3 siblings reported how long they worked out at the gym. Write the names of the siblings from shortest to longest time.

Answers

Answer 1

The  names of the siblings from shortest to longest time are:

Rafael= 75min = 1 hour and 15 minutes.

Leanne= 1 hour and 25 minutes

Ray= 1 3/4 =  1 hour and 45 minutes.

What is the time about?

To be able to compare 1 hour and 25 minutes with  1 3/4 (1.75 hours), one need convert the minutes to hours. 1 hour is equal to 60 minutes, so 1 hour and 25 minutes is equivalent to 1.42 hours.

1.42 hours is smaller than 1.75 hours. hence Ray has the longest time.

So according to the given information, note that:

Rafael: Rafael took 75 minutes, and it is equal to 1 hour and 15 minutes.Leanne: Leanne took 1 hour and 25 minutes. This is longer than Rafael's but it is shorter than Ray's time.Ray: Ray took 1 hour and 45 minutes. So, it is the longest time among the three siblings.

Hence, the siblings' names listed from shortest to longest time are Rafael, Leanne, and Ray.

Learn more about time from

https://brainly.com/question/30468779

#SPJ1

3 Siblings Reported How Long They Worked Out At The Gym. Write The Names Of The Siblings From Shortest

Related Questions

Please I need solution and steps

Answers

Answer:

Refer to the step-by-step, follow along carefully.

Step-by-step explanation:

Verify the given identity.

[tex]\frac{\sin(x)}{1-\cos(x)} -\frac{\sin(x)\cos(x)}{1+\cos(x)} =\csc(x)(1+\cos^2(x))[/tex]

Pick the more complicated side to manipulate, so the L.H.S.

(1) - Combine the fractions with a common denominator

[tex]\frac{\sin(x)}{1-\cos(x)} -\frac{\sin(x)\cos(x)}{1+\cos(x)}\\\\\Longrightarrow \frac{\sin(x)(1+\cos(x))}{(1-\cos(x))(1+\cos(x))} -\frac{\sin(x)\cos(x)(1-\cos(x))}{(1+\cos(x))(1-\cos(x))} \\\\\Longrightarrow \frac{\sin(x)+\sin(x)\cos(x)-\sin(x)\cos(x)+\sin(x)\cos^2(x)}{(1+\cos(x))(1-\cos(x))} \\\\\Longrightarrow \boxed{\frac{\sin(x)+\sin(x)\cos^2(x)}{(1+\cos(x))(1-\cos(x))}} \\\\[/tex]

(2) - Simplify the denominator

[tex]\frac{\sin(x)+\sin(x)\cos^2(x)}{(1+\cos(x))(1-\cos(x))}\\\\\Longrightarrow \frac{\sin(x)+\sin(x)\cos^2(x)}{1-\cos(x)+\cos(x)-\cos^2(x)}\\\\\Longrightarrow \boxed{\frac{\sin(x)+\sin(x)\cos^2(x)}{1-\cos^2(x)}}[/tex]

(3) - Apply the following Pythagorean identity to the denominator

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Pythagorean Identity:}}\\\\1-\cos^2(\theta)=\sin^2(\theta)\end{array}\right}[/tex]

[tex]\frac{\sin(x)+\sin(x)\cos^2(x)}{1-\cos^2(x)}\\\\\Longrightarrow \boxed{\frac{\sin(x)+\sin(x)\cos^2(x)}{\sin^2(x)}}[/tex]

(4) - Simplify the fraction and split it up

[tex]\frac{\sin(x)+\sin(x)\cos^2(x)}{\sin^2(x)}\\\\\Longrightarrow \frac{1+\cos^2(x)}{\sin(x)}\\\\\Longrightarrow \boxed{\frac{1}{\sin(x)}+\frac{\cos^2(x)}{\sin(x)}}[/tex]

(5) - Apply the following reciprocal identity

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Reciprocal Identitiy:}}\\\\\csc(\theta)=\frac{1}{\sin(\theta)} \end{array}\right}[/tex]

[tex]\frac{1}{\sin(x)}+\frac{\cos^2(x)}{\sin(x)}\\\\\Longrightarrow \csc(x)+\frac{1}{\sin(x)}\cos^2(x) \\\\\Longrightarrow \csc(x)+\csc(x)\cos^2(x) \\\\\therefore \boxed{\boxed{\csc(x)(1+\cos^2(x))}}[/tex]

Thus, the identity is verified.

Prove of the expression sin x / (1 - cos x) - [sin x cos x ] / (1 + cos x) by using trigonometry formula is shown below.

We have to given that,

Expression to verify is,

⇒ sin x / (1 - cos x) - [sin x cos x ] / (1 + cos x)

Now, We can simplify as,

⇒ sin x / (1 - cos x) - [sin x cos x ] / (1 + cos x)

⇒ sin x [ 1 / (1 - cos x) - cos x / (1 + cos x)]

⇒ sin x [1 + cos x - cos x (1 - cos x )] / (1 - cos²x)

⇒ sin x [1 + cos x - cos x + cos²x] / sin²x

⇒ (1 + cos²x) / sin x

⇒ cosec x (1 + cos²x)

Thus, Prove of the expression sin x / (1 - cos x) - [sin x cos x ] / (1 + cos x) by using trigonometry formula is shown above.

