The eigenvectors of the given matrix are [tex]v_1[/tex] = [3/4, 1] and [tex]v_2[/tex] = [1, 1].
To find the eigenvectors of a matrix, we need to solve the equation (A - λI)v = 0, where A is the matrix, λ is the eigenvalue, I is the identity matrix, and v is the eigenvector.
Given the matrix A:
A = [tex]\begin{bmatrix}11 & -12 \\16 & -17 \\\end{bmatrix}[/tex]
We are looking for the eigenvectors corresponding to eigenvalues [tex]\lambda_1[/tex] = -5 and [tex]\lambda_2[/tex] = -1.
For [tex]\lambda_1[/tex] = -5:
We solve the equation (A - (-5)I)[tex]v_1[/tex] = 0:
(A - (-5)I)[tex]v_1[/tex] = [[11, -12],
[16, -17]] - [[-5, 0],
[0, -5]][tex]v_1[/tex]
Simplifying, we have:
[[16, -12],
[16, -12]] [tex]v_1[/tex] = [[0],
[0]]
This leads to the following system of equations:
16u - 12b = 0
16u - 12b = 0
We can see that these equations are dependent on each other, so we have one free variable. Let's choose b = 1 to make calculations easier.
From the first equation, we have:
16u - 12(1) = 0
16u - 12 = 0
16u = 12
u = 12/16
u = 3/4
Therefore, the eigenvector corresponding to eigenvalue [tex]\lambda_1[/tex] = -5 is:
[tex]v_1[/tex] = [u] = [3/4]
[1]
For [tex]\lambda_2[/tex] = -1:
We solve the equation (A - (-1)I)[tex]v_2[/tex] = 0:
(A - (-1)I)[tex]v_2[/tex] = [[11, -12],
[16, -17]] - [[-1, 0],
[0, -1]][tex]v_2[/tex]
Simplifying, we have:
[[12, -12],
[16, -16]][tex]v_2[/tex] = [[0],
[0]]
This leads to the following system of equations:
12u - 12b = 0
16u - 16b = 0
Dividing the second equation by 4, we obtain:
4u - 4b = 0
From the first equation, we have:
12u - 12(1) = 0
12u - 12 = 0
12u = 12
u = 12/12
u = 1
Substituting u = 1 into 4u - 4b = 0, we have:
4(1) - 4b = 0
4 - 4b = 0
-4b = -4
b = -4/-4
b = 1
Therefore, the eigenvector corresponding to eigenvalue [tex]\lambda_2[/tex] = -1 is:
[tex]v_2[/tex] = [u] = [1]
[1]
In summary, the eigenvectors corresponding to the eigenvalues [tex]\lambda_1[/tex] = -5 and [tex]\lambda_2[/tex] = -1 are:
[tex]v_1[/tex] = [3/4]
[1]
[tex]v_2[/tex] = [1]
[1]
Learn more about eigenvectors at
https://brainly.com/question/31043286
#SPJ4
5. (15 points) Use qualitative theory of autonomous differential equations to sketch the graphs of the corresponding solutions in ty-plane. y = y3 – 3y, y(0) = -3, y(0) = -1/2, y(0) = 3/2, y(0) = 3
To sketch the graphs of the corresponding solutions in the ty-plane using the qualitative theory of autonomous differential equations, we can analyze the behavior of the given autonomous equation: y = y³ - 3y.
First, let's find the critical points by setting the equation equal to zero and solving for y:y³ - 3y = 0
y(y² - 3) = 0
From this, we can see that the critical points are y = 0 and y = ±√3.
Next, let's determine the behavior of the solutions around these critical points by examining the sign of the derivative dy/dt.
Taking the derivative of the equation with respect to t, we get:dy/dt = (3y² - 3)dy/dt
Now, we can analyze the sign of dy/dt based on the value of y:
1. which means the solutions will decrease as t increases.
2. For -√3 < y < 0, dy/dt > 0, indicating that the solutions will increase as t increases.3. For 0 < y < √3, dy/dt > 0, implying that the solutions will also increase as t increases.
4. For y > √3, dy/dt < 0, meaning the solutions will decrease as t increases.
Now, let's sketch the graphs of the solutions based on the initial conditions provided:
a) y(0) = -3:With this initial condition, the solution starts at y = -3, which is below -√3. From our analysis, we know that the solution will decrease as t increases, so the graph will curve downwards and approach the critical point y = -√3 as t goes to infinity.
b) y(0) = -1/2:
With this initial condition, the solution starts at y = -1/2, which is between -√3 and 0. According to our analysis, the solution will increase as t increases. The graph will curve upwards and approach the critical point y = √3 as t goes to infinity.
c) y(0) = 3/2:With this initial condition, the solution starts at y = 3/2, which is between 0 and √3. As per our analysis, the solution will also increase as t increases. The graph will curve upwards and approach the critical point y = √3 as t goes to infinity.
d) y(0) = 3:
With this initial condition, the solution starts at y = 3, which is above √3. From our analysis, we know that the solution will decrease as t increases. The graph will curve downwards and approach the critical point y = √3 as t goes to infinity.
In summary, the graphs of the corresponding solutions in the ty-plane will have curves that approach the critical points at y = -√3 and y = √3, and their behavior will depend on the initial conditions provided.
Learn more about theory here:
https://brainly.com/question/28035099
#SPJ11
Use the following diagram to match the terms and examples.
PLEASE ANSWER IF YOU KNOW
PT = Line
RP = Segment
SR = Ray
∠2 and ∠3 = adjacent angles
∠2 and ∠4 = Vertical angles.
What is a line segment?A line segment is a section of a straight line that is bounded by two different end points and contains every point on the line between them. The Euclidean distance between the ends of a line segment determines its length.
A line segment is a finite-length section of a line with two endpoints. A ray is a line segment that stretches in one direction endlessly.
Learn more about vertical angles:
https://brainly.com/question/1673457
#SPJ1
i will rate
Cost, revenue, and profit are in dollars and x is the number of units. If the total profit function is P(x) = 9x – 27, find the marginal profit MP. MP =
The marginal profit (MP) is 9. This means that for each additional unit sold, the profit increases by $9.
The marginal profit (MP) represents the rate of change of profit with respect to the number of units sold. To find the marginal profit, we need to take the derivative of the profit function P(x) = 9x - 27 with respect to x.
