Answer: The correct answer is A) The track was not level and was tilted slightly downward.
Explanation: This is because of the two values: 0.4 kg and 0.5 kg. I won't go into much detail but due to this difference of mass, we know that the track was not level.
"The track was not level and was tilted slightly downward" could explain the difference in the mass.
Mostly because the university student or learners calculates a mass of just over the spring quantity, the vehicle speed seems to have been higher than there would have had to be.Option B, as well as Option C, are wrong because the acceleration would've been smaller in each of these 2 circumstances, so that computed mass would've been larger.
Thus Option A is appropriate.
Learn more:
https://brainly.com/question/11839345
The emf of the battery is 1.5 V. In Nichrome there are 9 × 1028 mobile electrons per m3, and the mobility of mobile electrons is 7 × 10−5 (m/s)/(N/C). Each thick wire has length 29 cm = 0.29 m and cross-sectional area 9 × 10−8 m2. The thin wire has length 6 cm = 0.06 m and cross-sectional area 1.3 × 10−8 m2. (The total length of the three wires is 64 cm.) In the steady state, calculate the number of electrons entering the thin wire every second. Do not make any approximations, and do not use Ohm's law or series-resistance equations.
Answer:
The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second
Explanation:
Given;
emf of the battery, V = 1.5 V
electron density, = 9 × 10²⁸ mobile electrons per m³
mobility of electron, u = 7 × 10⁻⁵ (m/s)/(N/C)
length of thin wire, L = 6 cm = 0.06 m
cross sectional area of the thin wire, A = 1.3 x 10⁻⁸ m²
The magnitude of the electric field in the thin wire is given by;
E = V/L
E = (1.5) / (0.06)
E = 25 N/C
the number of electrons entering the thin wire every second is given by;
[tex]e/s = mobility \ x \ Electric \ field\\\\number \ of \ electrons \ per \ second =\frac{7*10^{-5} (m/s)}{N/C} *25 (N/C)\\\\number \ of \ electrons \ per \ second = 1.75*10^{-3} \ m/s[/tex]
Therefore, the number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second
The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second
Calculation of the number of electrons:Since
emf of the battery, V = 1.5 V
electron density, = 9 × 10²⁸ mobile electrons per m³
mobility of electron, u = 7 × 10⁻⁵ (m/s)/(N/C)
length of thin wire, L = 6 cm = 0.06 m
cross sectional area of the thin wire, A = 1.3 x 10⁻⁸ m²
So here the magnitude should be
E = V/L
E = (1.5) / (0.06)
E = 25 N/C
Now the number of electrons should be
= 7 × 10⁻⁵ *25
= 1.75 x 10⁻³ mobile
hence, The number of electrons entering the thin wire every second is 1.75 x 10⁻³ mobile electrons / second
Learn more about electron here: https://brainly.com/question/24701476
PLEASE HELP
A sharpshooter fires a 0.22 caliber rifle horizontally at 100 m/s at a target 75m away. How far does the
bullet drop by the time it reaches the target?
This question involves the concept of semi-projectile motion. It can be solved using the equations of motion in the horizontal and the vertical motion.
The bullet drops "2.76 m" by the time it reaches the target.
First, we will analyze the horizontal motion. We assume no air resistance, so the horizontal motion will be uniform. Hence, using the equation of uniform motion here to find the total time to reach the target:
[tex]s = vt\\\\t = \frac{s}{v}[/tex]
where,
s = distance = 75 m
v = velocity = 100 m/s
t = time = ?
Therefore,
[tex]t = \frac{75\ m}{100\ m/s}[/tex]
t = 0.75 s
Now, we will analyze the vertical motion of the bullet. We will use the second equation of motion in the vertical direction to find the height dropped by the bullet.
[tex]h = v_it+\frac{1}{2}gt^2[/tex]
where,
h = height dropped = ?
vi = initial vertical speed = 0 m/s
t = time interval = 0.75 s
g = acceleration due to gravity = 9.81 m/s²
therefore,
[tex]h = (0\ m/s)(0.75\ s)+\frac{1}{2}(9.81\ m/s^2)(0.75\ s)^2[/tex]
h = 2.76 m
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
A Navy Seal of mass 80 kg parachuted directly down into an enemy harbor. At one point while she was falling, the resistive force that air exerted on her was 520 N upward. What can you determine about her motion at this point in time
Answer:
The Navy Seal is accelerating downwards at the rate of 3.3 m/s²
Explanation:
Given;
mass of the Navy Seal, m = 80 kg
the upward resistive force on her, F = 520 N
Her net downward force is given by;
[tex]F_{net} = F_{down} - F_{up}\\\\F_{net} = (80*9.8) - 520\\\\F_{net} = 264 \ N[/tex]
Her downward acceleration at this time is given by;
F = ma
a = F / m
a = 264 / 80
a = 3.3 m/s²
Therefore, the Navy Seal is accelerating downwards at the rate of 3.3 m/s²
A particle moves along a path described by y=Ax^3 and x = Bt, where tt is time. What are the units of A and B?