Learn more about trigonometric ratios at:

brainly.com/question/1836193

#SPJ1

Tariq has $640 to spend at a bicycle store for some new gear and biking outfits. Assume all prices listed include tax.
He buys a new bicycle for $291.24.
He buys 4 bicycle reflectors for $19.56 each and a pair of bike gloves for $16.52.
He plans to spend some or all of the money he has left to buy new biking outfits for $50.80 each.

Write and solve an inequality which can be used to determine
x, the number of outfits Tariq can purchase while staying within his budget.

Answers

Let's solve the inequality to determine the number of outfits Tariq can purchase while staying within his budget.

Given:

Amount Tariq has to spend: $640

Cost of a new bicycle: $291.24

Cost of 4 bicycle reflectors: $19.56 each

Cost of bike gloves: $16.52

Cost of each biking outfit: $50.80

Let's assume the number of outfits Tariq can purchase is represented by x.

The total cost of the items he has already purchased is:

Cost of bicycle = $291.24

Cost of 4 bicycle reflectors = $19.56 * 4 = $78.24

Cost of bike gloves = $16.52

The remaining amount Tariq has to spend can be calculated as:

Remaining amount = Total amount - (Cost of bicycle + Cost of reflectors + Cost of gloves)

Remaining amount = $640 - ($291.24 + $78.24 + $16.52)

Now, we need to determine the maximum number of outfits Tariq can purchase with the remaining amount. Each outfit costs $50.80.

Inequality: x * $50.80 ≤ Remaining amount

Substituting the values:

x * $50.80 ≤ $640 - ($291.24 + $78.24 + $16.52)

Simplifying further:

x * $50.80 ≤ $640 - $385

x * $50.80 ≤ $255

To solve for x, we divide both sides of the inequality by $50.80:

x ≤ $255 / $50.80

x ≤ 5

Therefore, the maximum number of outfits Tariq can purchase while staying within his budget is 5.

Solve for z. z² = 36 Enter your answer in the box. z = ​

Answers

Answer:

Step-by-step explanation:

z=6

What change in volume results if 60.0 mL of gas is cooled from 33.0°C to 5.00°C​

Answers

Answer:

The change in volume is -5.5 mL (a decrease in volume of 5.5 mL) when 60.0 mL of gas is cooled from 33.0°C to 5.00°C.

Step-by-step explanation:

To calculate the change in volume, we need to use the ideal gas law equation:

V1/T1 = V2/T2

where V1 and T1 are the initial volume and temperature, and V2 and T2 are the final volume and temperature.

Given:

V1 = 60.0 mL

T1 = 33.0°C = 33.0 + 273.15 = 306.15 K

T2 = 5.00°C = 5.00 + 273.15 = 278.15 K

Now we can calculate V2, the final volume:

V1/T1 = V2/T2

(60.0 mL) / (306.15 K) = V2 / (278.15 K)

Cross-multiplying and solving for V2:

V2 = (60.0 mL) * (278.15 K) / (306.15 K)

V2 = 54.5 mL

The final volume, V2, is 54.5 mL.

To find the change in volume, we subtract the initial volume from the final volume:

Change in volume = V2 - V1

Change in volume = 54.5 mL - 60.0 mL

Change in volume = -5.5 mL

Therefore, the change in volume is -5.5 mL (a decrease in volume of 5.5 mL) when 60.0 mL of gas is cooled from 33.0°C to 5.00°C.


What is the correct order of the functions from least to greatest according to the average rate of
change on the interval from x=-1 to x-3? (2 points)

Answers

The correct option is the second one, the order is:

g(x), f(x), h(x).

How to find the rates of change?

To find the rate of change for a function f(x) on an interval [a, b] we need to get:

R = (f(b) - f(a))/(b - a)

Here the interval is [-1, 3]

The first function is:

f(x)=  (x + 3)² - 2

Evaluating we get:

f(-1) = (-1 + 3)² - 2

f(-1) = 2² - 2 = 4 -2 = 2

and f(3) = (3 + 3)² - 2 = 34

Then the rate is:

R = (34 - 2)/(3 + 1) = 8

For g(x) we can use the graph, we have:

R = (0 + 2)/4 = 1/2

For the last function we need to use the table, then we will get:

R = (62 - 14)/(3 + 1) = 12

Then the order, from least to greatest is:

g(x), f(x), h(x).

Learn more about rates of change at:

https://brainly.com/question/8728504

#SPJ1

d) Suppose you begin making a monthly payment of $75.00. Fill in the table.
Month Current balance
1
2
3
4
5
6
7
8
9
10
11
12
WYPIE
$2750.00
Interest
$45.38
Payment
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
$75.00
Amount applied to principal
$29.62

Answers

Answer:

Step-by-step explanation:

Answer:

For month 1, the current balance is $2750.00, the interest is $45.38, and the payment is $75.00. The amount applied to principal is $29.62.

For the remaining months, the interest and payment amount will stay the same, but the current balance and amount applied to principal will change based on the previous month's numbers.

Point of view:

Here's your answer but I prefer you to focus and study hard because school isn't that easy. But i'm glad I could help you!

:)

given the function f(x)=logbase2(X), find the y-intercept of g(x) = f(x+4)+8

Answers

The y-intercept of f(x + 4) + 8 is given as follows:

10.

What is a translation?

A translation happens when either a figure or a function is moved horizontally or vertically on the coordinate plane.