Taking the derivative of P(x) with respect to x, we get:
dP/dx = 9
The derivative of the constant term -27 is 0, as it does not depend on x. Thus, it disappears when taking the derivative.
Therefore, the marginal profit is a constant value of 9 dollars per unit. This means that for each additional unit sold, the profit increases by $9.
To know more about marginal profit refer here:
https://brainly.com/question/30236297
#SPJ11
8. (10 Points) Use the Gauss-Seidel iterative technique to find the 3rd approximate solutions to 2x₁ + x₂2x3 = 1 2x13x₂ + x3 = 0 X₁ X₂ + 2x3 = 2 starting with x = (0,0,0,0)*.
The third approximate solution is x = (869/1024, -707/1024, 867/1024, 0). The Gauss-Seidel iterative method can be used to find the third approximate solution to 2x₁ + x₂2x3 = 1, 2x₁3x₂ + x₃ = 0, and x₁x₂ + 2x₃ = 2. We will begin with x = (0, 0, 0, 0)*.*
The asterisk indicates that x is the starting point for the iterative method.
The process is as follows: x₁^(k+1) = (1 - x₂^k2x₃^k)/2,x₂^(k+1) = (-3x₁^(k+1) + x₃^k)/3, and x₃^(k+1) = (2 - x₁^(k+1)x₂^(k+1))/2.
We'll first look for x₁^(1), which is (1 - 0(0))/2 = 1/2.
Next, we'll look for x₂^(1), which is (-3(1/2) + 0)/3 = -1/2.
Finally, we'll look for x₃^(1), which is (2 - 1/2(-1/2))/2 = 9/8.
Thus, the first iterate is x^(1) = (1/2, -1/2, 9/8, 0).
Next, we'll look for x₁^(2), which is (1 - (-1/2)(9/8))/2 = 25/32.
Next, we'll look for x₂^(2), which is (-3(25/32) + 9/8)/3 = -31/32.
Finally, we'll look for x₃^(2), which is (2 - (25/32)(-1/2))/2 = 54/64 = 27/32.
Thus, the second iterate is x^(2) = (25/32, -31/32, 27/32, 0).
Now we'll look for x₁^(3), which is (1 - (-31/32)(27/32))/2 = 869/1024.
Next, we'll look for x₂^(3), which is (-3(869/1024) + 27/32)/3 = -707/1024.
Finally, we'll look for x₃^(3), which is (2 - (25/32)(-31/32))/2 = 867/1024.
Thus, the third iterate is x^(3) = (869/1024, -707/1024, 867/1024, 0).
Therefore, the third approximate solution is x = (869/1024, -707/1024, 867/1024, 0).
Learn more about Gauss-Seidel iterative method : https://brainly.com/question/32730870
#SPJ11
Please answer all Multiple Choice questions.
Thank you
1. If ū = [2,3,4] and v = (-7,-6, -5] find 2ū – 30 a) [9,9,9] b) (-17, -12, -7] c) [25, 24, 23] d) [25, -12,9) 2. If ū = [2,3,4] and = (-7,-6, -5] find | 2ū – 30 + 5) | a) 2525 b) /1995 c) 625
If ū = [2,3,4] and v = (-7,-6, -5] multiplying each component, The correct answer is c) 625.
To find the value of 2ū – 30, we first need to compute 2ū, which is obtained by multiplying each component of ū by 2:
2ū = 2[2, 3, 4] = [4, 6, 8].
Next, we subtract 30 from each component of 2ū:
2ū – 30 = [4, 6, 8] – [30, 30, 30] = [-26, -24, -22].
Therefore, 2ū – 30 is equal to [-26, -24, -22].
For the second part of the question, to find |2ū – 30 + 5|, we need to add 5 to each component of 2ū – 30:
|2ū – 30 + 5| = |[-26, -24, -22] + [5, 5, 5]| = |[-21, -19, -17]|.
Finally, taking the absolute value of each component gives:
|2ū – 30 + 5| = [21, 19, 17].
To find the magnitude of this vector, we calculate the square root of the sum of the squares of its components:
|2ū – 30 + 5| = √(21² + 19² + 17²) = √(441 + 361 + 289) = √1091 = 625.
Therefore, the correct answer is c) 625.
To learn more about absolute value click here
brainly.com/question/17360689
#SPJ11
Using the method of partial fractions, we wish to compute 1 So 2-9x+18 (i) We begin by factoring the denominator of the rational function to obtain: 2²-9z+18=(x-a) (x-b) for a < b. What are a and b ?
The values of "a" and "b" in the factored form of the denominator, 2² - 9x + 18 = (x - a)(x - b), are the roots of the quadratic equation obtained by setting the denominator equal to zero.
To find the values of "a" and "b," we need to solve the quadratic equation 2² - 9x + 18 = 0. This equation represents the denominator of the rational function. We can factorize the quadratic equation by using the quadratic formula or factoring techniques.
The quadratic formula states that for an equation in the form ax² + bx + c = 0, the solutions can be found using the formula: x = (-b ± √(b² - 4ac)) / (2a). In our case, a = 1, b = -9, and c = 18.
Substituting these values into the quadratic formula, we get x = (9 ± √((-9)² - 4(1)(18))) / (2(1)).
Simplifying further, we have x = (9 ± √(81 - 72)) / 2, which becomes x = (9 ± √9) / 2.
Taking the square root of 9 gives x = (9 ± 3) / 2, leading to two possible solutions: x = 6 and x = 3.
Therefore, the factored form of the denominator is 2² - 9x + 18 = (x - 6)(x - 3), where a = 6 and b = 3.
Learn more about quadratic equation here:
https://brainly.com/question/22364785
#SPJ11
Use the equation x = p + tv to find the vector equation and parametric equations of the line through the points 0(0,0,0) and B(3,3,-1). letting p = 0 and v=OB. 0 o H The vector equation of the line is
The vector equation of the line passing through the points A(0, 0, 0) and B(3, 3, -1), using the equation x = p + tv, where p = 0 and v = OB, is:r = p + tv
Determine the vector equation?The vector equation x = p + tv represents a line in three-dimensional space, where r is a position vector on the line, p is a position vector of a point on the line, t is a scalar parameter, and v is the direction vector of the line.
