41. ) consider the titration of a 35. 0ml sample of 0. 175m hbr with 0. 200m koh. Determine each quantity

Answers

Answer 1

In the titration of a 35.0 mL sample of 0.175 M HBr with 0.200 M KOH, the quantities are approximately 0.006125 moles of HBr and KOH, and 30.6 mL of KOH solution is required for complete reaction.

To determine each quantity in the titration of a 35.0 mL sample of 0.175 M HBr with 0.200 M KOH, we can use the concept of stoichiometry and the equation of the reaction between HBr and KOH:

HBr + KOH → KBr + H₂O

The number of moles of HBr in the 35.0 mL sample can be calculated using the formula:

moles HBr = Molarity * Volume (in liters)

moles HBr = 0.175 mol/L * 0.035 L

moles HBr ≈ 0.006125 mol

Since the balanced equation shows that the ratio between HBr and KOH is 1:1, the number of moles of KOH required for complete reaction is also 0.006125 mol.

The volume of 0.200 M KOH required can be calculated using the formula:

Volume KOH = moles KOH / Molarity

Volume KOH = 0.006125 mol / 0.200 mol/L

Volume KOH ≈ 0.0306 L

Converting the volume to milliliters:

Volume KOH ≈ 30.6 mL

Learn more about titration here:

https://brainly.com/question/29808916

#SPJ11


Related Questions

The voltage delivered by a primary battery is: Select the correct answer below:
a. directly proportional to its size
b. inversely proportional to its size
c. directly proportional to the square of its size
d. unrelated to its size

Answers

The correct answer is b. inversely proportional to its size. This means that as the size of a primary battery decreases, the voltage it delivers increases.

This is because the voltage of a primary battery is determined by the chemical reactions that occur within it, and these reactions are more concentrated in smaller batteries. However, it is important to note that the voltage delivered by a primary battery can also be affected by factors such as temperature and the age of the battery. Additionally, it is important to consider the specific type of primary battery being used, as different types may have different voltage outputs.

Overall, understanding the relationship between battery size and voltage is important for selecting the right battery for a given application.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

In the electrolysis of water, how long will it take to produce 185.0 L of H2 at 1.0 atm and 273 K using an electrolytic cell through which the current is 185.0 mA? How many hours?

Answers

It will take approximately 170.84 hours to produce 185.0 L of H2 at 1.0 atm and 273 K using an electrolytic cell with a current of 185.0 mA.

To determine the time required to produce 185.0 L of H2 at 1.0 atm and 273 K using an electrolytic cell with a current of 185.0 mA, we need to use Faraday's law of electrolysis and the ideal gas law.

The balanced equation for the electrolysis of water is:

2H2O(l) -> 2H2(g) + O2(g)

From the equation, we can see that 2 moles of H2 are produced for every mole of O2.

First, we need to calculate the number of moles of H2 required to obtain 185.0 L at 1.0 atm and 273 K using the ideal gas law:

PV = nRT

n = PV / RT

= (1.0 atm) * (185.0 L) / (0.0821 L·atm/(mol·K)) * (273 K)

= 14.15 mol

Since the reaction produces 2 moles of H2 for every mole of O2, we need 7.08 moles of H2.

Next, we can use Faraday's law of electrolysis to calculate the time required. The relationship between the amount of substance produced (n) and the current (I) is given by:

n = (I * t) / (nF)

where:

I = current (in amperes)

t = time (in seconds)

n = moles of substance

F = Faraday's constant (96485 C/mol)

Plugging in the values, we have:

7.08 mol = (0.185 A * t) / (2 * 96485 C/mol)

Solving for t, we find:

t = (7.08 mol * 2 * 96485 C/mol) / (0.185 A)

= 615032 s

Converting the time to hours:

t_hours = 615032 s / 3600 s/h

≈ 170.84 hours

Know more about electrolysis of water here:

https://brainly.com/question/29553572

#SPJ11

how would the determined concentration of your unknown be affected (increased, decreased, or stayed the same) if you accidently read your blank solution with the opaque side facing the source? explain

Answers

it's important to be careful and accurate when conducting experiments, especially when dealing with unknown substances.

If you accidentally read your blank solution with the opaque side facing the source, the determined concentration of your unknown may be affected. This is because the opaque side of the blank solution is designed to block out any light or radiation, preventing it from interfering with the readings. Therefore, if you accidentally read the opaque side, you may have inadvertently allowed some interference from external sources, which could affect the accuracy of your results.

The extent to which the determined concentration of your unknown would be affected (whether it increased, decreased, or stayed the same) would depend on the specific conditions and factors involved. For example, the intensity of the external radiation, the sensitivity of your measuring equipment, and the chemical properties of your unknown solution could all play a role in determining the extent of the interference.