The four translation rules for functions are defined as follows:

Translation left a units: f(x + a).Translation right a units: f(x - a).Translation up a units: f(x) + a.Translation down a units: f(x) - a.

The parent function for this problem is given as follows:

[tex]f(x) = \log_2{x}[/tex]

The translated function is then given as follows:

[tex]g(x) = \log_2{x + 4} + 8[/tex]

The y-intercept of the function is the numeric value at x = 0, hence:

[tex]g(0) = \log_2{0 + 4} + 8[/tex]

g(0) = 2 + 8 = 10.

More can be learned about translations at brainly.com/question/28174785

#SPJ1

a triangle has angle measurements of 51 89 and 40 what kind of triangle is it?

(20 points, please answer quick)

Answers

The correct classification for this triangle is an acute triangle.

How to solve

The angle measures given are 51, 89, and 40 degrees.

There are no angles that are either equal to or greater than 90 degrees among those mentioned. Consequently, the triangle does not contain any angles that are either right or obtuse.

To categorize a triangle according to its angles, the total of the angles within the triangle, which is invariably 180 degrees, is taken into account.

51 + 89 + 40 = 180

Given that the total of the angles is 180 degrees, we can deduce that this particular triangle is acute in nature. An acute-angled triangle is a type of triangle that has three angles which are each smaller than 90 degrees.

Therefore, the correct classification for this triangle is an acute triangle.

Read more about acute angles here:

https://brainly.com/question/6979153

#SPJ1

An artist made a cone of stainless steel, then sliced it into three pieces. what is the volume of the largest piece? PLEASE SHOW WORK AND EXPLAIN HOW YOU GOT YOUR ANSWER I WILL MARK YOU BRAINLIEST!!!

Answers

The volume of the largest piece is 10, 597. 5 cm³

How to determine the volume

The largest part of the cone takes the shape of a cylinder.

Now, the formula for calculating the volume of a cylinder is expressed as;

V = πr²h

The parameters of the formula are enumerated as;

V is the volume of the cylinder.r is the radius of the cylinder.h is the height of the cylinder.

Now, substitute the values, we get;

Diameter = 2 radius

Radius = 30/2

Radius = 15cm

Height = 15cm

Now, substitute the values, we get;

Volume = 3.14 × 15² ×15

Find the square value and substitute, we have;

Volume = 10, 597. 5 cm³

Learn more about volume at: https://brainly.com/question/1972490

#SPJ1

Given the number pattern:
20; 18: 14; 8;

a) Determine the nth term of this number pattern.
b) Determine the value of T12 in this number pattern.
c) Which term in this number pattern will have a value of - 36?

A quadratic number pattern has a second term equal to 1, a third term equal to -6 and a fifth term equal to - 14.

a) Calculate the second difference of this quadratic number pattern.
b) Hence, or otherwise, calculate the first term of this number pattern.

Answers

Answer:

[tex]\textsf{a)} \quad T_n=-n^2+n+20[/tex]

[tex]\textsf{b)} \quad T_{12}=-112[/tex]

[tex]\textsf{c)} \quad \sf 8th\;term[/tex]

a)  Second difference is 2.

b)  First term is 10.

Step-by-step explanation:

The given number pattern is:

20, 18, 14, 8, ...

To determine the type of sequence, begin by calculating the first differences between consecutive terms:

[tex]20 \underset{-2}{\longrightarrow} 18 \underset{-4}{\longrightarrow} 14 \underset{-6}{\longrightarrow}8[/tex]

As the first differences are not the same, we need to calculate the second differences (the differences between the first differences):

[tex]-2 \underset{-2}{\longrightarrow} -4 \underset{-2}{\longrightarrow} -6[/tex]

As the second differences are the same, the sequence is quadratic and will contain an n² term.

The coefficient of the n² term is half of the second difference.

As the second difference is -2, the coefficient of the n² term is -1.

Now we need to compare -n² with the given sequence (where n is the position of the term in the sequence).

[tex]\begin{array}{|c|c|c|c|c|}\cline{1-5}n&1&2&3&4\\\cline{1-5}-n^2&-1&-4&-9&-16\\\cline{1-5}\sf operation&+21&+22&+23&+24\\\cline{1-5}\sf sequence&20&18&14&8\\\cline{1-5}\end{array}[/tex]

We can see that the algebraic operation that takes -n² to the terms of the sequence is to add (n + 20).

[tex]\begin{array}{|c|c|c|c|c|}\cline{1-5}n&1&2&3&4\\\cline{1-5}-n^2&-1&-4&-9&-16\\\cline{1-5}+n&0&-2&-6&-12\\\cline{1-5}+20&20&18&14&8\\\cline{1-5}\sf sequence&20&18&14&8\\\cline{1-5}\end{array}[/tex]

Therefore, the expression to find the the nth term of the given quadratic sequence is:

[tex]\boxed{T_n=-n^2+n+20}[/tex]

To find the value of T₁₂, substitute n = 12 into the nth term equation:

[tex]\begin{aligned}T_{12}&=-(12)^2+(12)+20\\&=-144+12+20\\&=-132+20\\&=-112\end{aligned}[/tex]

Therefore, the 12th term of the number pattern is -112.

To find the position of the term that has a value of -36, substitute Tₙ = -36 into the nth term equation and solve for n:

[tex]\begin{aligned}T_n&=-36\\-n^2+n+20&=-36\\-n^2+n+56&=0\\n^2-n-56&=0\\n^2-8n+7n-56&=0\\n(n-8)+7(n-8)&=0\\(n+7)(n-8)&=0\\\\\implies n&=-7\\\implies n&=8\end{aligned}[/tex]

As the position of the term cannot be negative, the term that has a value of -36 is the 8th term.

