: (0, 10)Domain: (4, ∞)Range: (8, ∞)Vertical Asymptote: x = -4X-intercept: (1, 0)

To analyze the features of the function g(x) = f(x + 4) + 8, we need to consider the effects of each transformation applied to the original function f(x) = log2 x.

Translation: f(x + 4)

This transformation shifts the graph of f(x) horizontally to the left by 4 units. It means that every x-coordinate in f(x) is decreased by 4 units.

Vertical Shift: f(x + 4) + 8

After the horizontal translation, the graph is shifted vertically upward by 8 units. This means that every y-coordinate in f(x + 4) is increased by 8 units.

Based on these transformations, we can identify the features of the function g(x):

Y-intercept: The y-intercept of the function g(x) = f(x + 4) + 8 is (0, 10). This means that the graph intersects the y-axis at the point (0, 10).

Domain: The domain of the function g(x) = f(x + 4) + 8 is (4, ∞). The original function f(x) = log2 x has a domain of (0, ∞), but after the horizontal translation of 4 units to the left, the new domain starts from x = 4.

Range: The range of the function g(x) = f(x + 4) + 8 is (8, ∞). The original function f(x) = log2 x has a range of (-∞, ∞), but after the vertical shift of 8 units upward, the new range starts from y = 8.

Vertical Asymptote: The vertical asymptote of the function g(x) = f(x + 4) + 8 is x = -4. This vertical asymptote is the result of the original function f(x) = log2 x having a vertical asymptote at x = 0. After the horizontal translation of 4 units to the left, the asymptote also shifts 4 units to the left and becomes x = -4.

X-intercept: The x-intercept of the function g(x) = f(x + 4) + 8 is (1, 0).

This means that the graph intersects the x-axis at the point (1, 0).

Learn more about Translation here:

https://brainly.com/question/29712965

#SPJ1


show steps, thank you!
do the following series converge or diverge? EXPLAIN why the
series converges or diverges.
a.) E (summation/sigma symbol; infinity sign on top and k=1 on
bottom) (-2)^k / k!
b

Answers

The series  ∑ₙ=₁⁰⁰(-2)^k / k! by the D'Alembert ratio test converges

What is convergence and divergence of series?

A series is said to converge or diverge if it tends to a particular value as the series increases or decreases.

Since we have the series ∑ₙ=₁⁰⁰[tex]\frac{(-2)^{k} }{k!}[/tex], we want to determine if the series converges or diverges. We proceed as follows.

To determine if the series converges or diverges, we use the D'Alembert ratio test which states that if

[tex]\lim_{n \to \infty} \frac{U_{n + 1}}{U_n} < 1[/tex], the series converges

[tex]\lim_{n \to \infty} \frac{U_{n + 1}}{U_n} > 1[/tex] the series diverges

[tex]\lim_{n \to \infty} \frac{U_{n + 1}}{U_n} = 1[/tex], the series may converge or diverge

Now, since [tex]U_{k} = \frac{(-2)^{k} }{k!}[/tex],

So,  [tex]U_{k + 1} = \frac{(-2)^{k + 1} }{(k + 1)!}[/tex]

So, we have that

[tex]\lim_{k \to \infty} \frac{U_{n + 1}}{U_n} = \lim_{n \to \infty}\frac{ \frac{(-2)^{k + 1} }{(k + 1)!}}{ \frac{(-2)^{k} }{k!}} \\= \lim_{k \to \infty}\frac{ \frac{(-2)^{k}(-2)^{1} }{(k + 1)k!}}{ \frac{(-2)^{k} }{k!}} \\= \lim_{k \to \infty}{ \frac{(-2) }{(k + 1)}}\\[/tex]

= (-2)/(∞ + 1)

= (-2)/∞

= 0

Since [tex]\lim_{k \to \infty} \frac{U_{k + 1}}{U_k} = 0 < 1[/tex],the series converges

So, the series  ∑ₙ=₁⁰⁰[tex]\frac{(-2)^{k} }{k!}[/tex], converges

Learn more about convergence and divergence of series here:

https://brainly.com/question/31386657

#SPJ1

3. For each of the given lines, determine the vector and parametric equations. 3 6 b. y = -x + 5 c. y = -1 d. x = 4 2 7 a.y=-x- 8 .