If you do accidentally read your blank solution with the opaque side facing the source, it's best to repeat the experiment and take steps to ensure greater accuracy in the future.

To know more about Determined concentration Visit:

https://brainly.com/question/31028631

#SPJ11

Which of the following is more soluble in water, ethanol (C2H5OH) or CHBr3. Don't try to type the subscripts, just use letters and numbers. In depth explanation along with answer so that I can learn please.

Answers

Ethanol (C2H5OH) is more soluble in water compared to CHBr3. The solubility of a substance in water depends on its polarity and ability to form hydrogen bonds with water molecules.

Ethanol (C2H5OH) is more soluble in water compared to CHBr3. The solubility of a substance in water depends on its polarity and ability to form hydrogen bonds with water molecules.
Ethanol is a polar molecule, which means it has regions with different charges due to the unequal sharing of electrons. The hydroxyl group (OH) in ethanol can form hydrogen bonds with water molecules, leading to a strong interaction and high solubility in water.
On the other hand, CHBr3 is a non-polar molecule. The carbon-halogen bonds in CHBr3 distribute the charges evenly, resulting in no regions of differing charges. As a result, CHBr3 cannot form hydrogen bonds with water molecules, and it is not very soluble in water.
In conclusion, ethanol (C2H5OH) is more soluble in water due to its polar nature and ability to form hydrogen bonds with water molecules, while CHBr3 is less soluble due to its non-polar nature and inability to form hydrogen bonds.

To know more about Ethanol visit: https://brainly.com/question/18597444

#SPJ11

what is the ph of a formic acid solution that contains 0.025 m hcooh and 0.018 m hcoo−? (ka(hcooh) = 1.8 × 10-4)

Answers

The pH of the formic acid solution is approximately 2.17.

To find the pH of a formic acid (HCOOH) solution, we need to consider the dissociation of formic acid and the concentration of H+ ions in the solution.

The dissociation of formic acid can be represented by the following equilibrium equation:

HCOOH(aq) ⇌ H+(aq) + HCOO-(aq)

The equilibrium constant expression (Ka) for this reaction is given as:

Ka = [H+(aq)][HCOO-(aq)] / [HCOOH(aq)]

Given that the Ka value for formic acid is 1.8 × 10^(-4), we can set up the following expression:

1.8 × 10^(-4) = [H+(aq)][HCOO-(aq)] / [HCOOH(aq)]

Since the concentration of HCOOH is 0.025 M and the concentration of HCOO- is 0.018 M, we can assume that the concentration of H+ ions formed at equilibrium is x.

Thus, the equilibrium expression becomes:

1.8 × 10^(-4) = x^2 / (0.025 - x)

To simplify the calculation, we can assume that x is very small compared to 0.025, so we can approximate 0.025 - x as 0.025.

1.8 × 10^(-4) = x^2 / 0.025

Cross-multiplying, we get:

4.5 × 10^(-6) = x^2

Taking the square root of both sides, we find:

x ≈ 6.71 × 10^(-3)

The concentration of H+ ions is approximately 6.71 × 10^(-3) M.

The pH is calculated using the formula:

pH = -log[H+]

pH = -log(6.71 × 10^(-3))

pH ≈ 2.17

Know more about formic acid here:

https://brainly.com/question/28562918

#SPJ11

For the following electron-transfer reaction:
Cu(s) + 2Ag+(aq) Cu2+(aq) + 2Ag(s)
The oxidation half-reaction is:
The reduction half-reaction is:
What is the calculated value of the cell potential at 298K for an electrochemical cell with the following reaction, when the Cl2 pressure is 1.30 atm, the Cl- concentration is 4.31×10-3M, and the Ag+ concentration is 8.41×10-4M ?
Cl2(g) + 2Ag(s)2.00Cl-(aq) + 2Ag+(aq)

Answers

The calculated value of the cell potential at 298K for an electrochemical cell with the given reaction, when the Cl2 pressure is 1.30 atm, the Cl- concentration is 4.31×10-3M, and the Ag+ concentration is 8.41×10-4M is 1.65 V.