[tex]\hrulefill[/tex]

Given terms of a quadratic number pattern:

T₂ = 1T₃ = -6T₅ = -14

We know the first differences are negative, since the difference between the second and third terms is -7. Label the unknown differences as -a, -b and -c:

[tex]T_1 \underset{-a}{\longrightarrow} 1 \underset{-7}{\longrightarrow} -6 \underset{-b}{\longrightarrow}T_4 \underset{-c}{\longrightarrow} -14[/tex]

From this we can create three equations:

[tex]T_1-a=1[/tex]

[tex]-6-b=T_4[/tex]

[tex]T_4-c=-14[/tex]

The second differences are the same in a quadratic sequence. Let the second difference be x. (As we don't know the sign of the second difference, keep it as positive for now).

[tex]-a \underset{+x}{\longrightarrow} -7\underset{+x}{\longrightarrow} -b \underset{+x}{\longrightarrow}-c[/tex]

From this we can create three equations:

[tex]-a+x=-7[/tex]

[tex]-7+x=-b[/tex]

[tex]-b+x=-c[/tex]

Substitute the equation for -b into the equation for -c to create an equation for -c in terms of x:

[tex]-c=(-7+x)+x[/tex]

[tex]-c=2x-7[/tex]

Substitute the equations for -b and -c (in terms of x) into the second two equations created from the first differences to create two equations for T₄ in terms of x:

[tex]\begin{aligned}-6-b&=T_4\\-6-7+x&=T_4\\T_4&=x-13\end{aligned}[/tex]

[tex]\begin{aligned}T_4-c&=-14\\T_4+2x-7&=-14\\T_4&=-2x-7\\\end{aligned}[/tex]

Solve for x by equating the two equations for T₄:

[tex]\begin{aligned}T_4&=T_4\\x-13&=-2x-7\\3x&=6\\x&=2\end{aligned}[/tex]

Therefore, the second difference is 2.

Substitute the found value of x into the equations for -a, -b and -c to find the first differences:

[tex]-a+2=-7 \implies -a=-9[/tex]

[tex]-7+2=-b \implies -b=-5[/tex]

[tex]-5+2=-c \implies -c=-3[/tex]

Therefore, the first differences are:

[tex]T_1 \underset{-9}{\longrightarrow} 1 \underset{-7}{\longrightarrow} -6 \underset{-5}{\longrightarrow}T_4 \underset{-3}{\longrightarrow} -14[/tex]

Finally, calculate the first term:

[tex]\begin{aligned}T_1-9&=1\\T_1&=1+9\\T_1&=10\end{aligned}[/tex]

Therefore, the first term in the number pattern is 10.

[tex]10 \underset{-9}{\longrightarrow} 1 \underset{-7}{\longrightarrow} -6 \underset{-5}{\longrightarrow}-11 \underset{-3}{\longrightarrow} -14[/tex]

Note: The equation for the nth term is:

[tex]\boxed{T_n=n^2-12n+21}[/tex]

A five question multiple choice quiz has five choices for each answer. Use the random number table provided, with 0’s representing incorrect answers, and 1’s representing correct answers to answer the following question: What is the experimental probability of correctly guessing at random exactly one correct answer?

Answers

The total number of possible outcomes is the number of rows in the table, which depends on the size of the table.

To determine the experimental probability of correctly guessing exactly one correct answer out of five choices, we can utilize the random number table provided, where 0's represent incorrect answers and 1's represent correct answers.

Since we have five choices for each answer, we will focus on a single row of the random number table, considering five consecutive values.

Let's assume we have randomly selected a row from the table, and the numbers in that row are as follows:

0 1 0 1 0

In this case, the second and fourth answers are correct (represented by 1's), while the remaining three choices are incorrect (represented by 0's).

To calculate the experimental probability of exactly one correct answer, we need to determine the number of favorable outcomes (i.e., rows with exactly one 1) and divide it by the total number of possible outcomes (which is equal to the number of rows in the table).

Looking at the table, we can see that there are several possible rows with exactly one 1, such as:

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

Let's assume there are 'n' favorable outcomes. In this case, 'n' is equal to 3.

The total number of possible outcomes is the number of rows in the table, which depends on the size of the table. Without the specific size of the table, we cannot provide an accurate value.

To calculate the experimental probability, we divide the number of favorable outcomes by the total number of possible outcomes:

Experimental probability = n / Total number of possible outcomes

For more questions on possible outcomes

https://brainly.com/question/27442447

#SPJ8

Brian cut of 25% of a stick which was 1.6 meters long what percent of the stick is remaining

Answers

Answer:

The remaining is 75%, the length of the stick would be 1.2

Step-by-step explanation:

According to the information given,

We know that Brian cut off 25% of a stick which was 1.6 meters long

and 1.6 is the 100% of the stick:

It is fairly easy to calculate this, subtract 25 from 100 ( 100 - 25 ), which is equal to 75.

Hence, the answer is 75% and 1.2 for the remaining length of the stick

For more information about percentages, go to: https://brainly.com/app/ask?q=how+to+find+the+percentage

I need some help with this

Answers

4444 is the closest answer.