Answers

a. Vector equation: r = (0, -8) + t(1, -1)

Parametric equations: x = t, y = -8 - t

b. Vector equation: r = (0, 5) + t(1, -1)

Parametric equations: x = t, y = 5 - t

c. Vector equation: r = (0, -1) + t(1, 0)

Parametric equations: x = t, y = -1

d. Parametric equations: x = 4, y = t

Let's determine the vector and parametric equations for each of the given lines:

a. y = -x - 8

To find the vector equation, we can express the line in the form of r = a + tb, where "a" is a point on the line and "b" is the direction vector of the line. We can choose any point on the line, for example, (0, -8). The direction vector will be (1, -1) since the coefficient of x is -1 and the coefficient of y is 1.

Therefore, the vector equation for the line is:

r = (0, -8) + t(1, -1)

To express the line in parametric equations, we can separate the x and y components:

x = 0 + t(1) = t

y = -8 + t(-1) = -8 - t

So, the parametric equations for the line y = -x - 8 are:

x = t

y = -8 - t

b. y = -x + 5

For this line, we can again express it in the form r = a + tb. Choosing a point on the line, such as (0, 5), and the direction vector (1, -1), we get:

r = (0, 5) + t(1, -1)

The parametric equations for the line y = -x + 5 are:

x = t

y = 5 - t

c. y = -1

In this case, the line is a horizontal line parallel to the x-axis. To express it in vector form, we can choose any point on the line, such as (0, -1), and the direction vector (1, 0) (since there is no change in the y-direction).

Therefore, the vector equation for the line is:

r = (0, -1) + t(1, 0)

The parametric equations for the line y = -1 are:

x = t

y = -1

d. x = 4

This line is a vertical line parallel to the y-axis. Since the x-coordinate remains constant, we can write it as x = 4 + 0t.

There is no change in the y-direction, so there is no y-component in the parametric equations.

Therefore, the parametric equations for the line x = 4 are:

x = 4

y = t

to learn more about  vector equation click here:

brainly.com/question/31041205

#SPJ11

find the volume of the solid generated by revolving the region
about the y-axis #29
29. the region in the first quadrant bounded above by the parabola y = x2, below by the x-axis, and on the right by the line x = 2 1r and below by

Answers

The volume of the solid generated by revolving the region about the y-axis is (16/3)π * 2^(3/2) cubic units.

To find the volume of the solid generated by revolving the region about the y-axis, we can use the method of cylindrical shells.

The region in the first quadrant is bounded above by the parabola y = x^2, below by the x-axis, and on the right by the line x = 2.

We need to integrate the volume of each cylindrical shell from y = 0 to y = 2.

The radius of each cylindrical shell is the x-coordinate of the parabola, which is given by x = sqrt(y).

The height of each cylindrical shell is the difference between the right boundary x = 2 and the x-axis, which is 2.

Therefore, the volume of each cylindrical shell is given by:

V_shell = 2π * radius * height

= 2π * sqrt(y) * 2

To find the total volume, we integrate the volume of each cylindrical shell from y = 0 to y = 2:

V = ∫(0 to 2) 2π * sqrt(y) * 2 dy

Let's calculate this integral:

V = 2π * ∫(0 to 2) sqrt(y) * 2 dy

= 4π * ∫(0 to 2) sqrt(y) dy

= 4π * [2/3 * y^(3/2)] (0 to 2)

= 4π * (2/3 * 2^(3/2) - 2/3 * 0^(3/2))

= 4π * (2/3 * 2^(3/2))

= 8π * (2/3 * 2^(3/2))

= (16/3)π * 2^(3/2)

Therefore, the volume of the solid generated by revolving the region about the y-axis is (16/3)π * 2^(3/2) cubic units.

Learn more about volume of solid at https://brainly.com/question/31062027

#SPJ11

A third-degree polynomial function f has real zeros -2, 12, and 3, and its leading coefficient negative. Write an equation for f. Sketch the graph of f. How many different polynomial functions are possible for f?

Answers

Answer:

  f(x) = -(x +2)(x -3)(x -12)

Step-by-step explanation:

You want the equation and a graph for a third-degree polynomial function f(x) that has real zeros -2, 12, and 3, and its leading coefficient negative.