Given:

Cu(s) + 2Ag+(aq) Cu2+(aq) + 2Ag(s)

Oxidation half-reaction: Cu(s) → Cu2+(aq) + 2e-

Reduction half-reaction: 2Ag+(aq) + 2e- → 2Ag(s)

The cell potential can be calculated using the Nernst equation given by:Ecell = E°cell – (RT / nF)

ln Q where E°cell is the standard cell potential,R is the gas constant

T is the temperature n is the number of electrons transferred

F is the Faraday constantQ is the reaction quotient

Q = [Cu2+ ] / [Ag+]2E°cell for the given reaction can be calculated by:E°cell = E°cathode – E°anode = E°red, cathode – E°red, anodeE°red,

cathode for the reduction half-reaction is the standard reduction potential of Ag+ which is 0.80 V and E°red,

anode for the oxidation half-reaction is the standard reduction potential of Cu2+ which is 0.34

V.E°cell = 0.80 - 0.34 = 0.46 VNow, to use the Nernst equation,

we need to calculate Q using the given concentration and pressure.Q = [Cl- ]2 [Ag+]2 / P(Cl2)Q = (4.31 × 10-3)2 (8.41 × 10-4)2 / 1.30Q = 9.364 × 10-16

Substitute all the given values in the Nernst equation

:Ecell = E°cell – (RT / nF)

ln Q= 0.46 – (0.0257 / 2) ln (9.364 × 10-16)

Ecell = 0.46 V – (-1.19)

Ecell = 1.65 V

Therefore, the calculated value of the cell potential at 298K for an electrochemical cell with the given reaction, when the Cl2 pressure is 1.30 atm, the Cl- concentration is 4.31×10-3M, and the Ag+ concentration is 8.41×10-4M is 1.65 V.

To know more about cell potential visit:

brainly.com/question/31975412

#SPJ11

1.1 The rate of a chemical reaction can be defined as ... A. The rate of change in concentration of reactants or products per unit time. B The change in concentration of reactants or products per unit time. C. The change in amount of reactants or products per unit time. D. The rate of change in amount of reactants or products per unit time. (2)​

Answers

1. The rate of a chemical reaction can be defined as:
A. The rate of change in concentration of reactants or products per unit time.

2. The correct answer is A. The change in concentration of reactants or products per unit time.

n butane fuel is burned with the stoichiometric amount of air. determine the mass fraction of each product. also, callculate the mass of carbon dioxide

Answers

Mass fraction of each product is CO₂ ≈ 0.586 and H₂O ≈ 0.736.

Mass οf CO₂ = 2081.3 g

How tο determine the mass fractiοn?

Tο determine the mass fractiοn οf each prοduct when n-butane (C₄H₁₀) is burned with a stοichiοmetric amοunt οf air, we need tο cοnsider the balanced equatiοn fοr the cοmbustiοn reactiοn:

C₄H₁₀ + (13/2)O₂ → 4CO₂ + 5H₂O

Frοm the balanced equatiοn, we knοw that 1 mοle οf n-butane (C₄H₁₀) prοduces 4 mοles οf carbοn diοxide (CO₂) and 5 mοles οf water (H₂O).

First, let's calculate the mοles οf n-butane (C₄H₁₀) burned when 3.55 kg οf fuel is burned. Tο dο this, we need tο cοnvert the mass οf n-butane tο mοles using its mοlar mass.

The mοlar mass οf n-butane (C₄H₁₀) is calculated as:

Mοlar mass οf C₄H₁₀ = (4 * 12.01 g/mοl) + (10 * 1.01 g/mοl) ≈ 58.12 g/mοl

Nοw, let's calculate the mοles οf C₄H₁₀ burned:

Mοles οf C₄H₁₀ = mass οf C₄H₁₀ / mοlar mass οf C₄H₁₀

= 3550 g / 58.12 g/mοl

≈ 61.14 mοl

Since the reactiοn is stοichiοmetric, the mοles οf prοducts fοrmed will be the same as the mοles οf C₄H₁₀ burned.

Nοw, let's calculate the mass fractiοn οf each prοduct:

Mass fractiοn οf CO₂ = (mοles οf CO₂ * mοlar mass οf CO₂) / (tοtal mοles οf prοducts * mοlar mass οf C₄H₁₀)

= (4 * 61.14 mοl * 44.01 g/mοl) / (61.14 mοl * 58.12 g/mοl)

Mass fractiοn οf H₂O = (mοles οf H₂O * mοlar mass οf H₂O) / (tοtal mοles οf prοducts * mοlar mass οf C₄H₁₀)

= (5 * 61.14 mοl * 18.02 g/mοl) / (61.14 mοl * 58.12 g/mοl)

Mass fractiοn οf CO₂ ≈ 0.586

Mass fractiοn οf H₂O ≈ 0.736

Tο calculate the mass οf carbοn diοxide (CO₂) prοduced when 3.55 kg οf fuel is burned, we multiply the mass οf n-butane burned by the mass fractiοn οf CO₂:

Mass οf CO₂ = mass οf C₄H₁₀ * mass fractiοn οf CO₂

= 3550 g * 0.586

≈ 2081.3 g (apprοximately 2.08 kg)

Thus, Mass fraction of each product is CO₂ ≈ 0.586 and H₂O ≈ 0.736.