Simplifying a product involving square roots using distributi…

Answers

The simplified expression in the context of this problem is given as follows:

[tex]5\sqrt{5}(\sqrt{10} - 3) = 25\sqrt{2} - 15\sqrt{5}[/tex]

How to simplify the expression?

The expression in the context of this problem is given as follows:

[tex]5\sqrt{5}(\sqrt{10} - 3)[/tex]

Applying the distributive property, we multiply the outer term by each of the inner terms, hence:

[tex]5\sqrt{50} - 15\sqrt{5}[/tex]

The number 50 can be written as follows:

50 = 2 x 25.

Hence the square root is simplified as follows:

[tex]\sqrt{50} = \sqrt{2 \times 25} = 5\sqrt{2}[/tex]

Hence the simplified expression is given as follows:

[tex]25\sqrt{2} - 15\sqrt{5}[/tex]

More can be learned about simplification of expressions at https://brainly.com/question/723406

#SPJ1

1. Find the volume of the rectangular prism. Use the
volume formula V = L*W*H to justify your answer.
10 cm
L= 10cm
W= 8cm
H=12cm
Volume = 80cm
12 cm
8 cm
V=

Answers

Step-by-step explanation:

prism

v=1/2 X 12cm X 8cm

V= 48

rectangular prism

v=80cm+48cm

v=128cm

Find the value of x to
the nearest whole
number.

Answers

Answer: i'm kind of just guessing, but i think x = 13

Step-by-step explanation:

please don't ask me how i don't know

PLEASE ANSWER ASAP!!

Answers

-8 and 4 and exactly 6 units away from P

Answer:

-8 and 4

Step-by-step explanation:

P= -2

-2+6 = 4

-2-8= -8

Solve following modular equation, using reverse Euclidean algorithm:

[tex](5 * x) mod 91 = 32[/tex]

Answers

The required reverse Euclidean algorithm is the solution to the modular equation (5x) mod 91 is

x = 6(mod 91).

Given that (5*x) mod 91 =32.

To solve the modular equation (5*x) mod 91 =32 using reverse Euclidean algorithm is to find the modular inverse of 5 modulo 91.

Consider  (5*x) mod 91 =32.

5x = 32(mod 91)

Apply the Euclidean algorithm to find GCD of 5 and 91 is

91 = 18 * 5 + 1.

Rewrite it in congruence form,

1 = 91 - 18 *5

On simplifying the equation,

1 = 91 (mod 5)

The modular inverse of 5 modulo 91 is 18.

Multiply equation by 18 on both sides,

90x = 576 (mod91)

To obtain the smallest positive  solution,

91:576 = 6 (mod 91)

Divide both sides by the coefficient of x:

x = 6 * 90^(-1).

Apply the Euclidean algorithm,

91 = 1*90 + 1.

Simplify the equation,

1 + 1 mod (90)

The modular inverse of 90 modulo 91 is 1.

Substitute the modular inverse in the given question gives,

x = 6*1(mod 91)

x= 6 (mod91)

Therefore, the solution to the modular equation (5x) mod 91 is

x = 6(mod 91).

Learn more about modular equation click here:

https://brainly.com/question/15055095

#SPJ1

Which expressions are equivalent to the expression 3x2 - 5a3+2y4?

Answers

Answer: There are several expressions that are equivalent to the given expression 3x^2 - 5a^3 + 2y^4. Here are a few examples:

2y^4 - 5a^3 + 3x^2-5a^3 + 3x^2 + 2y^43x^2 + 2y^4 - 5a^32y^4 + 3x^2 - 5a^3

These expressions have the same terms but may differ in the order in which the terms are written. It's important to note that the coefficients and exponents of the variables remain unchanged in each expression.

50 Points! Multiple choice geometry question. Photo attached. Thank you!

Answers

So I answered your other question, here we use another law, specifically the law of sins.

Law is sins is

SinA/a = SinB/b = SinC/c

Since you are given A’s side and length we can use this to be the “base” of the problem and solve for C because we are also given this angle.

It’s set up like this:

Sin42/12 = Sin56/C

Cross multiply

12sin56 = Csin42

Divide by Sin42 to get C by itself

(12sin56)/(Sin42) = C

The answer you should get is 14.86 which rounded is 14.9

D is your answer.

Hope it helps lmk if there are questions

10 cm
15 cm
17 cm
5 cm
What is the volume of this figure?
6 cm
10 cm

Answers

The Volume of Trapezoidal prism is 420 cm².

From the given figure we can write the dimension of the prism as

a = 5, b=15, c= 15, d= 15

h= 7 and l = 6 cm

Now, Volume of Trapezoidal prism

= 1/2 (a+b) x h x l

= 1/2 (5+15) x 7 x 6

= 1/2 x 20 x 42

= 10 x 42

= 420 cm²

Thus, the Volume of Trapezoidal prism is 420 cm².

Learn more about Volume here:

https://brainly.com/question/28058531

#SPJ1

An expression is shown. 2 + 2(x – 3) – 5x Which expression is equivalent to the expression shown? –3x – 4 –3x – 1 –x – 12 –x – 3

Answers

The other options provided, -3x - 1, -x - 12, and -x - 3, do not match the simplified form of the given expression. Only -3x - 4 corresponds to the original expression after simplification. It is important to carefully distribute and combine like terms to simplify expressions correctly.