Answer:
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
Explanation:
From Dimensional Analysis we understand that [tex]x[/tex] and [tex]y[/tex] have length units ([tex][l][/tex]) and [tex]t[/tex] have time units ([tex][t][/tex]). Then, we get that:
[tex][l] = A\cdot [l]^{3}[/tex] (Eq. 1)
[tex][l] = B\cdot [t][/tex] (Eq. 2)
Now we finally clear each constant:
[tex]A = \frac{[l]}{[l]^{3}}[/tex]
[tex]A = \frac{1}{[l]^{2}}[/tex]
[tex]B = \frac{[l]}{[t]}[/tex]
In a nutshell, units of A and B are [tex]\frac{1}{[l]^{2}}[/tex] and [tex]\frac{[l]}{[t]}[/tex], respectively.
A plane travelling at 100 m/s accelerates at 5 m/s² for a distance of 125 m. What is the final velocity of the plane?
Analyzing the question:
We are given:
initial velocity (u) = 100 m/s
final velocity (v) = v m/s
distance (s) = 125 m
acceleration (a) = 5 m/s²
Solving for Final Velocity (v):
from the third equation of motion:
v² - u² = 2as
v² - (100)² = 2(5)(125)
v² - 10000 = 1250
v² = 1250 + 10000
v² = 11250
v = 106.06 m/s
Jumping on a trampoline cause you to fly up in the air. What type of newton’s law is it ?
Answer:
The Third law
Explanation:
For every action there is an equal and opposite reaction.
Answer:
First Law
Explanation:
An object at rest (not moving) will stay at rest unless an unbalanced force acts on it.
An object in motion will stay in motion (in a straight line and at a constant speed) unless an unbalanced force acts on it.
You jump down on a trampoline and fly up in the air as a result.
You release a ball from rest at the top of a ramp. 6 s later it is moving at 4.0
m/s. What is the acceleration? (in meters per second squared) *
Your answer
[tex]a = \frac{vf - vi}{t} [/tex]
here initial velocity vi=0 as ball release from rest
the final velocity is vf=4.0
time is t=6
so putting all these values in above equation
[tex]a = \frac{ 4.0- 0}{6} [/tex]
[tex]a = 0.6667m \s {}^{2} [/tex]
the peripheral nervous system is responsible for both sending and receiving signals to and from the brain
Answer:
its true trust me
Explanation:
Answer: true
Explanation: edge
I am a cell. I am long and thin. I reach all the way from the brain
to the tip of a finger. I have a special coat of fat that helps me do
my job. My job is to send electrical signals from one part of the
body to another.
Answer:
Neurons
Explanation:
We humans have a nervous system that coordinates our behavior and transmits signals between different parts of our body.
Now, this nervous system contains a lot of nerve cells which we call Neurons. These Neurons have a cell like body and their job is to transmit signals from one part of our body to another.
Thus, the cell is called Neurons.
A small compass is held horizontally, the center of its needle has a distance of 0.270 m directly north
of a long wire that is perpendicular to the Earth's surface. When there is no current in the wire, the
compass needle points due north, which is the direction of the horizontal component of the Earth's
magnetic field at that location. This component is parallel to the Earth's surface. When the current in
the wire is 26.3 A, the needle points 22.9∘ east of north.
(a) Does the current in the wire flow toward or away from the Earth's surface? ( 2 marks)
(b) What is the magnitude of the horizontal component of the Earth's magnetic field at the location of
the compass? (3 marks)
Answer:
Explanation:
The needle is showing north south direction . when current starts flowing in the wire which is held vertical to the ground , it deflects towards east .
a )
Therefore a magnetic field towards east has been created . It is possible only if current flows towards the surface in the vertical wire .
b )
magnetic field created at the magnetic needle B = 10⁻⁷ x 2I / d where I is current and d is distance .