Factors

Each zero of the function corresponds to a factor of the function that has that zero. For example, the zero at x = -2 means (x +2) is a factor of f. The leading coefficient is a multiplier of all of the factors of this form.

An equation for f(x) can be written in factored form as ...

  f(x) = -(x +2)(x -3)(x -12)

Its graph is attached.

Leading coefficient

The leading coefficient is a vertical scale factor for the graph. Changing its magnitude does not change the locations of the zeros. The magnitude can be any of an infinite number of values.

There are infinitely many possible different functions for f(x).

<95141404393>


m
Find the absolute extreme values of the function on the interval. 13) f(x) = 7x8/3, -27 ≤x≤ 8 A) absolute maximum is 1792 at x = 8; absolute minimum is 0 at x = 0 B) absolute maximum is 6561 at x

Answers

The absolute extreme values of the function f(x) = 7x^(8/3) on the interval -27 ≤ x ≤ 8 are as follows: The absolute maximum is 1792 at x = 8, and the absolute minimum is 0 at x = 0.

To find the absolute extreme values of the function on the given interval, we need to evaluate the function at its critical points and endpoints. First, let's find the critical points by taking the derivative of the function:

f'(x) = (8/3) * 7x^(8/3 - 1) = (8/3) * 7x^(5/3) = (56/3) * x^(5/3).

Setting f'(x) = 0, we get:

(56/3) * x^(5/3) = 0.

This equation has a single critical point at x = 0. Now, let's evaluate the function at the critical point and the endpoints of the interval:

f(-27) = 7 * (-27)^(8/3) ≈ 6561,

f(0) = 7 * 0^(8/3) = 0,

f(8) = 7 * 8^(8/3) ≈ 1792.

Comparing these values, we see that the absolute maximum is 1792 at x = 8, and the absolute minimum is 0 at x = 0.

Therefore, option A is correct: The absolute maximum is 1792 at x = 8, and the absolute minimum is 0 at x = 0.

To learn more about function: -brainly.com/question/30721594#SPJ11

length = 21 width = 21 Height = 21 6) Pi = 3.14 radius = 20 height=31"

Answers

The volumes are;

1.9261 cubic units

2.  38, 936 cubic units

How to determine the value

The formula that is used for calculating the volume of a rectangular prism is expressed as;

V = lwh

Such that the parameters are;

l is the length, w is the width, h is the height

Now, substitute the values, we get;

Volume = 21 × 21 × 21

Multiply the values

Volume = 9261 cubic units

The volume of a cylinder is;

V = πr²h

Substitute the values

Volume = 3.14 ×20² × 31

Find the square, substitute and multiply the value, we get;

Volume = 38, 936 cubic units

Learn more about volume at: https://brainly.com/question/1972490

#SPJ1

The complete question:

1. Find the volume of a rectangular prism with length = 21 width = 21 Height = 21

2. Volume of a cylinder with Pi = 3.14 radius = 20 height=31"

Solve using the substitution method and simplify within reason. Include the constant of integration "C"
5
(7)
(
(2-7%
6x dx
3
+7
2

Answers

u = 2 - 7%6x into the expression: (-30/7)(2 - 7%6x) + 7x + C. This gives us the final solution, accounting for the constant of integration.

To solve the integral ∫ ((5(7))/(2-7%6x)) dx + 7 using the substitution method, let u = 2 - 7%6x.

Differentiate u with respect to x and obtain du = (-7%6)dx. Rewrite the integral as ∫ (35/(-7%6)) du + 7x + C. Simplify and evaluate the integral: ∫ (-30/7) du = (-30/7)u + 7x + C. Substitute back u = 2 - 7%6x: (-30/7)(2 - 7%6x) + 7x + C.

To solve the given integral using the substitution method, we first select a substitution variable. Let u = 2 - 7%6x. The derivative of u with respect to x, du/dx, is found to be -7%6.

Now we rewrite the integral in terms of the substitution variable u: ∫ ((5(7))/(2-7%6x)) dx = ∫ (35/(-7%6)) du. We simplified the integral using the derivative of u and substituted it into the integral.

Next, we evaluate the integral: ∫ (35/(-7%6)) du = (-30/7)u + 7x + C. The constant of integration 'C' is added since indefinite integrals have an arbitrary constant.