The expression shown is 2 + 2(x – 3) – 5x. To find an equivalent expression, we need to distribute the 2 to both terms inside the parentheses, resulting in 2x - 6. Now we can simplify the expression further:

2 + 2x - 6 - 5x

Combining like terms, we have:

(2x - 5x) + (2 - 6)

This simplifies to:

-3x - 4

Hence, the expression -3x - 4 is equivalent to 2 + 2(x – 3) – 5x.

For more such questions on Expression:

https://brainly.com/question/30817699

#SPJ8

The temperature is 12 celcius when the altitude is 3,000 meters above sea level.At a higher altitude the temperature reads 4 celcius.Was there an increase or decrease in the temperature?

Answers

Answer:

Decrease in temp.

Step-by-step explanation:

Here is the reason:

Initially, at an altitude of 3,000 meters above sea level, the temperature was 12 degrees Celsius. As the altitude increased, the temperature dropped to 4 degrees Celsius. Since the temperature decreased from 12 degrees Celsius to 4 degrees Celsius, there was a decrease in the temperature

Multiplying polynomials (7x - 5)(6x - 4)

Answers

The product of (7x - 5)(6x - 4) is 42x^2 - 58x + 20.

First, distribute the first term of the first polynomial (7x) to each term in the second polynomial (6x - 4):

7x × 6x = 42x²

7x × (-4) = -28x

Next, distribute the second term of the first polynomial (-5) to each term in the second polynomial (6x - 4):

-5 × 6x = -30x

-5 × (-4) = 20

Now, combine the like terms:

42x² - 28x - 30x + 20

Simplify the expression:

42x² - 58x + 20

Therefore, the product of (7x - 5)(6x - 4) is 42x^2 - 58x + 20.

Learn more about Polynomial here:

https://brainly.com/question/11536910

#SPJ1

PLEASE HELP AS SOON AS POSSIBLE !

The diameter, , of a sphere is 14.6. Calculate the sphere's volume, .
Use the value 3.14 for pi , and round your answer to the nearest tenth. (Do not round any intermediate computations.)

Answers

The volume of the sphere, given that the sphere has a diameter of 14.6 mm is 1628.7 mm³

How do i determine the volume of the sphere?

The following data were obtained from the question:

Diameter (D) = 14.6 mmRadius (r) = Diameter (D) / 2 = 14.6 / 2 = 7.3 mmPi (π) = 3.14Volume of sphere =?

The volume of a sphere is giving by the following formula

Volume of sphere = 4/3πr³

Inputting the given parameters, we can obtain the volume of the sphere as follow:

Volume of sphere = (4/3) × 3.14 × 7.3³

Volume of sphere = (4/3) × 3.14 × 389.017

Volume of sphere = 1628.7 mm³

Thus, we can conclude from the above calculation that the volume of the sphere is 1628.7 mm³

Learn more about volume of sphere:

https://brainly.com/question/29151172

#SPJ1

b. Does there appear to be any relationship between these two variables?
a. colder average low-temperature seems to lead to higher amounts of snowfall
b. there is no relationship
c. colder average low-temperature seems to lead to lower amounts of snowfall

c. Based on the scatter diagram, comment on any data points that seem to be unusual.
an average snowfall of nearly 100 inches.
a. no city has
b. only one city has
c. two cities have
d. three cities have
e. four cities have
f. more than four cities have

Answers

1. There is no relationship

2. Two cities have an average snowfall of nearly 100 inches.

What is the scatter plot?

A scatter plot, also known as a scatter diagram or scatter graph, displays the relationship between two variables. It is particularly beneficial for identifying any patterns or trends in the data and showing how one variable might be related to another.

In a scatter plot, each data point is represented on the graph by a dot or marker. The horizontal axis (x-axis) is frequently used to represent the independent variable or predictor, while the vertical axis (y-axis) is frequently used to represent the dependent variable or reaction. Each dot's locations on the graph correspond to the values of the two variables for that particular data point.

Learn more about scatter plot:https://brainly.com/question/29366075

#SPJ1

A rectangles field is 135 meters long and 100 meters wide give the length and width of another rectangular field that has the same perimeter but a larger area

Answers

The length is 117.5
The width is 117.5

Answer:  if the length of the second rectangular field is 200 meters, the width should be 35 meters to have the same perimeter but a larger area.

Step-by-step explanation:

STEP1:- Let's denote the length of the second rectangular field as L2 and the width as W2.

The perimeter of a rectangle is given by the formula:

Perimeter = 2(length + width).

For the first rectangular field with length L1 = 135 meters and width W1 = 100 meters, the perimeter is:

Perimeter1 = 2(135 + 100) = 470 meters.

STEP 2:- To find the length and width of the second rectangular field with the same perimeter but a larger area, we need to consider that the perimeters of both rectangles are equal.

Perimeter1 = Perimeter2

470 = 2(L2 + W2)

STEP 3 :- To determine the larger area, we need to find the corresponding length and width. However, there are multiple solutions for this problem. We can set an arbitrary value for one of the dimensions and calculate the other.

For example, let's assume the length of the second rectangular field as L2 = 200 meters:

470 = 2(200 + W2)

470 = 400 + 2W2

2W2 = 470 - 400

2W2 = 70

W2 = 35 meters

HENCE L2 = 200 meters and W2 = 35 meters

Describe the transformations of each equation

Answers

The required answer are :

6. The transformation from the graph of f to the graph of r in equation (6) involves compressing the graph horizontally by a factor of 5/2.