B = 10⁻⁷ x 2 x 26.3 / .27
= 194.81 x 10⁻⁷ T
angle of deflection of solenoid = 22.9°
Tan 22.9 = B /H
.422 = 194.81 x 10⁻⁷ / H
H = 461.63 x 10⁻⁷ T
= .46 x 10⁻⁴ T .
A) The current in the wire flows towards the Earth's surface
B) The magnitude of the horizontal component of the Earth's magnetic field is : 0.46 x 10⁻⁴ T
A) The compass needle held horizontally points in a North-south direction of the earth and also deflects eastwards when current is allowed to flow through it. The deflection of the needle indicates the presence/generation of a magnetic field on the earth surface. which is facilitated by the flow of the current in the wire towards the Earth's surface
B) Determine The magnitude of the horizontal component of the Earth's magnetic field
B ( magnetic field ) = 10⁻⁷ * 2I / d ---- ( 1 )
where : l = 26.3 A, d = 0.27 m
Back to equation ( 1 )
B = 10⁻⁷ * 2 * 26.3 / 0.27
= 194.81 * 10⁻⁷ T
Final step : Calculate the magnitude of horizontal component ( H )
Tan ∅ = B / H ---- ( 2 )
where : ∅ ( angle of deflection ) = 22.9°
∴ H = B / Tan ( 22.9° )
= ( 194.81 * 10⁻⁷ ) / 0.422
= 0.46 x 10⁻⁴ T
Hence we can conclude that The current in the wire flows towards the Earth's surface and The magnitude of the horizontal component of the Earth's magnetic field is : 0.46 x 10⁻⁴ T
Learn more about Earth magnetic field : https://brainly.com/question/115445
A lamp of mass m hangs from a spring scale which is attached to the ceiling of an elevator. When the elevator is stopped at the fortieth floor, the scale reads mg. What does it read as the elevator slows down to stop at the ground floor?
a. more than mg
b. mg
c. less than mg
d. zero
e. can't tell
Answer:
The correct answer is (a)
Explanation:
A spring scale measures the weight of an object not the mass because according to hooke's law the extension of a spring is directly proportional to the load or force attached/applied to it. The force of gravity acting on the mass of any substance as it goes up actually reduces and increases as it comes down.
If F = ma, as a increases, F will also increase and vice versa
Where F = force
m = mass
a = acceleration (due to gravity in this case)
From the above explanation, it can be deduced that the scale will read more than mg as it gets to the ground because of an increase in the force of gravity (which also increases a) as it approaches the ground.
A battery is used to charge a parallel-plate capacitor, after which it is disconnected. Then the plates are pulled apart to twice their original separation. This process will double the: __________A. capacitance
B. surface charge density on each plate
C. stored energy
D. electricfield between the two places
E. charge on each plate"
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
If the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
The given problem is based on the concept of parallel plat capacitor. For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
here.
e is the permittivity of free space.
Since, the distance is inversely proportional then if we double the distance, the capacitance halves. Now, the stored energy can be given as,
E = (1/2)*Q^2/C
here,
Q is the charge stored in the capacitor.
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
So, the energy is proportional to the distance between the plates.
Thus, we can conclude that if the plates are pulled apart to twice their original separation, then this will double the stored energy. Hence, option (C) is correct.
Learn more about the energy stored in a capacitor here:
https://brainly.com/question/3611251
An electric bulb rated 100 W, 100 V has to be
operated aross 141.4 V, 50 Hz A.C. supply. The
capacitance of the capacitor which has to be
connected in series with bulb so that bulb will
glow with full intensity is [NCERT Pg. 251]
Answer:
The capacitance of the capacitor is 31.84 μF.
Explanation:
Given;
power rating of the bulb, P = 100 W
voltage rating of the bulb, Vr = 100 V
operating voltage of the bulb, V= 141.4 V
frequency of the AC = 50 Hz
P = IV = 100 W
V = 100 V
I =
Ic = 1 A
The voltage across the capacitor is given by;
[tex]V_c = \sqrt{V^2 - V_R^2} \\\\V_c = \sqrt{141.4^2 - 100^2} \\\\V_c =99.97 \ V[/tex]
[tex]V_c = I_cX_c\\\\V_c = I_C* \frac{1}{2\pi fC}\\\\ 99.97 = 1 * \frac{1}{2\pi *50 *C}\\\\ C=\frac{1}{2\pi *50*99.97}\\\\ C = 31.84*10^{-6} \ F\\\\C = 31.84 \ \mu F[/tex]
Therefore, the capacitance of the capacitor is 31.84 μF.