Mass οf CO₂ = 2081.3 g

Learn more about n-butane fuel

https://brainly.com/question/22786917

#SPJ4

An oxidation reaction involves the addition of hydrogen atoms to an organic compound. Select one: True False

Answers

False. An oxidation reaction typically involves the loss of hydrogen atoms or the gain of oxygen atoms, rather than the addition of hydrogen atoms to an organic compound.

In organic chemistry, oxidation refers to the process in which a compound loses electrons, resulting in an increase in its oxidation state. This can occur through the removal of hydrogen atoms, the addition of oxygen atoms, or the transfer of electrons to a more electronegative atom. The addition of hydrogen atoms to an organic compound is known as reduction, not oxidation. Reduction involves the gain of electrons or the addition of hydrogen atoms, resulting in a decrease in the oxidation state of the compound.

An example of an oxidation reaction is the conversion of an alcohol to an aldehyde or a ketone. In this reaction, the alcohol loses hydrogen atoms and gains an oxygen atom from an oxidizing agent such as a chromium compound or potassium permanganate. This process increases the oxidation state of the carbon atom in the alcohol. Therefore, the statement that an oxidation reaction involves the addition of hydrogen atoms to an organic compound is false.

Learn more about oxidation reaction here

https://brainly.com/question/19528268

#SPJ11

Tetrasulfur dinitride decomposes explosively when heated. What is its formula?

Answers

Tetrasulfur dinitride, with the chemical formula S₄N₂, is a compound composed of four sulfur atoms (S) and two nitrogen atoms (N).

It is known for its explosive nature when subjected to heat or shock. The compound undergoes a rapid decomposition reaction under these conditions, releasing large amounts of energy and generating highly reactive products. This decomposition is exothermic and can result in an explosion. The exact mechanism of the decomposition is complex, involving the breakage of the S-N bonds and the formation of various sulfur and nitrogen-containing species. Due to its explosive properties, tetrasulfur dinitride is handled with extreme caution and is used primarily in specialized applications.

Learn more about “ chemical formula  “ visit here;

https://brainly.com/question/32018188

#SPJ4

a solution is made by dissolving 12.50 g of naoh in water to produce 2.0 l of solution. what is the ph of this solution?

Answers

To find the pH of this solution, we need to first calculate its concentration in moles per liter (M). We can do this by dividing the mass of NaOH (12.50 g) by its molar mass (40.00 g/mol) and then dividing that by the volume of the solution (2.0 L). This gives us a concentration of 0.156 M.



NaOH is a strong base, so it will dissociate completely in water to produce OH- ions. The pH of a solution with a concentration of OH- ions can be calculated using the formula: pH = 14 - log[OH-]. Plugging in our concentration of OH- ions (0.156 M) gives us a pH of 12.10.
Therefore, the pH of this NaOH solution is 12.10.

To know more about concentration visit:

https://brainly.com/question/3045247

#SPJ11

In an experiment, 5.585 g of iron metal reacts with 3.207 g of yellow sulfur. Using the conservation of mass law, predict the mass of product. Fe(s)+S(s)- 4 > Fe(s) A) 2.198 g B) 2.378 g C) 4.396 g D) 8.792 g E) 17.584 g

Answers

The correct answer is D) 8.792. Based on the conservation of mass, the predicted mass of the product is 8.792 g (Option D).

To predict the mass of the product formed in the reaction between iron (Fe) and sulfur (S), we need to determine the limiting reactant. We can use the concept of the conservation of mass to calculate the mass of the product. Molar mass of Fe = 55.845 g/mol

Molar mass of S = 32.06 g/mol

Moles of Fe = 5.585 g / 55.845 g/mol = 0.0997 mol

Moles of S = 3.207 g / 32.06 g/mol = 0.1000 mol

Determine the limiting reactant:

Since the molar ratio between Fe and S is 1:1 (from the balanced equation), it is clear that S is the limiting reactant since it has fewer moles.

Calculate the mass of the product (FeS):

Molar mass of FeS = 87.91 g/mol (FeS)

Mass of FeS = Moles of S x Molar mass of FeS

= 0.1000 mol x 87.91 g/mol

= 8.791 g

To know more about reactants

https://brainly.com/question/26283409

#SPJ11

what is the nominal mass of adenosine? answer should be in amu but written only as a number without ""amu"" included.

Answers

Adenosine has a nominal mass of 267. The mass of a molecule is equal to the sum of its constituent atoms' atomic masses. Adenine molecules are joined to ribose sugar molecules to form the nucleoside known as adenosine.

Ribose has an atomic mass of 132.0 amu, while adenine is 135.0 amu in size. As a result, adenosine has a total nominal mass of 267 amu. By transporting adenine nucleotides, which are involved in the transfer of energy in the form of adenosine triphosphate (ATP), adenosine serves to control the energy generation in cells.