Learn more about Derivative here:

https://brainly.com/question/29020856

#SPJ11

Q:

"Using the substitution method, solve the integral ∫ ((5(7))/(2-7%6x)) dx + 7, and simplify within reason. Include the constant of integration 'C'."


Please show full work.
Thank you
4. A triangle in R has two sides represented by the vectors OA = (2, 3, -1) and OB = (1, 4, 1). Determine the measures of the angles of the triangle.

Answers

The measures of the angles of the triangle are approximately 44.42 degrees, 102.73 degrees, and 32.85 degrees.

To determine the measures of the angles of the triangle, we can use the dot product and the cosine formula. Let's denote the third side as OC.

First, we need to find the vector OC. Since OC = OB - OA, we can calculate it as follows:

OC = OB - OA = (1, 4, 1) - (2, 3, -1) = (-1, 1, 2)

Next, we can find the lengths of the sides of the triangle using the magnitude (or length) of the vectors OA, OB, and OC.

[tex]|OA| = \sqrt {(2^2 + 3^2 + (-1)^2)} = \sqrt{(4 + 9 + 1)} = \sqrt {14}\\|OB| = \sqrt {(1^2 + 4^2 + 1^2)} = \sqrt{(1 + 16 + 1)} = \sqrt {18}\\|OC| = \sqrt{((-1)^2 + 1^2 + 2^2)} = \sqrt{(1 + 1 + 4)} = \sqrt {6}[/tex]

Now, let's find the dot products between the vectors OA, OB, and OC:

OA · OB = (2, 3, -1) · (1, 4, 1) = 2 * 1 + 3 * 4 + (-1) * 1 = 2 + 12 - 1 = 13

OB · OC = (1, 4, 1) · (-1, 1, 2) = 1 * (-1) + 4 * 1 + 1 * 2 = -1 + 4 + 2 = 5

OC · OA = (-1, 1, 2) · (2, 3, -1) = (-1) * 2 + 1 * 3 + 2 * (-1) = -2 + 3 - 2 = -1

Using the cosine formula, we can calculate the angles of the triangle:

cos(A) = (OB · OC) / (|OB| * |OC|)

cos(B) = (OC · OA) / (|OC| * |OA|)

cos(C) = (OA · OB) / (|OA| * |OB|)

Let's substitute the values into the formula:

cos(A) = 5 / (√18 * √6)

cos(B) = -1 / (√6 * √14)

cos(C) = 13 / (√14 * √18)

To find the measures of the angles, we can take the inverse cosine (arccos) of each value:

A = arccos(cos(A))

B = arccos(cos(B))

C = arccos(cos(C))

Using a calculator, we can find the angles:

A ≈ 44.42 degrees

B ≈ 102.73 degrees

C ≈ 32.85 degrees

Therefore, the measures of the angles of the triangle are approximately 44.42 degrees, 102.73 degrees, and 32.85 degrees.

To know more about triangle, refer here:

https://brainly.com/question/2773823?referrer=searchResults

#SPJ4

Express the statement as a formula that involves the given variables and a constant of proportionality k. r is directly proportional to the product of s and v and inversely proportional to the cube of p. r= ksv/ p3 power
Determine the value of k from the given conditions.
If s = 2, v = 5, and p = 6, then r = 48.
k =

Answers

The value of the constant of proportionality, k, in the equation r = ksv/p^3, is determined to be 1036.8 when given specific values for s, v, p, and r.

To express the statement as a formula, we have:

r = ksv / p^3

To determine the value of k, we can substitute the given values of s, v, p, and r into the formula and solve for k.

Given:

s = 2

v = 5

p = 6

r = 48

Substituting these values into the formula, we have:

48 = k * 2 * 5 / 6^3

Simplifying further:

48 = 10k / 216

To isolate k, we can cross-multiply and solve for k:

48 * 216 = 10k

10368 = 10k

k = 10368 / 10

k = 1036.8

Therefore, the value of k is 1036.8.

To know more about constant of proportionality,

https://brainly.com/question/30187975

#SPJ11

Find an equation of the line that satisfies the given condition. (Let x be the independent variable and y be the dependent variable. The line passing through the origin and parallel to the line joining the points (2, 9) and (4, 10) x-2y

Answers

The equation of the line passing through the origin and parallel to the line joining the points (2, 9) and (4, 10) is given by  :

y = 1/2x.