In this case, we are given point A(0, 0, 0) as the origin and point B(3, 3, -1) as the second point on the line. To find the direction vector v, we can calculate OB (vector OB = OB₁i + OB₂j + OB₃k) by subtracting the coordinates of point A from the coordinates of point B: OB = (3 - 0)i + (3 - 0)j + (-1 - 0)k = 3i + 3j - k.
Since p = 0 and v = OB, we can substitute these values into the vector equation to obtain r = 0 + t(3i + 3j - k), which simplifies to r = 3ti + 3tj - tk. Thus, the vector equation of the line is r = 3ti + 3tj - tk.
Additionally, we can write the parametric equations of the line by separating the components of r: x = 3t, y = 3t, and z = -t. These equations provide a way to express the coordinates of any point on the line using the parameter t.
Therefore, the line passing through points A(0, 0, 0) and B(3, 3, -1) can be represented by the vector equation r = p + tv, where p = 0 and v = OB.
To know more about vector, refer here:
https://brainly.com/question/24256726#
#SPJ4
bo What is the radius of convergence of the series (x-4)2n n=o 37 O√3 3 02√3 √3 2
The radius of convergence of the series is √3. Option A
How to determine the radiusFrom the information given, we have that;
The radius at which a power series diverges is defined as the distance between its center and the point of divergence. The series is centered at the value of x, which is 4.
The ratio test can be employed to determine the radius of convergence. According to the ratio test, a series will converge if the limit of the quotient between its terms is lower than 1. The proportion of the elements is expressed by the following ratio:
aₙ/a{n+1} = (x-4)2n/3ⁿ / (x-4)2n+2/3ⁿ⁺¹
Substitute the values, we have;
= (x-4)²/³
As n approaches infinity, the limit is equal to absolute value:
x-4/ 3.
Then, we have that there is convergence if |x-4|/3 < 1.
Radius of convergence is √3.
Learn more about radius at: https://brainly.com/question/27696929
#SPJ4
The complete question:
What is the radius of convergence of the series ₙ₋₀ ∑ (x - 4)²ⁿ/3ⁿ
O√3
O 3
O 2√3
O √3/ 2
11) f(x) = 2x² + 1 and dy find Ay dy a x= 1 and dx=0.1 a
Ay dy at x = 1 and dx = 0.f(x) = 2x² + 1 and dy Ay dy a x= 1 and dx=0.1 a
based on the given information, it appears that you want to find the approximate change in the function f(x) = 2x² + 1
when x changes from 1 to 1.1 (a change of dx = 0.1) and dy is the notation for this change.
to calculate ay dy, we can use the formula for the differential of a function:
ay dy = f'(x) * dx
first, let's find the derivative of f(x):
f'(x) = d/dx (2x² + 1) = 4x
now, we can substitute the values into the formula:
ay dy = f'(x) * dx
= 4x * dx
at x = 1 and dx = 0.1:
ay dy = 4(1) * 0.1 = 0.4 1 is equal to 0.4.
Learn more about function here:
https://brainly.com/question/30721594
#SPJ11
Which graphic presentation of data displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category. a. time series chart. b. proportion. c. cumulative frequency distribution. d. bar graph
Bar graphs can be used to display both discrete and continuous data, making them a versatile tool for visualizing a wide range of information.
The graphic presentation of data that displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category is called a bar graph.
In a bar graph, the bars represent the categories being compared and are arranged along the horizontal axis, with the height of each bar representing the frequency or percentage of the category being displayed.
Bar graphs are a useful tool for presenting numerical data in a visually appealing way, making it easy for viewers to compare different categories and draw conclusions from the data.
To learn more about : Bar graphs
https://brainly.com/question/30243333
#SPJ8
Z follows a Standard Normal Distribution. 1. Find the Probability Density Function of Y = |2| 2. Find the Mean and Variance of Y
the variance of Y, Var(Y), is 2.
To find the probability density function (PDF) of the random variable Y = |2Z|, where Z follows a standard normal distribution, we need to determine the distribution of Y.
1. Probability Density Function (PDF) of Y:
First, let's express Y in terms of Z:
Y = |2Z|
To find the PDF of Y, we need to consider the transformation of random variables. In this case, we have a transformation involving the absolute value function.
When Z > 0, |2Z| = 2Z.
When Z < 0, |2Z| = -2Z.
Since Z follows a standard normal distribution, its PDF is given by:
f(z) = (1 / √(2π)) * e^(-z^2/2)
To find the PDF of Y, we need to determine the probability density function for both cases when Z > 0 and Z < 0.
When Z > 0:
P(Y = 2Z) = P(Z > 0) = 0.5 (since Z is a standard normal distribution)
When Z < 0:
P(Y = -2Z) = P(Z < 0) = 0.5 (since Z is a standard normal distribution)
Thus, the PDF of Y is given by:
f(y) = 0.5 * f(2z) + 0.5 * f(-2z)
= 0.5 * (1 / √(2π)) * e^(-(2z)^2/2) + 0.5 * (1 / √(2π)) * e^(-(-2z)^2/2)
= (1 / √(2π)) * e^(-2z^2/2)
Therefore, the probability density function of Y is f(y) = (1 / √(2π)) * e^(-2z^2/2), where z = y / 2.
2. Mean and Variance of Y:
To find the mean and variance of Y, we can use the properties of expected value and variance.
Mean:
E(Y) = E(|2Z|) = ∫ y * f(y) dy
To evaluate the integral, we substitute z = y / 2:
E(Y) = ∫ (2z) * (1 / √(2π)) * e^(-2z^2/2) * 2 dz
= 2 * ∫ z * (1 / √(2π)) * e^(-2z^2/2) dz
This integral evaluates to 0 since we are integrating an odd function (z) over a symmetric range.
Therefore, the mean of Y, E(Y), is 0.
Variance:
Var(Y) = E(Y^2) - (E(Y))^2
To calculate E(Y^2), we have:
E(Y^2) = E(|2Z|^2) = ∫ y^2 * f(y) dy
Using the same substitution z = y / 2:
E(Y^2) = ∫ (2z)^2 * (1 / √(2π)) * e^(-2z^2/2) * 2 dz
= 4 * ∫ z^2 * (1 / √(2π)) * e^(-2z^2/2) dz
E(Y^2) evaluates to 2 since we are integrating an even function (z^2) over a symmetric range.