A velocity selector uses a fixed electric field of magnitude E and the magnetic field is varied to select particles of various energies. If the electric field strength is 2.2 x 104 N/C, what should be the value of the magnetic field (in tesla) to select protons of velocity 6.4 x 105 m/s
Answer:
The value is [tex]B = 0.034 \ T [/tex]
Explanation:
From the question we are told that
The electric field strength is [tex]E = 2.2*10^{4} \ N/C[/tex]
The velocity is [tex]v = 6.4 *10^{5} \ m/s[/tex]
Generally the magnetic field is mathematically represented as
[tex]B = \frac{E}{v}[/tex]
=> [tex]B = \frac{2.2*10^{4}}{6.4 *10^{5}}[/tex]
=> [tex]B = 0.034 \ T [/tex]
Two students measured the length of the same stick, each using a different 30 cm ruler. One student reported a length of 22 cm, and the other reported a length of 8 cm. The most likely explanation for the difference in the reported values is that one —
A. *student improperly read the ruler
B. ruler was metal and the other ruler was plastic
C. student viewed the ruler from a different angle
D. ruler was constructed with nonstandard cm marks
Answer:
C. student viewed the ruler from a different angle
Explanation:
It is the problem of viewing the scale from different sides or angles. If we assume the actual length of the stick to be 22 cm. Then the first student measured the length by reading the values from 1 cm towards 22 cm on the scale. While, the second student measured the length of the stick by reading the values from the other side or the other angle of the scale, that is, from 30 cm mark towards 1 cm. And in that case the the length of the 22 cm long stick will appear as:
30 cm - 22 cm = 8 cm
Therefore, the second student read 8 cm on scale. So, the correct option is:
C. student viewed the ruler from a different angle
How much voltage (in terms of the power source voltage bV) will the capacitor have when it has started at zero volts potential difference, it is connected to the power supply and resistor and onehalf the characteristic time has passed (i.e. t= T(tau)/2)?
Answer:
The voltage is [tex]V = 0.993V_b[/tex]
Explanation:
From the question we are told that
The time that has passed is [tex]t = \frac{\tau}{2}[/tex]
Here [tex]\tau[/tex] is know as the time constant
The voltage of the power source is [tex]V_b[/tex]
Generally the voltage equation for charging a capacitor is mathematically represented as
[tex]V = V_b [1 - e^{- \frac{t}{\tau} }][/tex]
=> [tex]V = V_b [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }][/tex]
=> [tex]V = V_b [1 - e^{- \frac{\tau}{2\tau} }][/tex]
=> [tex]V = V_b [1 - e^{- \frac{1}{2} }][/tex]
=> [tex]V = 0.993V_b[/tex]
A daring stunt woman sitting on a tree limb
wishes to drop vertically onto a horse gallop-
ing under the tree. The constant speed of the
horse is 6.8 m/s, and the woman is initially
1.91 m above the level of the saddle.
How long is she in the air? The acceleration
of gravity is 9.8 m/s.
Answer in units of s.
Answer:
she is in the air for approximately 0.62 seconds
Explanation:
We want to find the time for a free fall under the acceleration of gravity, covering a distance of 1.91 m, and considering that the woman doesn't impart initial velocity in the vertical direction. So we use the kinematic equation:
[tex]d=v_i\,t+ \frac{g}{2} \,t^21.91 = 0 +4.9\, t^2\\t^2=1.91/4.9\\t=\sqrt{1.91/4.9} \\t\approx 0.624\,\,sec[/tex]
Then she is in the air for approximately 0.62 seconds
The forces exerted on an object are shown. (3 points)
A box has an arrow pointing up labeled F and an arrow pointing down labeled 3 N.
If the net force on the object along the vertical plane is zero, which statement is correct?
F equals 3 N and the object moves up.
F equals 3 N and the object remains stationary.
F equals 0 N and the object moves down.
F equals 0 N and the object remains stationary.
Answer:
F equals 3 N and the object remains stationary. (second option in the list)
Explanation:
For sure to cancel acting forces, F must be 3N pointing up. But with regards to the object stationary or not, the question is tricky. We could have a ZERO net force applied, and the object moving at constant speed, which could still verify Newton's Laws. But considering the first answer option that refers to vertical motion upward where the object could be gaining potential energy, the most accurate response is that the force F has to be 3 N pointing up to make the object in equilibrium, and no motion in the vertical axis.