Given that the line passing through the origin and parallel to the line joining the points (2, 9) and (4, 10) i.e x-2y

Let's first find the slope of the line passing through (2,9) and (4,10).

slope = (y₂ - y₁) / (x₂ - x₁)= (10 - 9) / (4 - 2) = 1/2

Now we have slope of the line.

Since the line passing through the origin and parallel to the given line, it has same slope as that of given line.

Hence slope of required line = 1/2

Also, we have a point through which the line passes i.e (0,0).

Therefore we can use point slope form of line. y - y₁ = m(x - x₁)

On substituting the values, we get equation of line passing through (0,0) and parallel to x-2y is:

y - 0 = 1/2(x - 0) ⇒ y = 1/2x

Thus the equation of the line is given by y = 1/2x.

To learn more about equation of a line visit : https://brainly.com/question/18831322

#SPJ11

hellppppp will give brainnliest
Let AB be the line segment beginning at point A(2, 2) and ending at point B(9, 13). Find the point P on the line segment that is of the distance from A to B.

Answers

The coordinates of the point P on the line segment whose distance is 1/5 the distance of AB is

[tex](3 \frac{2}{5} \: \: 4 \frac{1}{5} )[/tex]

Given the parameters

xA = 2

xB = 9

yA = 2

yB = 13

We can calculate the x - coordinate of P as follows :

xP = xA + (1/5) × (xB - xA)

= 2 + (1/5) × (9 - 2)

= 2 + (1/5) × 7

= 2 + 7/5

= [tex]3 \frac{2}{5} [/tex]

Similarly, the y-coordinate of P:

yP = yA + (1/5) × (yB - yA)

= 2 + (1/5) × (13 - 2)

= 2 + (1/5) × 11

= 2 + 11/5

= [tex]4 \frac{1}{5} [/tex]

Therefore, coordinates of point P

[tex](3 \frac{2}{5} \: \: 4 \frac{1}{5} )[/tex]

Learn more on distance: https://brainly.com/question/28551043

#SPJ1

"
If a cup of coffee has temperature 89°C in a room where the ambient air temperature is 22°C, then, according to Newton's Law of Cooling, the temperature of the coffee after t minutes is T(t) = 22 + 67e-t/47
hat is the average temperature of the coffee during the first 18 minutes?

Answers

The problem involves determining the average temperature of a cup of coffee during the first 18 minutes using Newton's Law of Cooling. The temperature function is given as [tex]T(t) = 22 + 67e^(-t/47)[/tex], where t represents time in minutes.

To find the average temperature of the coffee during the first 18 minutes, we need to calculate the integral of the temperature function over the interval [0, 18] and divide it by the length of the interval.

The average temperature is given by the formula:

Average Temperature =[tex](1/b - a) ∫[a to b] T(t) dt[/tex]

In this case, the temperature function is T(t) = 22 + 67e^(-t/47), and we want to find the average temperature over the interval [0, 18]. Therefore, we need to evaluate the following integral:

Average Temperature [tex]= (1/18 - 0) ∫[0 to 18] (22 + 67e^(-t/47)) dt[/tex]

To calculate the integral, we can use the antiderivative of e^(-t/47), which is -47e^(-t/47).

The integral becomes: Average Temperature = [tex](1/18) [22t - 67(-47e^(-t/47))][/tex] evaluated from 0 to 18

Evaluating the integral over the interval [0, 18], we can compute the average temperature of the coffee during the first 18 minutes.

By performing the necessary calculations, we can determine the numerical value of the average temperature during the first 18 minutes.

Learn more about temperature here;

brainly.com/question/25677592

#SPJ11

1. Determine if the lines with symmetric equations *73 - 972-25 and Item - 24 are the same. x- 4 X+1 + 9 -14 = -3 Explain your answer. 14

Answers

the lines with symmetric equations *73 - 972-25 and Item - 24 are not the same, and so does x- 4 X+1 + 9 -14 = -3.

To determine if the lines with symmetric equations 73 - 972-25 and Item - 24 are the same, we need to convert them into Cartesian equations.