7. The transformation from the graph of f to the graph of r in equation (7) involves stretching the graph vertically by a factor of 6.

8.  The transformation from the graph of f to the graph of r in equation (8) involves shifting the graph horizontally to the right by 3 units.

9. The transformation from the graph of f to the graph of r in equation (9) involves compressing the graph horizontally by a factor of 4/3.

10.  The transformation from the graph of f to the graph of r in equation (10) involves shrinking the graph vertically by a factor of 1/2.

11.  The transformation from the graph of f to the graph of r in equation (11) involves shifting the graph vertically upward by 3 units.

In formula form: r(x) = f(2/5x)

This transformation causes the graph of r to become narrower compared to the graph of f, as it is compressed horizontally. The rate at which x-values change is increased, resulting in a steeper slope. The overall shape and direction of the graph remain the same, but it is narrower and more compact.

Therefore, the transformation from the graph of f to the graph of r in equation (6) involves compressing the graph horizontally by a factor of 5/2. This means that every x-coordinate in the graph of f is multiplied by 2/5 to obtain the corresponding x-coordinate in the graph of r. The vertical positioning of the graph remains unchanged.

In formula form: r(x) = 6f(x)

This transformation causes the graph of r to become taller compared to the graph of f, as it is stretched vertically. The rate at which y-values change is increased, resulting in a steeper slope. The overall shape and direction of the graph remain the same, but it is taller and more elongated.

Therefore, the transformation from the graph of f to the graph of r in equation (7) involves stretching the graph vertically by a factor of 6. This means that every y-coordinate in the graph of f is multiplied by 6 to obtain the corresponding y-coordinate in the graph of r. The horizontal positioning of the graph remains unchanged.

In formula form: g(x) = f(x - 3)

This transformation causes the entire graph of f to shift to the right by 3 units. Every point on the graph of f moves horizontally to the right, maintaining the same vertical position. The overall shape and slope of the graph remain the same, but it is shifted to the right.

Therefore, the transformation from the graph of f to the graph of r in equation (8) involves shifting the graph horizontally to the right by 3 units. This means that each x-coordinate in the graph of f is increased by 3 to obtain the corresponding x-coordinate in the graph of r. The vertical positioning of the graph remains unchanged.

In formula form: g(x) = f(4/3x)

This transformation causes the graph of r to become narrower compared to the graph of f, as it is compressed horizontally. The rate at which x-values change is increased, resulting in a steeper slope. The overall shape and direction of the graph remain the same, but it is narrower and more compact.

Therefore, the transformation from the graph of f to the graph of r in equation (9) involves compressing the graph horizontally by a factor of 4/3. This means that every x-coordinate in the graph of f is multiplied by 4/3 to obtain the corresponding x-coordinate in the graph of r. The vertical positioning of the graph remains unchanged.

In formula form: g(x) = 1/2 f(x)

This transformation causes the graph of r to become shorter compared to the graph of f, as it is vertically shrunk. The rate at which y-values change is decreased, resulting in a flatter slope. The overall shape and direction of the graph remain the same, but it is shorter and more compact.

The transformation from the graph of f to the graph of r in equation (10) involves shrinking the graph vertically by a factor of 1/2. This means that every y-coordinate in the graph of f is multiplied by 1/2 to obtain the corresponding y-coordinate in the graph of r. The horizontal positioning of the graph remains unchanged.

In formula form: g(x) = f(x) + 3

This transformation causes the entire graph of f to shift upward by 3 units. Every point on the graph of f moves vertically upward, maintaining the same horizontal position. The overall shape and slope of the graph remain the same, but it is shifted upward.

The transformation from the graph of f to the graph of r in equation (11) involves shifting the graph vertically upward by 3 units. This means that every y-coordinate in the graph of f is increased by 3 to obtain the corresponding y-coordinate in the graph of r. The horizontal positioning of the graph remains unchanged.

Learn more about graph transformations click here:

https://brainly.com/question/19040905

#SPJ1

Jane wants to estimate the proportion of students on her campus who eat cauliflower. After surveying 35 students, she finds 4 who eat cauliflower. Obtain and interpret a 99% confidence interval for the proportion of students who eat cauliflower on Jane's campus using Agresti and Coull's method. Click the icon to view Agresti and Coull's method. Construct and interpret the 99% confidence interval. Select the correct choice below and fill in the answer boxes within your choice. (Round to three decimal places as needed.) A. There is a 99% chance that the proportion of students who eat cauliflower on Jane's campus is between Jane's and OB. One is 99% confident that the proportion of students who eat cauliflower on Jane's campus is between OC. There is a 99% chance that the proportion of students who eat cauliflower in Jane's sample is between OD. The proportion of students who eat cauliflower on Jane's campus is between and 99% of the time. and and​

Answers

Based on the information, A. There is a 99% chance that the proportion of students who eat cauliflower on Jane's campus is between 5.03% and 17.83%.

How to calculate the value

Calculate the sample proportion:

= x / n = 4 / 35

= 0.1143

Calculate the Agresti and Coull's adjustment factor:

zα/2 = z(1 - α/2) = z(1 - 0.99/2)

= 2.576

Calculate the margin of error:

= 2.576 √(0.1143(1 - 0.1143) / 35)

= 0.064

Calculate the confidence interval:

= 0.1143 ± 0.064

= (0.0503, 0.1783)

We are 99% confident that the true proportion of students who eat cauliflower on Jane's campus is between 5.03% and 17.83%.