Adenosine also has a role in a variety of biological processes, including cell differentiation, signal transduction, and gene expression. The control of the cardiovascular system depends on adenosine.

Learn more about Ribose   at:

https://brainly.com/question/31817478

#SPJ1

What is the daughter nucleus produced when Au195 undergoes electron capture? Replace each question mark with the appropriate integer or symbol.

Answers

When Au-195 undergoes electron capture, it results in the formation of a daughter nucleus. As a consequence, the atomic number decreases by one, while the mass number remains unchanged.For Au-195 (atomic number 79, mass number 195), electron capture will result in a nucleus with atomic number 78 (since it decreases by one) and mass number 195. Therefore, the daughter nucleus produced when Au-195 undergoes electron capture is Pt-195.

When Au195 undergoes s electron capture, it produces a daughter nucleus with an atomic number that is one less than that of Au195, which is 79.  During this process, a proton in the nucleus captures an inner shell (s) electron and transforms into a neutron. Therefore, the daughter nucleus is represented as ???79Au. This corresponds to the element platinum (Pt), as Pt-195. Since the atomic mass number is conserved during electron capture, the mass number of the daughter nucleus is the same as that of the parent nucleus, which is 195. Therefore, the complete representation of the daughter nucleus produced when Au195 undergoes electron capture is 195/???79Au.

To know more about atomic number visit:

https://brainly.com/question/16858932

#SPJ11

the volume of a sample of hydrogen gas at 0.997 atm is 5.00l. what will be the new volume if the pressure is decreased to 0.977 atm?

Answers

The new volume of the hydrogen gas sample, when the pressure is decreased from 0.997 atm to 0.977 atm, can be calculated using Boyle's law. The new volume will be approximately 5.10 L.

Boyle's law states that at a constant temperature, the volume of a gas is inversely proportional to its pressure. Mathematically, this relationship can be expressed as:

[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]

where [tex]\( P_1 \)[/tex] and [tex]\( V_1 \)[/tex] are the initial pressure and volume, and [tex]\( P_2 \)[/tex] and [tex]\( V_2 \)[/tex] are the final pressure and volume.

Given that the initial pressure [tex](\( P_1 \))[/tex] is 0.997 atm and the initial volume [tex](\( V_1 \))[/tex] is 5.00 L, and the final pressure [tex](\( P_2 \))[/tex] is 0.977 atm, we can solve for the final volume [tex](\( V_2 \))[/tex]:

[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]

[tex]\[ 0.997 \, \text{atm} \cdot 5.00 \, \text{L} = 0.977 \, \text{atm} \cdot V_2 \][/tex]

Solving for [tex]\( V_2 \)[/tex]:

[tex]\[ V_2 = \frac{{0.997 \, \text{atm} \cdot 5.00 \, \text{L}}}{{0.977 \, \text{atm}}} \approx 5.10 \, \text{L} \][/tex]

Therefore, the new volume of the hydrogen gas sample, when the pressure is decreased to 0.977 atm, will be approximately 5.10 L.

To learn more about Boyle's law refer:

https://brainly.com/question/1696010

#SPJ11

enter your answer in the provided box. how many non-equivalent protons are present in ch3ch═ch2?

Answers

There are four non-equivalent protons present in CH3CH═CH2. The molecule has two different types of carbons, one is a sp2 hybridized carbon and the other two are sp3 hybridized carbons.

The sp2 hybridized carbon is attached to two different types of hydrogen atoms, one is attached to two methyl groups and the other is attached to a hydrogen atom. These two hydrogen atoms are non-equivalent because they are attached to different types of carbons. Similarly, the two sp3 hybridized carbons are attached to different types of hydrogen atoms, one is attached to three methyl groups and the other is attached to a hydrogen atom. Therefore, there are four non-equivalent protons in CH3CH═CH2.

To know more about protons visit:

https://brainly.com/question/30895149

#SPJ11

450 the cost per cash registers increases by a rate of 6% contiously compounded .how much would one new cash register cost in 8 years time .

Answers

After 8 years with a continuously compounded rate of 6%, the cost of one new cash register would be approximately $729.41.

To calculate the cost of one new cash register after 8 years with a continuously compounded rate of 6%, we can use the formula for continuous compound interest:

A = P * e^(rt)

Where:

A is the final amount (cost of one new cash register after 8 years)

P is the initial amount (cost of one cash register at the start)

e is the mathematical constant approximately equal to 2.71828

r is the interest rate (6% or 0.06 in decimal form)

t is the time in years (8 years in this case)

Let's assume the initial cost of one cash register is $450.