Plugging in the values into the variance formula:
Var(Y) = E(Y^2) - (E(Y))^2
= 2 - (0)^2
= 2
Therefore, the variance of Y, Var(Y), is 2.
to know more about probability visit:
brainly.com/question/14740947
#SPJ11
For the following question, assume that lines that appear to be tangent are tangent. Point O is the center of the circle. Find the value of x. Figures are not drawn to scale.
2. (1 point)
74
322
106
37
Using the sum of angles in a triangle to determine the value of x in the cyclic quadrilateral, the value of x is 74°
What is sum of angles in a triangle?The sum of the interior angles in a triangle is always 180 degrees (or π radians). This property holds true for all types of triangles, whether they are equilateral, isosceles, or scalene.
In any triangle, you can find the sum of the interior angles by adding up the measures of the three angles. Regardless of the specific values of the angles, their sum will always be 180 degrees.
In the given cyclic quadrilateral, to determine the value of x, we can use the theorem of sum of an angle in a triangle.
Since x is at opposite to the right-angle and angle p is given as 16 degrees;
x + 16 + 90 = 180
reason: sum of angles in a triangle = 180
x + 106 = 180
x = 180 - 106
x = 74°
Learn more on cyclic quadrilateral here;
https://brainly.com/question/16851036
#SPJ1
Part C: Thinking Skills 1. Determine the coordinates of the local extreme points for f(x) = xe- 0.5%. IT
The required coordinates of the local extreme points for f(x) = xe^(-0.5x) are (2, 2e^(-1)).
The given function is f(x) = xe^(-0.5x).Part C: Thinking Skills1. Determine the coordinates of the local extreme points for f(x) = xe^(-0.5x).Solution:We are given the function f(x) = xe^(-0.5x).Now we will find its derivative, f'(x) using the product rule of differentiation.f(x) = u vwhere u = x and v = e^(-0.5x)Now, f'(x) = u' v + v' u= 1 (e^(-0.5x)) + (-0.5x)(e^(-0.5x))= e^(-0.5x) (1 - 0.5x)Now, f'(x) = 0 when 1 - 0.5x = 0=> 1 = 0.5x=> x = 2The critical point is at x = 2. Now we will check the nature of this critical point using the second derivative test.f''(x) = d/dx(e^(-0.5x)(1 - 0.5x))= e^(-0.5x)(0.25x - 0.5)Now, f''(2) = e^(-1) (0.25(2) - 0.5)= -0.18394Since f''(2) is negative, the given critical point is a local maximum.Therefore, the coordinates of the local extreme point are (2, 2e^(-1)).
Learn more about local extreme points here:
https://brainly.com/question/29142686
#SPJ11
3. A particle starts moving from the point (1,2,0) with vclocity given by v(t) = (2+1 1,21,2 21), where t > 0. (n) (3 points) Find the particle's position at any timet. (b) (1 points) What is the cosi
The position of the particle is obtained by integrating its velocity. The position of the particle at any time is given by(1 + 2t, 2 + t + t², 2t). The angle between the velocity and the z-axis is cos θ = 2/3.
The position of the particle is obtained by integrating its velocity. The position of the particle at any time is given by(x(t), y(t), z(t)) = (1, 2, 0) + ∫(2 + t, 1 + 2t, 2t) dt.This gives(x(t), y(t), z(t)) = (1 + 2t, 2 + t + t², 2t).The angle between the velocity and the z-axis is given by cos θ = (v(t) · k) / ||v(t)|| = (2 · 1 + 1 · 0 + 2 · 1) / √(2² + (1 + 2t)² + (2t)²) = 2 / √(9 + 4t + 5t²). Therefore, cos θ = 2/3.
Learn more about velocity here:
https://brainly.com/question/29519833
#SPJ11
The particle's position at any time t can be found by integrating the velocity function v(t) = (2 + t, t^2, 2t^2 + 1) with respect to time.
The resulting position function will give the coordinates of the particle's position at any given time. The cosine of the angle between the position vector and the x-axis can be calculated by taking the dot product of the position vector with the unit vector along the x-axis and dividing it by the magnitude of the position vector.
To find the particle's position at any time t, we integrate the velocity function v(t) = (2 + t, t^2, 2t^2 + 1) with respect to time. Integrating each component separately, we have:
x(t) = ∫(2 + t) dt = 2t + (1/2)t^2 + C1,
y(t) = ∫t^2 dt = (1/3)t^3 + C2,
z(t) = ∫(2t^2 + 1) dt = (2/3)t^3 + t + C3,
where C1, C2, and C3 are constants of integration.
The resulting position function is given by r(t) = (x(t), y(t), z(t)) = (2t + (1/2)t^2 + C1, (1/3)t^3 + C2, (2/3)t^3 + t + C3).
To find the cosine of the angle between the position vector and the x-axis, we calculate the dot product of the position vector r(t) = (x(t), y(t), z(t)) with the unit vector along the x-axis, which is (1, 0, 0). The dot product is given by:
r(t) · (1, 0, 0) = (2t + (1/2)t^2 + C1) * 1 + ((1/3)t^3 + C2) * 0 + ((2/3)t^3 + t + C3) * 0
= 2t + (1/2)t^2 + C1.
The magnitude of the position vector r(t) is given by ||r(t)|| = sqrt((2t + (1/2)t^2 + C1)^2 + ((1/3)t^3 + C2)^2 + ((2/3)t^3 + t + C3)^2).
Finally, we can calculate the cosine of the angle using the formula:
cos(theta) = (r(t) · (1, 0, 0)) / ||r(t)||.
This will give the cosine of the angle between the position vector and the x-axis at any given time t.
Learn more about velocity function here:
https://brainly.com/question/29080451
#SPJ11
= over the interval (3, 6] using four approximating Estimate the area under the graph of f(x) = rectangles and right endpoints. X + 4 Rn = Repeat the approximation using left endpoints. In =
The estimated area under the graph (AUG) of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and right endpoints is approximately 26.625.
The estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and left endpoints is approximately 24.375.
To estimate the area under the graph of the function f(x) = x + 4 over the interval (3, 6] using rectangles and right endpoints, we can divide the interval into subintervals and calculate the sum of the areas of the rectangles.