Answer: F equals 3 N and the object remains stationary.
Explanation:
Momentum of the 2 kg mass moving with velocity 10 m/s is *
A. 2 kg*m/s
B. 20 kg*m/s
C. 200 kg*m/s
D. 20000 kg*m/s
You have a friend who reports that he falls asleep easily around 11 PM but then awakens for about an hour most nights around two or 3 AM he seems near exhausted what would be the traditional exclamation for his problem how much the information contribute by anthropologists change this view? Give the anthropological view what recommendations would you make your friend?
It is highly recommended that this friend who is suffering from insomnia visits the doctor and eat foods rich in serotonin.
What is insomnia?Insomnia is a medical condition in which an individual is unable to sleep or has short periods of interrupted sleep.
A friend who falls asleep easily and then has difficulty going to sleep is probably suffering from insomnia.
It is recommended that this friend who is suffering from insomnia visits the doctor and eat foods rich in serotonin.
Learn more about insomnia at: https://brainly.com/question/816019
Based on the information in the table, which elements are most likely in the same periods of the periodic table?
Answer:
Just to help, periods on the periodic table are those running horizontally from left to right
Answer:
The answer is A.Boron and carbon are likely together in one period because they have very close atomic numbers, while gallium and germanium are likely together in another period because they have very close atomic numbers.
Explanation:
just took test
Two equal forces act on two different objects, one of which has a mass ten times as large as the other. The larger object will have _________ acceleration that the less massive object.
Answer:
The larger object will have smaller acceleration that the less massive object.
Explanation:
Generally force is mathematically represented as
[tex]F = ma[/tex]
=> [tex]m = \frac{F}{a }[/tex]
at constant force we have
[tex]m \ \alpha \ \frac{1}{a}[/tex]
So if m is increasing a will be decreasing which means the object with the larger mass will have less acceleration
a jogger travels at 4 m/s for 100 s what is the distance covered
400m
Explanation:
given,
v= 4m/s
t= 100s
d= ?
since, v = d / t
therefore, d = v * t (velocity multiplied by time)
=> d = 4 * 100
= 400m.
help me get the answer in Physical Science.
Answer:
lithium
Explanation:
I took physical science 2 years ago and passed with an A
When a parachute opens, the air exerts a large drag force on it. This upward force is initially greater than the weight of the sky diver and, thus, slows him down. Suppose the weight of the sky diver is 915 N and the drag force has a magnitude of 1061 N. The mass of the sky diver is 93.4 kg. Take upward to be the positive direction. What is his acceleration, including sign
Explanation:
According to newton's second law of motion.
[tex]\sum Fx = ma\\\\\sum Fx = 1061 - 915\\\\\sum Fx = 146N[/tex]
m is the mas of the sky diver = 93.4kg
a is the acceleration of the skydiver
From the formula above;
[tex]a = \frac{\sum Fx}{m}\\ \\a = \frac{146}{93.4}\\\\a = 1.563m/s^2[/tex]
Hence the acceleration of the sky diver is 1.563m/s²
During a thunderstorm the electric field at a certain point in the earth's atmosphere is 1.07 105 N/C, directed upward. Find the acceleration of a small piece of ice of mass 1.08 10-4 g, carrying a charge of 1.05 10-11 C.
Answer:
The acceleration of a small piece of ice is 10.40 m/s².
Explanation:
The electric force is given by:
[tex]F = Eq[/tex]
Where:
E is the electric field = 1.07x10⁵ N/C
q is the charge = 1.05x10⁻¹¹ C
The electric force is equal to Newton's second law:
[tex] Eq = ma [/tex]
Where:
m is the mass = 1.08x10⁻⁴ g = 1.08x10⁻⁷ kg
a is the acceleration
Hence, the acceleration is:
[tex] a = \frac{Eq}{m} = \frac{1.07 \cdot 10^{5} N/C*1.05 \cdot 10^{-11} C}{1.08 \cdot 10^{-7} kg} = 10.40 m/s^{2} [/tex]
Therefore, the acceleration of a small piece of ice is 10.40 m/s².
I hope it helps you!
. Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point? What is your displacement vector? What is the direction of your displacement? Assume the +x-axis is to the east.
Answer:
Explanation:
The total distance is how far you walk from the starting point.