A = 450 * e^(0.06 * 8)

Using a calculator or math software, we can calculate the value of e^(0.06 * 8):

A ≈ 450 * 2.71828^(0.48)

A ≈ 450 * 1.62092

A ≈ 729.41

Therefore, after 8 years with a continuously compounded rate of 6%, the cost of one new cash register would be approximately $729.41.

It's important to note that continuous compound interest assumes that the interest is being compounded constantly throughout the given period. This calculation provides an estimate based on the assumption of continuous compounding, and actual financial calculations may consider different compounding periods or factors such as taxes, inflation, or other fees that could affect the final cost.

For more such question on compounded rate visit

https://brainly.com/question/28504357

#SPJ8

biomagnification is a process by which chemical substances, such as poisons and fertilizer, accumulate in animal tissues. with each higher level in a food web, the organisms accumulate a higher concentration of the chemical substance. TRUE/FALSE

Answers

TRUE. Biomagnification is a process by which certain chemical substances, such as poisons and fertilizers, become increasingly concentrated as they move up the food web.

TRUE. Biomagnification is a process by which certain chemical substances, such as poisons and fertilizers, become increasingly concentrated as they move up the food web. This is because each level in the food web consumes many organisms from the level below, leading to a cumulative effect. For example, a small fish may consume plankton that has been exposed to low levels of a chemical substance. When a larger fish eats many small fish, the concentration of the chemical substance in its tissues becomes higher. This process continues as larger predators consume smaller ones, leading to a higher concentration of the chemical substance in their tissues. Therefore, biomagnification can have harmful effects on top predators, as they may consume organisms with dangerously high levels of toxins. It is important to monitor the levels of chemicals in the environment and take steps to reduce their use to prevent biomagnification.

To know more about food web visit: https://brainly.com/question/30062179

#SPJ11

Students were asked to observe chemical reactions taking place and then record their observations in a data table. Which of the following observations could indicate a chemical reaction has occurred?
a. a change in temperature
b. a change in color
c. the production of bubbles
d. all of the above could indicate a chemical reaction has taken place

Answers

When students observe chemical reactions, they should pay attention to any changes that occur during the reaction. One of the most common indications of a chemical reaction is a change in temperature.

When students observe chemical reactions, they should pay attention to any changes that occur during the reaction. One of the most common indications of a chemical reaction is a change in temperature. This change in temperature could be an increase or decrease in heat, depending on the reaction. For example, an exothermic reaction will release heat, causing an increase in temperature, while an endothermic reaction will absorb heat, causing a decrease in temperature.
Another indication of a chemical reaction is a change in color. This change in color could be due to the formation of a new substance or the breaking down of an existing substance. For example, when iron rusts, it changes from a shiny silver color to a reddish-brown color.
Lastly, the production of bubbles could also indicate a chemical reaction has taken place. Bubbles could be a sign that a gas is being produced as a result of the reaction. For example, when vinegar and baking soda are mixed together, they produce carbon dioxide gas, which creates bubbles.
In conclusion, all of the above observations could indicate a chemical reaction has taken place. However, it is important for students to also consider other factors, such as the presence of a catalyst or the pH of the solution, before concluding that a chemical reaction has occurred.

To know more about chemical reactions visit: https://brainly.com/question/29762834

#SPJ11

HELP ASAP

SHOW WORK!


how many atoms are in 5. 90 mol of calcium ca

Answers

The number of atoms in 5.90 mol of calcium (Ca) is 3.54 x 10²⁴ atoms.

To calculate the number of atoms in 5.90 mol of calcium (Ca), we use Avogadro's constant which is defined as the number of particles in one mole of a substance. Its value is 6.02 x 10²³ particles/mol.

Avogadro's number is used to relate the number of particles (atoms, molecules, ions) in a substance to the number of moles. Therefore, the number of atoms in 5.90 mol of calcium is given as;

Number of moles of calcium, n = 5.90 molAvogadro's constant, NA = 6.02 x 10²³ particles/mol

Number of particles (atoms) of calcium = n × NA= 5.90 mol × 6.02 x 10²³

particles/mol= 3.54 x 10²⁴ atoms

Therefore, the number of atoms in 5.90 mol of calcium is 3.54 x 10²⁴ atoms.

Learn more about number of atoms: https://brainly.com/question/8834373

#SPJ11

calculate the pka of lactic acid (ch3ch(oh)cooh) given the following information. 40.0 ml of 0.2 m koh are added to 100. ml of a 0.500 m lactic acid solution producing a ph of 3.134.

Answers

The pKa of lactic acid [tex](CH_3CH(OH)COOH)[/tex] can be calculated by determining the concentration of its conjugate base (lactate) and the concentration of the undissociated lactic acid using the Henderson-Hasselbalch equation.