Let's start by dividing the interval (3, 6] into four equal subintervals:
Subinterval 1: [3, 3.75]
Subinterval 2: (3.75, 4.5]
Subinterval 3: (4.5, 5.25]
Subinterval 4: (5.25, 6]
Using right endpoints, the x-values for the rectangles will be the right endpoints of each subinterval. Let's calculate the area using this method:
Subinterval 1: [3, 3.75]
Right endpoint: x = 3.75
Width: Δx = 3.75 - 3 = 0.75
Height: f(3.75) = 3.75 + 4 = 7.75
Area: A1 = Δx * f(3.75) = 0.75 * 7.75 = 5.8125
Subinterval 2: (3.75, 4.5]
Right endpoint: x = 4.5
Width: Δx = 4.5 - 3.75 = 0.75
Height: f(4.5) = 4.5 + 4 = 8.5
Area: A2 = Δx * f(4.5) = 0.75 * 8.5 = 6.375
Subinterval 3: (4.5, 5.25]
Right endpoint: x = 5.25
Width: Δx = 5.25 - 4.5 = 0.75
Height: f(5.25) = 5.25 + 4 = 9.25
Area: A3 = Δx * f(5.25) = 0.75 * 9.25 = 6.9375
Subinterval 4: (5.25, 6]
Right endpoint: x = 6
Width: Δx = 6 - 5.25 = 0.75
Height: f(6) = 6 + 4 = 10
Area: A4 = Δx * f(6) = 0.75 * 10 = 7.5
Now, we can calculate the total area under the graph by summing up the areas of the individual rectangles:
Total area ≈ A1 + A2 + A3 + A4
≈ 5.8125 + 6.375 + 6.9375 + 7.5
≈ 26.625
Therefore, the estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and right endpoints is approximately 26.625.
To repeat the approximation using left endpoints, the x-values for the rectangles will be the left endpoints of each subinterval. The rest of the calculations remain the same, but we'll use the left endpoints instead of the right endpoints.
Let's recalculate the areas using left endpoints:
Subinterval 1: [3, 3.75]
Left endpoint: x = 3
Width: Δx = 3.75 - 3 = 0.75
Height: f(3) = 3 + 4 = 7
Area: A1 = Δx * f(3) = 0.75 * 7 = 5.25
Subinterval 2: (3.75, 4.5]
Left endpoint: x = 3.75
Width: Δx = 4.5 - 3.75 = 0.75
Height: f(3.75) = 3.75 + 4 = 7.75
Area: A2 = Δx * f(3.75) = 0.75 * 7.75 = 5.8125
Subinterval 3: (4.5, 5.25]
Left endpoint: x = 4.5
Width: Δx = 5.25 - 4.5 = 0.75
Height: f(4.5) = 4.5 + 4 = 8.5
Area: A3 = Δx * f(4.5) = 0.75 * 8.5 = 6.375
Subinterval 4: (5.25, 6]
Left endpoint: x = 5.25
Width: Δx = 6 - 5.25 = 0.75
Height: f(5.25) = 5.25 + 4 = 9.25
Area: A4 = Δx * f(5.25) = 0.75 * 9.25 = 6.9375
Total area ≈ A1 + A2 + A3 + A4
≈ 5.25 + 5.8125 + 6.375 + 6.9375
≈ 24.375
Therefore, the estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and left endpoints is approximately 24.375.
To know more about area under the graph (AUG), visit the link : https://brainly.com/question/15122151
#SPJ11
(c) find the area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (−2, 1).
The area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (-2, 1) is 6 square units.
To find the area of a pentagon given its vertices, we can divide it into triangles and then calculate the area of each triangle separately.
Let's label the given vertices as A(0, 0), B(3, 1), C(1, 2), D(0, 1), and E(-2, 1). We can divide the pentagon into three triangles: ABD, BCD, and CDE.
To calculate the area of a triangle, we can use the shoelace formula. Let's apply it to each triangle:
Triangle ABD: Coordinates: A(0, 0), B(3, 1), D(0, 1)
Area(ABD) = |(0 * 1 + 3 * 1 + 0 * 0) - (0 * 3 + 1 * 0 + 1 * 0)| / 2
= |(0 + 3 + 0) - (0 + 0 + 0)| / 2
= |3 - 0| / 2
= 3 / 2
= 1.5 square units
Triangle BCD: Coordinates: B(3, 1), C(1, 2), D(0, 1)
Area(BCD) = |(3 * 2 + 1 * 0 + 0 * 1) - (1 * 1 + 2 * 0 + 3 * 0)| / 2
= |(6 + 0 + 0) - (1 + 0 + 0)| / 2
= |6 - 1| / 2
= 5 / 2
= 2.5 square units
Triangle CDE: Coordinates: C(1, 2), D(0, 1), E(-2, 1)
Area(CDE) = |(1 * 1 + 2 * 1 + (-2) * 0) - (2 * 0 + 1 * (-2) + 1 * 1)| / 2
= |(1 + 2 + 0) - (0 - 2 + 1)| / 2
= |3 - (-1)| / 2
= 4 / 2
= 2 square units
Now, we can sum up the areas of the three triangles to find the total area of the pentagon:
Total area = Area(ABD) + Area(BCD) + Area(CDE)
= 1.5 + 2.5 + 2
= 6 square units
Therefore, the area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (-2, 1) is 6 square units.
To know more about area check the below link:
https://brainly.com/question/25292087
#SPJ4
Fill in the blank to complete the trigonometric formula.. sin 2u =
Fill in the blank to complete the trigonometric formula: sin 2u = 2sinu*cosu.
The trigonometric formula sin 2u = 2sinu*cosu states that the sine of twice an angle is equal to two times the product of the sine of the angle and the cosine of the angle.
In trigonometry, the formula sin 2u = 2sinu*cosu describes the relationship between the sine of twice an angle and the sine and cosine of the angle itself. It is derived using the angle addition formula for the sine function. By substituting A = B = u into sin(A + B), we get sin 2u = sin u*cos u + cos u*sin u. Since sin u*cos u and cos u*sin u are equal, the equation simplifies to sin 2u = 2sin u*cos u.
This formula is based on the properties of right triangles and the unit circle. The sine function relates the ratio of the length of the side opposite an angle to the length of the hypotenuse in a right triangle. When we consider the angle 2u, we can think of it as two angles u combined. By applying the angle addition formula and simplifying, we find that sin 2u can be expressed as 2sin u*cos u. This formula allows us to calculate the sine of twice an angle using the sine and cosine of the original angle.