For 73 - 972-25, we have:

x = 7
y = 3

For Item - 24, we have:

x = -2
y = 4

So these two lines have different Cartesian equations and therefore are not the same.

As for the second part of the question, the symmetric equation x-4 X+1 + 9-14 = -3 can be simplified to:

x - 3 = 0

This is the equation of a vertical line passing through the point (3, 0). So it is not the same as the first two lines we considered.

To know more about Cartesian visit:

https://brainly.com/question/27927590

#SPJ11

For a given arithmetic sequence, the first term, a1, is equal to
−11, and the 31st term, a31, is equal to 169
. Find the value of the 9th term, a9.

Answers

In the given arithmetic sequence with the first term a1 = -11 and the 31st term a31 = 169, we need to find the value of the 9th term, a9. By using the formula for arithmetic sequences, we can determine the common difference (d) and then calculate the value of a9.

In an arithmetic sequence, the difference between consecutive terms is constant. We can use the formula for arithmetic sequences to find the common difference (d). The formula is:

an = a1 + (n - 1)d

where an is the nth term, a1 is the first term, n is the term number, and d is the common difference.

Given that a1 = -11 and a31 = 169, we can substitute these values into the formula to find the common difference:

a31 = a1 + (31 - 1)d

169 = -11 + 30d

30d = 180

d = 6

Now that we know the common difference is 6, we can find the value of a9:

a9 = a1 + (9 - 1)d

a9 = -11 + 8 * 6

a9 = -11 + 48

a9 = 37

Therefore, the value of the 9th term, a9, in the given arithmetic sequence is 37.

To learn more about arithmetic: -brainly.com/question/29116011#SPJ11

the null hypothesis in the one-way anova asserts that _________

Answers

The null hypothesis in one-way ANOVA asserts that there is no significant difference among the means of the groups or treatments being compared.

It assumes that any observed differences in sample means are due to random variation or chance. In other words, it suggests that the population means for all groups are equal.

The alternative hypothesis, on the other hand, opposes the null hypothesis and suggests that there is at least one group mean that is significantly different from the others. It states that the observed differences in sample means are not solely due to random variation and that there are systematic differences among the population means.

During the ANOVA analysis, statistical tests are conducted to assess the evidence against the null hypothesis and determine whether to reject it in favor of the alternative hypothesis. If the p-value associated with the test is less than a predetermined significance level (often denoted as alpha, typically 0.05), it indicates that there is sufficient evidence to reject the null hypothesis and conclude that there are significant differences among the group means.

In summary, the null hypothesis in one-way ANOVA assumes no significant differences among the group means, while the alternative hypothesis posits that at least one group mean differs significantly from the others.

to know more about hypothesis visit:

brainly.com/question/14472390

#SPJ11

Other Questions
Write a balanced equation for the combination reaction described, using the smallest possible integer coefficients. When nitrogen combines with hydrogen , ammonia is formed.When nitrogen combines with hydrogen , ammonia is formed.(2) Write a balanced equation for the combination reaction described, using the smallest possible integer coefficients. When diphosphorus pentoxide combines with water , phosphoric acid is formed.(3) Write a balanced equation for the decomposition reaction described, using the smallest possible integer coefficients. When hydrogen peroxide (H2O2) decomposes, water and oxygen are formed.(4) Write a balanced equation for the decomposition reaction described, using the smallest possible integer coefficients. When potassium perchlorate decomposes, potassium chloride and oxygen are formed. albany, incorporated does business in states c and d. state c uses an apportionment formula that double-weights the sales factor; state d apportions income using an equally-weighted three-factor formula. albany's before tax income is $3,000,000, and its sales, payroll, and property factors are as follows. c d sales factor 50% 50% payroll factor 40% 60% property factor 20% 80% calculate albany's income taxable in each state. the voltage across a membrane forming a cell wall is 82.0 mv and the membrane is 8.00 nm thick. what is the electric field strength in volts per meter? (the value is surprisingly large, but correct. membranes are discussed later in the textbook.) you may assume a uniform e-field. Solve the following linear system by Gaussian elimination. X1 + 4x2 + 4x3 = 24 -X1 - 5x2 + 5x3 = -19 X1 - 3x2 + 6x3 = -2 X1 = i X2 = i X3 = i on separate pieces of tracing paper, sketch the outlines of the continents of south america and africa found in figure 3.5. move the tracing papers until you get the best fit of the continents. how well do they fit together? Boxplots A and B show information about waiting times at a post office.Boxplot A is before a new queuing system is introduced and B is after it is introduced.Compare the waiting times of the old system with the new system. 2.10 unit test voices of an emerging nation part 1 Precisely what is the output of the following program? 10 points include using namespace stdint main() enum color type [red, orange, yellow, green, blue, violet]:color_type shirt, pants; shirt- red; pants- blue cout FILL THE BLANK. National income accountants subdivide corporate profits into which categories?Corporate ____ taxesDividendsUndistributed corporate ____ Assume that a one-year Treasury strip yield is currently 3% and a BB-rated zero-coupon bond with similar maturity yield is 7%. Which of the following is true? Dialysis treatment removes urea and other waste products from a patient's bloo u(t) = Cert/v where r is the rate of flow of blood through the dialyzer (in mL/min), V is the volu 00 [u(t) u(t) dt = Explain the meaning of the integral 1. u(t) dt in the context of this problem. O As t[infinity]o, the amount of urea in the blood approaches As t[infinity]o, all the urea in the blood at time t = 0 is removed. O As too, the volume of blood pumped through the dialyzer approaches 0. O As too, the volume of blood pumped through the dialyzer approaches Co. As too, the rate at which urea is removed from the blood approaches Co. blood flow externally through a machine called a dialyzer. The rate at which urea is removed from the blood (in mg/min) is often described by the equation (in ml), and Co is the amount of urea in the blood (in mg) at time t= 0. Evaluate the integral u(t) at. A stock just paid a dividend of D. - $1.50. The required rate of retumiso = 9.2%, and the constant growth rate is 9 -4.0%. What is the current stock price? which one of the following substances should exhibit hydrogen bonding in the liquid state? group of answer choices h2s ph3 ch4 nh3 h2 when a sample of materical is conbusted in the reaction chamber of a calorimeter, the 500 g of water in the device experiences an increase in temeprature from 25c to 28c. how much heat energy wasstored in the mateiral Which of these illustrates Rome's legacy in our modern world?{A} Languages based on Greek are still spoken in former parts of the Roman Empire.{B} The Orthodox Church has moved its center to the city of Rome.{C} Many of the Romans' aqueducts and roads are still in use today.{D} The clothes we wear today are based on Roman designs. a An arctic village maintains a circular Cross-country ski trail that has a radius of 4 kilometers. A skier started skiing from the position (-2.354, 3.234), measured in kilometers, and skied counter- In a recent poll, 490 people were asked if they liked dogs, and 8% said they did. Find the margin of error of this poll, at the 99% confidence level. Give your answer to three decimals to test your systems against weak passwords, you as an admin (with proper permissions) test all the accounts using the top 100 commonly used passwords. what is this test an example of? Company has just completed the third year of a 5-year diminishing value recovery period for a piece of equipment it originally purchased for $302 000. The depreciation rate is 40%. a. What is the book value of the equipment? b. If Jones sells the equipment today for $73 000 and its tax rate is 30%, what is the after-tax cash flow from selling it? c. Just before it is about to sell the equipment, Jones receives new order. It can take the new order if it keeps the old equipment. Is there a cost to taking the order and if so, what is it? Explain. (Assume the new order will consume the remainder of the machine's useful life.) C a. The book value of the equipment after the third year is S. (Round to the nearest dollar.) b. If Jones Company sells the equipment today for $73 000 and its tax rate is 30%, the total after-tax proceeds from the sale will be $. (Round to the nearest dollar.) c. Just before it is about to sell the equipment, Jones receives new order. It can take the new order if it keeps the old equipment. Is there a cost to taking the order and if so, what is it? Explain. (Select the best choice below.) O A. Yes, the cost of taking the order is the extra depreciation on the machine. O B. No, Jones already owns the machine, so there is no cost to using it for the order. O C. Yes, the cost of taking the order is the lost $65 232 in book value. O D. Yes, the cost of taking the order is the lost after-tax cash flow of $70 670 from selling the machine. A specific purpose statement begins with an infinitive phrase.a) yesb) noc) sometimes; it depends. Steam Workshop Downloader