By measuring the pH of the solution after adding a known amount of KOH, the pKa can be determined to be approximately 3.86. To calculate the pKa of lactic acid, we can use the Henderson-Hasselbalch equation:

[tex]\[ \text{pH} = \text{pKa} + \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right) \][/tex]

where pH is the measured pH, pKa is the desired value, [tex][A^-][/tex] is the concentration of the conjugate base (lactate), and [HA] is the concentration of the undissociated acid (lactic acid).

Initially, we have 100 ml of a 0.500 M lactic acid solution, which corresponds to 0.500 moles of lactic acid. When 40.0 ml of 0.2 M KOH is added, it reacts with the lactic acid in a 1:1 ratio to form lactate. Thus, 0.020 moles of lactic acid are neutralized, leaving 0.480 moles of lactic acid remaining.

The total volume of the solution after mixing is 140 ml (100 ml + 40 ml). By dividing the moles of lactate by the total volume, we can calculate the concentration of lactate, which is 0.020 moles / 0.140 L = 0.143 M.

Using the Henderson-Hasselbalch equation and the measured pH of 3.134, we can rearrange the equation to solve for pKa:

[tex]\[ \text{pKa} = \text{pH} - \log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right) = 3.134 - \log\left(\frac{0.143}{0.480}\right) \approx 3.86 \][/tex]

Therefore, the pKa of lactic acid is approximately 3.86.

To learn more about Henderson-Hasselbalch refer:

https://brainly.com/question/31023091

#SPJ11

how many asymmetric centers are present in a molecule of 2,4,6-trimethylheptane? a. 0 b. 1 c. 2 d. 3 e. 4

Answers

The molecule of 2,4,6-trimethylheptane does not have any asymmetric centers, so the correct answer is (a) 0. 2,4,6-trimethylheptane is a hydrocarbon with the molecular formula [tex]C_{10}H_{22}[/tex].

To determine the number of asymmetric centers, we need to identify the carbon atoms that are bonded to four different groups. These carbon atoms are called chiral centers or asymmetric centers. In order for a molecule to have a chiral center, it must be attached to four different substituents. In 2,4,6-trimethylheptane, all the carbon atoms are bonded to two methyl groups and one ethyl group, while the remaining carbon atoms are bonded to three methyl groups. Since none of the carbon atoms have four different substituents, the molecule does not possess any chiral centers. Therefore, the correct answer is (a) 0.

In summary, a molecule of 2,4,6-trimethylheptane does not have any asymmetric centers, making the correct answer (a) 0.

To learn more about hydrocarbon refer:

https://brainly.com/question/28482314

#SPJ11

How many moles of MgBr2 do you have if you obtain 55.4 mL of a 1.84 M MgBr2(aw) solution?

Answers

This is approximately 0.1014 moles of MgBr2 in a 55.4 mL solution with a concentration of 1.84 M.

To determine the number of moles of MgBr2 in a 55.4 mL solution with a concentration of 1.84 M, we can use the formula:

moles = concentration × volume

Given:

Concentration of MgBr2 = 1.84 M

Volume of solution = 55.4 mL

However, it is important to convert the volume to liters to ensure consistent units for the calculation. 1 L is equal to 1000 mL.

Volume of solution in liters = 55.4 mL ÷ 1000 mL/L = 0.0554 L

Now we can calculate the number of moles of MgBr2:

moles = 1.84 M × 0.0554 L

moles ≈ 0.1014 mol

For more such questions on MgBr2

https://brainly.com/question/4319703

#SPJ8

An oxygen atom has a mass of 2.66 × 10 -23 g and a glass of water has a mass of 0.050 kg.
Use this information to answer the questions below. Be sure your answers have the correct number of significant digits.
What is the mass of 1 mole of oxygen atoms? Round your answer to 3 significant digits.
go
How many moles of oxygen atoms have a mass equal to the mass of a glass of water?
0
Round your answer to 2 significant digits.

Answers

For the first question, we need to use the given mass of one oxygen atom to calculate the mass of 1 mole of oxygen atoms. We can use Avogadro's number, which tells us that there are 6.022 × 10^23 atoms in 1 mole.
Therefore, 3.1 moles of oxygen atoms have a mass equal to the mass of a glass of water (2 significant digits).

The mass of 1 mole of oxygen atoms can be calculated using Avogadro's number (6.022 × 10^23 atoms/mol). To find the mass of 1 mole, multiply the mass of a single oxygen atom by Avogadro's number:
(2.66 × 10^-23 g/atom) × (6.022 × 10^23 atoms/mol) = 16.0 g/mol
So, 1 mole of oxygen atoms has a mass of 16.0 g (3 significant digits).
To find how many moles of oxygen atoms have a mass equal to the mass of a glass of water, first convert the mass of the glass of water to grams:
0.050 kg × (1000 g/kg) = 50 g
Next, divide the mass of the glass of water by the mass of 1 mole of oxygen atoms:
50 g / (16.0 g/mol) = 3.1 mol
Therefore, 3.1 moles of oxygen atoms have a mass equal to the mass of a glass of water (2 significant digits).