In other words, if we were to repeat this study many times, we would expect to obtain a confidence interval that includes the true proportion of students who eat cauliflower on Jane's campus 99% of the time.

Learn more about proportion on

https://brainly.com/question/1496357

#SPJ1

Show work and number

Answers

The measure of length of the triangle is solved and

a) x = 4.9 units

b) x = 14 units

c) x = 4.8 cm

d) b = 68.5 units

Given data ,

Let the triangle be represented as ΔABC

where the measure of the lengths of the sides are given as

a)

The measure of hypotenuse AC = 12

The measure of angle ∠BAC = 66°

So , from the trigonometric relations , we get

cos θ = adjacent / hypotenuse

cos 66° = x / 12

So , x = 12 cos ( 66 )°

x = 4.9 units

b)

The measure of base of triangle BC = 20 units

And , the angle ∠BAC = 55°

So , from the trigonometric relations , we get

tan θ = opposite / adjacent

tan 55° = 20/x

x = 20 / tan55°

x = 14 units

c)

The measure of base of triangle BC = 4 cm

And , the angle ∠BAC = 57°

So , from the trigonometric relations , we get

sin θ = opposite / hypotenuse

sin 57° = 4/x

x = 4 / sin 57°

x = 4.8 cm

d)

The measure of base of triangle BC = 38 units

And , the angle ∠BAC = 61°

So , from the trigonometric relations , we get

tan θ = opposite / adjacent

tan 61° = b/38

b = 38 x tan 61°

b = 68.5 units

Hence , the trigonometric relations are solved.

To learn more about trigonometric relations click :

https://brainly.com/question/14746686

#SPJ1

Other Questions
FILL THE BLANK. one study on recidivism demonstrated that the inmates who adjusted most successfully to prison life ________ to life in the free community upon release. business dealings involving companies in more than one state Romeo on LoveTo what does Romeo compare love in these lines? List as many comparisonsas you can. What does this view of love reveal about Romeo's state of mind?Be sure to cite textual evidence to support your conclusions. An object is placed 5.0 cm to the left of a converging lens that has a focal length of 20 cm. Describe what the resulting image will look like (i.e. image distance, magnification, upright or inverted images, real or virtual images)? Which of the following terms refers to the surgical removal of hypertrophied connective tissue to release a contracture?ArthrodesisAmputationArthroplastyFasciectomySynovectomy Suppose, for simplicity, that Type I and Type II errors resulted in deaths only. Keeping in mind that too little caution produces Type I errors and too much caution produces Type II errors, what would be the best mix of Type I and Type II errors? T/F. the question of whether a computer system has a multiplication instruction is more of a computer organization-related question than a computer-architecture question The line r represents f ( x ) = x 4 3 . Therefore, the line that represents f - 1 is and f - 1 ( x ) = x + . what differentiates motivational interviewing from person-centered therapy Results for this submission Entered Answer Preview -2 2 (25 points) Find the solution of xy" + 5xy' + (4 3x)y=0, x > 0 of the form L 9h - 2 Cna", n=0 where co = 1. Enter r = -2 n n = 1, There are several characteristics that newspapers have in common: they are published Periodically, usually at !short regular intervals not exceeding a weak; they are meant to appeal to a wide spectrum of the general public; they usually contain advertisements,, and; they purpose is to convey news or advocate opinions. Newspapers may also be defined in state law to identify the types of publications in which legal notices may be published. Other statutes that may contain defenitions regarding newspapers include those relating to taxation, licensing. libel, antitrust, regulation of news Racks, postal rates, and regulation of other content. Magazines are commonly understood to be synonymous with the term periodical. Each issue of a periodical contains a vareity of original articles by different authors. 1) match the vocabulary words with the definitions. an ancient art combining science, art, mysticism, astrology, and medicine an oval or egg-shaped circle evidence that can be measured or reproduced model in which the sun and all the planets revolve around the earth force of attraction between bodies such as planets model in which the earth and planets revolve around the sun a representative who makes decisions using his or her best judgment rather than voting the way constituents demand is called a . group of answer choices a. a legislative b. leader c. trustee delegate d, subject-mattere. expert (1 point) Evaluate the integral by interpreting it in terms of areas: 6 [ 1 Se |3x - 3| dx =(1 point) Evaluate the integral by interpreting it in terms of areas: [ (5 + 49 2) dz(1 po Use the Laplace transform to solve the given initial value problem. y" 2y 168y = 0; y(0) = 5, y'(0) = 18 = = = Find the domain of the function. (Enter your answer using interval notation.) x g(x)= 6x + 5x - 1 X your patient, mr. a, had a recent myocardial infarction and open heart surgery with an uncomplicated recovery. his wife tells you that mr. a has changed and is now uncommunicative, sad, and discouraged about the future. how would you respond to mrs. a? Yellowstone and Hawaii are very different volcanoes but are both the result of mantle plumes. Explain in detail how magma is generated both locations. What are the magma compositions? What types of volcanoes are they? Whatare the hazards associated with each of these volcanic systems? Sketches are strongly recommended! Find the area of the sector of a circle with central angle of 60 if the radius of the circle is 3 meters. Write answer in exact form. A= m2 What do dreams symbolize in the novel ? In the bluest eye Steam Workshop Downloader