Distance through west = 18.0m
Distance through north = 25.0m
Total distance covered = 18.0+25.0m
Total distance covered = 43.0m
This means that I am 43.0m from the starting point
Displacement is the distance covered in a specified direction. The displacement will be gotten using the Pythagoras theorem as shown:
[tex]d^2 = 25^2 + 18^2\\d^2 = 625+324\\d^2 = 949\\d = \sqrt{949}\\ d = 30.81m[/tex]
The direction of your displacement is 30.81m
Direction is gotten according to the formula;
[tex]\theta = tan ^{-1}{\frac{y}{x} }\\\theta = tan ^{-1}{\frac{25}{-18} }\\\theta = tan ^{-1}-1.3889}\\\theta = -60.27^0\\\theta = 180-60.27\\\theta = 119.7^0[/tex]
Note that the direction to the west is negative, that is why the x is -18.0m
The distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.
Given-
Distance travel through the west is 18 m.
Distance travel through the north is 25 m.
Distance from starting point-
To know the total distance, add both the covered distance. Thus total distance x is,
[tex]x=18+25[/tex]
[tex]x=43[/tex]
Hence, the distance from the starting point is 43 m.
The displacement vector-
Displacement is calculated as the shortest distance between starting and final point. This shortest distance can be calculated using the Pythagoras theorem which states that in a right-angled triangle, the square of the hypotenuse [tex]d[/tex] is equal to the sum of the squares of the other two sides. Therefore,
[tex]d^2=18^2+25^2[/tex]
[tex]d^2=324+625[/tex]
[tex]d^2=949[/tex]
[tex]d=\sqrt{949}[/tex]
[tex]d=30.81[/tex]
The displacement vector is 30.81 m.
The Direction of displacement-The direction of displacement [tex]\theta[/tex] with these two sides can be calculated with the formula,
[tex]\theta=tan^{-1}\dfrac{25}{-18}[/tex]
Here due to the west direction(opposite side), the sign is taken negatively.
[tex]\theta=tan^{-1}(-1.389)[/tex]
[tex]\theta=-60.27^o[/tex]
For the other quarter,
[tex]\theta=180-60.27=119.7^o[/tex]
Hence, the distance from the starting point is 43 m, the displacement vector is 30.81 m and the direction of the displacement is 119.7 degrees.
For more about the displacement, follow the link below-
https://brainly.com/question/10919017
A coin rests on a record 0.15 m from its center. The record turns on a turntable that rotates at variable speed. The coefficient of static friction between the coin and the record is 0.30.
Required:
What is the maximum coin speed at which it does not slip?
Answer:
0.66m/sExplanation:
We are expected to solve for the velocity with no slip condition
we know that the expression that relate coefficient of friction and velocity is given as
μs = v^2/rg
Given
coefficient of friction μs = 0.3
radius r= 0.15
assume g=9.81m/s^2
substituting into the expression we have
0.3= v^2/0.15*9.81
v^2=0.3*0.15*9.81
v^2=0.44145
v=√0.44145
v=0.66
therefore the velocity is 0.66m/s
If a car is traveling at an average speed of 70 kilometers per hour how long does it take the car to travel 14 kilometers
Answer:
Explanation:
O.20 hour A
If a car is traveling at an average speed of 70 kilometers per hour, 0.2 hours it takes the car to travel 14 kilometers.
What is average speed?By multiplying the distance that an item travels in one unit by the amount of time it takes to go that distance, one may determine the speed of the object. The speed of the item on this voyage, denoted by the letter "s," is equal to s = D/T if "D" is indeed the distance traveled in certain time "T."
Understanding average speed will help you better comprehend the pace of a travel. On a travel, the pace could occasionally change. Knowing the average speed then becomes crucial to getting an idea of how quickly the route will be finished.
Distance covered = average speed × Time travelled
14=70× Time travelled
Time travelled = 0.2 hours
Therefore, 0.2 hours it takes the car to travel 14 kilometers.
To know more about average speed, here:
https://brainly.com/question/10449029
#SPJ6
the diagram shows a contour map. letter a through k are reference points on the map. which points are located at the same elevation above sea level?
Answer:
K and I
Explanation:
Contour maps use lines that represent spaces in a map that have the same elevation, this means that all the lines should be continuous and closed, in this case, we are not able to see the full extent of most of the lines, but since the points are located in different lines we can assume that they are at different heights, so since only point K and point I are on the same line, we know that these two points are at the same height.