To learn more about unit circle click here
brainly.com/question/11987349
#SPJ11
For the linear function y = f(x) = 4x + 6: a. Find df dx at x = 2. f'(2) = b. Find a formula for x = = f-¹(y). f-¹(y) = df-1 c. Find dy (f ¹)'(f(2)) = at y = f(2).
Question 2 < If f(x) = 7 sin-¹(
a. To find df/dx at x = 2, we need to take the derivative of the function f(x) = 4x + 6 with respect to x. The derivative of a linear function is the coefficient of x, so in this case, f'(x) = 4. Therefore, f'(2) = 4.
b. To find the inverse function f^(-1)(y), we need to solve the equation y = 4x + 6 for x. Rearranging the equation, we get x = (y - 6)/4. So the formula for f^(-1)(y) is f^(-1)(y) = (y - 6)/4.
c. To find dy/dx, we need to take the derivative of the inverse function f^(-1)(y) with respect to y. The derivative of (y - 6)/4 with respect to y is 1/4. Therefore, (f^(-1))'(f(2)) = 1/4.
Note: In Question 2, the given expression "7 sin-¹(" is incomplete, so it is not possible to provide a complete answer without the rest of the expression.
Learn more about derivative here;
https://brainly.com/question/29144258
#SPJ11
Maddy has 1655 apples she gives her 25 friends he same amout how much did each friend get
Each of Maddy's friend will get 66 apples, with 5 remaining apples left over.
Maddy has 1655 apples and she wants to distribute them equally among her 25 friends. To find out how many apples each friend will receive, we divide the total number of apples by the number of friends.
1655 apples ÷ 25 friends = 66.2 apples per friend.
Since we can't have a fraction of an apple, we need to round the number to a whole number.
Considering that we want to distribute the apples equally, each friend will receive approximately 66 apples.
If we distribute 66 apples to each of the 25 friends, the total number of apples distributed will be 66 * 25 = 1650. There will be 5 apples remaining, which cannot be evenly distributed among the friends.
Learn more about apples here:
https://brainly.com/question/31237784
#SPJ11
If two events A and B are independent, then which of the following must be true? Choose all of the answers below that are correct. There may be more than one correct
answer.
Choosing incorrect statements will lower your score on this question.
OA. P(AIB)=P(A)
O b. P(A or B) = P(A)P(B)
O c. P(A/B)-P(B)
• d. P(A and B) = P(A)+P(B)
If two events A and B are independent, the following statements must be true. If two events A and B are independent, then the occurrence of one event does not affect the occurrence of the other event.
In other words, the probability of one event does not influence the probability of the other event. Based on this definition, we can analyze each statement and determine which one(s) must be true.
a. P(AIB)=P(A): This statement is true for independent events. It means that the probability of event A occurring given that event B has occurred is equal to the probability of event A occurring. Therefore, statement a is correct.
b. P(A or B) = P(A)P(B): This statement is not always true for independent events. It is only true if events A and B are also mutually exclusive. In other words, if events A and B cannot occur at the same time. Therefore, statement b is incorrect.
c. P(A/B)-P(B): This statement does not make sense for independent events since the probability of event A does not depend on the occurrence of event B. Therefore, statement c is incorrect.
d. P(A and B) = P(A)+P(B): This statement is not always true for independent events. It is only true if events A and B are also mutually exclusive. In other words, if events A and B cannot occur at the same time. Therefore, statement d is incorrect.
To know more about score visit:
https://brainly.com/question/29285947
#SPJ11
Find the radius of convergence, R, of the series.
[infinity] 3(−1)nnxn
sum.gif
n = 1
R =
Find the interval, I, of convergence of the series. (Enter your answer using interval notation.)
I =
The series is given by the expression ∑[infinity] 3(−1)nnxn, n = 1. The task is to find the radius of convergence, R, and the interval of convergence, I, for the series.
To find the radius of convergence, we can use the ratio test. Let's apply the ratio test to the series:
lim(n→∞) [tex]|\frac{(3(-1)^{(n+1)} * (n+1) * x^{(n+1)}}{ (3(-1)^n * n * x^n)} |[/tex]
Simplifying the expression, we get:
lim(n→∞) [tex]|\frac{(3(-1)^{(n+1)} * (n+1) * x^{(n+1)}}{ (3(-1)^n * n * x^n)} |[/tex]
= lim(n→∞) |(3 * (n+1) * x) / (n * x)|
= lim(n→∞) |3 * (n+1) / n|
= 3.
For the series to converge, the ratio should be less than 1. Therefore, |3| < 1, which is not true. Hence, the series diverges for all values of x. Consequently, the radius of convergence, R, is 0.
Since the series diverges for all x, the interval of convergence, I, is empty, represented by the notation I = {}.
Learn more about ratio here: https://brainly.com/question/31945112
#SPJ11
Question 2(Multiple Choice Worth 6 points) (05.02 MC) The function f is defined by f(x) = 3x² - 4x + 2. The application of the Mean Value Theorem to f on the interval 2 < x < 4 guarantees the existen
The application of the Mean Value Theorem to the function f(x) = 3x² - 4x + 2 on the interval 2 < x < 4 guarantees the existence of at least one point c in the interval (2, 4) where the instantaneous rate of change (or slope) is equal to the average rate of change over the interval.
The Mean Value Theorem states that if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one point c in the interval (a, b) where the instantaneous rate of change (or derivative) of f at c is equal to the average rate of change of f over the interval [a, b].
In this case, the function f(x) = 3x² - 4x + 2 is a polynomial function, which is continuous and differentiable for all real numbers. Therefore, the conditions of the Mean Value Theorem are satisfied.
The interval given is 2 < x < 4. This interval lies within the domain of the function, and since f(x) is differentiable for all values of x, the Mean Value Theorem guarantees the existence of at least one point c in the interval (2, 4) where the instantaneous rate of change of f(x) is equal to the average rate of change over the interval [2, 4].
In other words, there exists a point c in the interval (2, 4) such that f'(c) = (f(4) - f(2))/(4 - 2), where f'(c) represents the derivative of f at c.
The Mean Value Theorem is a powerful tool that guarantees the existence of certain points with specific properties in a given interval, and it has various applications in calculus and real-world problems involving rates of change.
Learn more about Mean Value Theorem here:
https://brainly.com/question/30403137
#SPJ11
Evaluate sint, cost, and tan t.
t = 3pi/2
To evaluate sin(t), cos(t), and tan(t) when t = 3π/2, we can use the unit circle and the values of sine, cosine, and tangent for the corresponding angle on the unit circle. By determining the angle 3π/2 on the unit circle, we can find the values of sine, cosine, and tangent for that angle.
When t = 3π/2, it corresponds to the angle in the Cartesian coordinate system where the terminal side is pointing downward in the negative y-axis direction.
On the unit circle, the y-coordinate represents sin(t), the x-coordinate represents cos(t), and the ratio of sin(t)/cos(t) represents tan(t). Since the terminal side is pointing downward, sin(t) is equal to -1, cos(t) is equal to 0, and tan(t) is undefined (since it is division by zero).
Therefore, when t = 3π/2, sin(t) = -1, cos(t) = 0, and tan(t) is undefined.
Learn more about cos here : brainly.com/question/28165016
#SPJ11
The values are: sin(3π/2) = -1, cos(3π/2) = 0, tan(3π/2) is undefined.
What is sine?
In mathematics, the sine function, often denoted as sin(x), is a fundamental trigonometric function that relates the ratio of the length of the side opposite an angle in a right triangle to the length of the hypotenuse.
To evaluate the trigonometric functions sin(t), cos(t), and tan(t) at t = 3π/2:
sin(t) represents the sine function at t, so sin(3π/2) can be calculated as:
sin(3π/2) = -1
cos(t) represents the cosine function at t, so cos(3π/2) can be calculated as:
cos(3π/2) = 0
tan(t) represents the tangent function at t, so tan(3π/2) can be calculated as:
tan(3π/2) = sin(3π/2) / cos(3π/2)
Since cos(3π/2) = 0, tan(3π/2) is undefined.
Therefore, the values are:
sin(3π/2) = -1,
cos(3π/2) = 0,
tan(3π/2) is undefined.
To learn more about sine visit:
https://brainly.com/question/30401249
#SPJ4
In one design being considered for the containers shaped like a rectangular
prism, each container will have a height of 11½ inches and length of 7.
7/1/2
inches. What will be the width, in inches, of the container?
O A. 3
4.
OB.
OC. 14
O D. 15
In one design being considered for the containers shaped like a rectangular O.D. of 15 inches,Therefore, l = w.
the volume of the container is 0.0076 m³. Let us determine the height of the container using the given information.
The volume of the container can be expressed using the formula V = lwh where V is the volume, l is the length,
w is the width and h is the height.Substituting the given values into the formula,
we have;V = lwh0.0076 = (15 × w) × h... equation [1]
Since the container is shaped like a rectangular O.D,
the length and width are equal.
Substituting l = w into equation [1]
0.0076 = (15 × l) × h0.0076 = 15l × h... equation [2]
From equation [2],
h can be expressed as:
h = 0.0076/(15l)
Hence, the height of the container is given by h = 0.0076/(15l).
To learn more about : rectangular
https://brainly.com/question/25292087
#SPJ8
Use left and right endpoints and the given number of rectangles to find two approximations of the area of the region between the graph of the function and the axis over the given interval 0(x)-2x-x-1,
Using left and right endpoints, we can approximate the area of the region between the graph of the function f(x) = 2x - x² - 1 and the x-axis over the interval [0, x]. By dividing the interval into subintervals and evaluating the function at either the left or right endpoint of each subinterval, we can calculate the areas of the corresponding rectangles. Summing up these areas gives us two approximations of the total area.
To approximate the area using left endpoints, we divide the interval [0, x] into n subintervals of equal width. Each subinterval has a width of Δx = (x - 0)/n. We evaluate the function at the left endpoint of each subinterval and calculate the corresponding rectangle's area by multiplying the function value by the width Δx. The sum of these areas gives an approximation of the total area.
To approximate the area using right endpoints, we follow the same process but evaluate the function at the right endpoint of each subinterval. Again, we calculate the areas of the rectangles formed and sum them up to obtain an approximation of the total area.
By increasing the number of subintervals (n) and taking the limit as n approaches infinity, we can improve the accuracy of the approximations and approach the actual area of the region between the function and the x-axis over the interval [0, x].
Learn more about corresponding rectangles here:
https://brainly.com/question/28165848
#SPJ11
select all expressions that are equivalent to 64 1/3
We can express the Fraction as a percentage by multiplying it by 100 and adding a percent sign, which gives us 643.33%.
To find expressions that are equivalent to 64 1/3, we need to look for other ways of representing the same value. One way to do this is to convert the mixed number into an improper fraction.
To do this, we multiply the whole number by the denominator and add the numerator. So 64 1/3 is equivalent to (64*3 + 1)/3 or 193/3. Now we can use this fraction to create other equivalent expressions.
For example, we can convert it back to a mixed number, which would be 64 1/3. We can also write it as a decimal, which is approximately 64.333. Additionally,
we can simplify the fraction by dividing both the numerator and denominator by their greatest common factor, which is 1. This gives us the simplified fraction 193/3.
To learn more about : Fraction
https://brainly.com/question/78672
#SPJ8
Note the full question may be :
Select all the expressions that are equivalent to 64 1/3:
A. 63.33
B. 64.3
C. 64.333
D. 192/3
E. 64 + 0.33
F. 63.333
G. 65 - 1/3
H. 128/2
I. 193/3
Choose all the correct expressions that represent the same value as 64 1/3.
Find the derivative. V s sin 13t dt dx 2 a. by evaluating the integral and differentiating the result. b. by differentiating the integral directly. . a. Evaluate the definite integral. x d sin 13t dt
The derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -sin(13x), in both the cases.
To find the derivative, we can evaluate the integral and then differentiate the result, as follows:
a. Evaluating the definite integral ∫[0, x] sin(13t) dt, we substitute the upper limit x and the lower limit 0 into the antiderivative of sin(13t), which is -cos(13t)/13.
Therefore, the result of the integral is (-cos(13x)/13) - (-cos(0)/13) = (-cos(13x) + 1)/13.
Next, we differentiate this result with respect to x. The derivative of (-cos(13x) + 1)/13 is given by (-13sin(13x))/13, which simplifies to -sin(13x).
Therefore, the derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -sin(13x).
b. Alternatively, we can differentiate the integral directly using the Fundamental Theorem of Calculus. According to the theorem, if F(x) is the antiderivative of f(x), then the derivative of the integral ∫[a, x] f(t) dt with respect to x is F(x).
In this case, the antiderivative of sin(13t) is -cos(13t)/13. Therefore, the derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -cos(13x)/13.
However, notice that -cos(13x)/13 can be further simplified to -sin(13x). Therefore, the derivative obtained by differentiating the integral directly is also -sin(13x). In both cases, we arrive at the same result, which is -sin(13x).
To know more about derivative, refer here:
https://brainly.com/question/28144387#
#SPJ11
Complete question:
Find the derivative. ∫[0, x] sin(13t) dt
a. by evaluating the integral and differentiating the result.
b. by differentiating the integral directly Evaluate the definite integral ∫[a, x] f(t) dt
Find the profit function if cost and revenue are given by C(x) = 182 + 1.3x and R(x) = 2x – 0.04x?. The profit function is P(x)=
The profit function, P(x), can be calculated by subtracting the cost function, C(x), from the revenue function, R(x), which is given by P(x) = R(x) - C(x). In this case, the profit function would be P(x) = (2x - 0.04x) - (182 + 1.3x).
The profit function represents the difference between the revenue generated from selling a certain quantity of goods or services and the cost incurred in producing and selling them. In this case, the revenue function, R(x), is given by 2x - 0.04x, where x represents the quantity of goods sold. This function calculates the total revenue obtained from selling x units, taking into account a fixed price per unit and a discount of 0.04 per unit.
The cost function, C(x), is given by 182 + 1.3x, where 182 represents the fixed costs and 1.3x represents the variable costs associated with producing x units. The variable cost per unit is 1.3, indicating that the cost increases linearly with the quantity produced.
To calculate the profit function, P(x), we subtract the cost function from the revenue function, yielding P(x) = (2x - 0.04x) - (182 + 1.3x). Simplifying this expression, we have P(x) = 0.96x - 182.3, which represents the profit obtained from selling x units after considering the costs involved.
Learn more about function here:
https://brainly.com/question/31062578
#SPJ11
a. Set up an integral for the length of the curve. b. Graph the curve to see what it looks like. c. Use a grapher's or computer's integral evaluator to find the curve's length numerically. JT x = 2 sin y, sys 12 1110 12
The values of all sub-parts have been obtained.
(a). An integral for the length of the curve is ∫ from (π/9 to 8π/9) √ (1 + 4cos²y) dy.
(b). The curve has been drawn.
(c). The curve length is 3.7344.
What is the length of curve?
The distance between two places along a segment of a curve is known as the arc length. Curve rectification is the process of measuring the length of an irregular arc section by simulating it with connected line segments. There are a finite number of segments in the rectification of a rectifiable curve.
As given,
x = 2siny, from (π/9 to 8π/9).
(a). Evaluate the length of the curve:
Differentiate x with respect to y,
dx/dy = 2cosy
From curve length formula,
L = ∫ from (a to b) √ {(1 + (dx/dy)²} dy
Substitute value of dx/dy,
L = ∫ from (π/9 to 8π/9) √ {(1 + (2cosy)²} dy
L = ∫ from (π/9 to 8π/9) √ (1 + 4cos²y) dy.
(b). Plote the curve:
As given,
x = 2siny, from (π/9 to 8π/9)
Plote a graph which is shown below.
(c). Evaluate the curve length:
From part (a) result,
L = ∫ from (π/9 to 8π/9) √ (1 + 4cos²y) dy
Solve integral by use of computer,
L = 3.7344
Hence, the values of all sub-parts have been obtained.
To learn more about Curve length from the given link.
https://brainly.com/question/29364263
#SPJ4
Determine the degree of the MacLaurin polynomial that should be used to approximate cos (2) so that the error is less than 0.0001.
The approximation of cos(2) using the MacLaurin polynomial of degree 3 is approximately -1/3.
The MacLaurin polynomial for a function f(x) is given by the formula:
P(x) = f(0) + f'(0)x + (f''(0)/2!)x² + (f'''(0)/3!)x³ + ...
We observe that the derivatives of cos(x) cycle between cosine and sine functions, alternating in sign. Since we are interested in the maximum error, we can assume that the maximum value of the derivative occurs when x = 2.
Using the simplified error term, we can write:
|f^(n+1)(c)| * |x^(n+1)| / (n+1)! < 0.0001
Now, we substitute f^(n+1)(x) with the alternating sine and cosine functions, and x with 2:
|sin(c)| * |2^(n+1)| / (n+1)! < 0.0001
To find the degree of the MacLaurin polynomial, we can start with n = 0 and increment it until the inequality is satisfied. We continue increasing n until the left side of the inequality is less than 0.0001. Once we find the smallest value of n that satisfies the inequality, that value will be the degree of the MacLaurin polynomial.
Let's calculate the values for different values of n:
For n = 0: |sin(c)| * 2 / 1 = |sin(c)| * 2
For n = 1: |sin(c)| * 4 / 2 = 2|sin(c)|
For n = 2: |sin(c)| * 8 / 6 = 4/3 |sin(c)|
For n = 3: |sin(c)| * 16 / 24 = 2/3 |sin(c)|
For n = 4: |sin(c)| * 32 / 120 = 2/15 |sin(c)|
By calculating the above expressions, we can see that as n increases, the error term decreases. We want the error term to be less than 0.0001, so we need to find the smallest value of n for which the error is less than or equal to 0.0001.
Based on the calculations, we find that when n = 3, the error term is less than 0.0001. Therefore, the degree of the MacLaurin polynomial that should be used to approximate cos(2) with an error less than 0.0001 is 3.
Using the MacLaurin polynomial of degree 3, we can approximate cos(2) as follows:
P(x) = cos(0) + (-sin(0))x + (-cos(0))/2! * x² + (sin(0))/3! * x³
Simplifying the expression, we get:
P(x) = 1 - (x²)/2 + (x³)/6
Finally, substituting x = 2, we find the approximation of cos(2) using the MacLaurin polynomial:
P(2) = 1 - (2²)/2 + (2³)/6 = 1 - 2 + 8/6 = 1 - 2 + 4/3 = -1/3
To know more about MacLaurin polynomial here
https://brainly.com/question/31962620
#SPJ4