To know more about Avogadro's number visit:

https://brainly.com/question/28812626

#SPJ11

Which of the following is an alpha-keto acid/alpha-amino acid pair used in transamination?
Group of answer choices
A) Pyruvate/leucine
B) Oxaloacetate/aspartate
C) Oxaloacetate/glutamate
D) a-ketoglutarate/aspartate
E) a-keto-b-hydroxybutyrate/phenylalanine

Answers

In transamination reactions, an amino group (-NH2) is transferred from an alpha-amino acid to an alpha-keto acid, resulting in the formation of a new alpha-amino acid and a new alpha-keto acid.

In this case, α-ketoglutarate acts as the alpha-keto acid, while aspartate acts as the alpha-amino acid. The amino group from aspartate is transferred to α-ketoglutarate, forming glutamate as the new alpha-amino acid and regenerating α-ketoglutarate as the new alpha-keto acid. This reaction is catalyzed by transaminase enzymes. The correct answer is:D) α-ketoglutarate/aspartate.

Learn more about  transamination reactions here ;

https://brainly.com/question/13063782

#SPJ11

Suppose we tune the temperature and pressure of a container of gallium to its triple point at a temperature T=302 K, and pressure p=101 kPa. The densities of the phases of gallium are (i) solid: 5.91 g/cm^3 (ii) liquid: 6.05 g/cm (ii) gas: 0.116 g/cm^3.
If we slightly increase the pressure, which phase is stabilized in equilibrium? Que (a) Solid (b) Gas (c) Liquid

Answers

At the triple point, all three phases of gallium can exist in equilibrium. However, if we slightly increase the pressure, one phase will become more stable than the others. In this case, we can use the densities of the phases to determine which phase will be stabilized.

Since the density of the solid phase is greater than that of the liquid and gas phases, increasing pressure will stabilize the solid phase. Therefore, the answer to the question is (a) Solid. It is important to note that this is assuming the temperature remains constant. If the temperature were to increase or decrease, the answer may change depending on the phase diagram of gallium at that temperature and pressure.
At the triple point (T=302 K, p=101 kPa), all three phases of gallium (solid, liquid, and gas) coexist in equilibrium. If we slightly increase the pressure, the phase with the highest density will be stabilized, as it can withstand the increased pressure better.
Comparing the densities of the phases:
(i) Solid: 5.91 g/cm^3
(ii) Liquid: 6.05 g/cm^3
(iii) Gas: 0.116 g/cm^3
The liquid phase has the highest density (6.05 g/cm^3). Therefore, upon a slight increase in pressure, the liquid phase of gallium will be stabilized in equilibrium. So, the answer is (c) Liquid.

To know more about Temperature visit:

https://brainly.com/question/32257956

#SPJ11

An organic compound has a molar mass of 169.3 g/mol and contains 10.63 % hydrogen atoms by mass. How many hydrogen atoms are in each molecule of this compound? a. 18 b. 7 c. 22 d. 29 e. 9

Answers

The correct answer is a. 18 hydrogen atoms are in each molecule of this compound

To determine the number of hydrogen atoms in each molecule of the organic compound, we need to calculate the empirical formula of the compound based on the given percentage of hydrogen atoms by mass.

Step 1: Calculate the mass of hydrogen in the compound.

Mass of hydrogen = (Percentage of hydrogen by mass) x (Molar mass of compound)

= 0.1063 x 169.3 g/mol

= 18.01 g

Step 2: Convert the mass of hydrogen to moles using the molar mass of hydrogen (1 g/mol).

Moles of hydrogen = (Mass of hydrogen) / (Molar mass of hydrogen)

= 18.01 g / 1 g/mol

= 18.01 mol

Step 3: Determine the ratio of moles between hydrogen and the compound.

Since the empirical formula represents the simplest whole-number ratio of atoms in a compound, we need to find the ratio of moles of hydrogen to the compound.

The ratio is 18.01 mol : 169.3 mol, which simplifies to approximately 1 mol : 9.4 mol.

Step 4: Determine the empirical formula.

The simplified ratio indicates that there are approximately 1 hydrogen atom for every 9.4 atoms in the compound. To express this as a whole number ratio, we can multiply the ratio by a common factor to obtain whole numbers. Multiplying by 10 gives a ratio of 10 hydrogen atoms to 94 atoms in the compound.

Therefore, the empirical formula of the compound is H10X94, where X represents the other atoms in the compound.

From the empirical formula, we can see that there are 10 hydrogen atoms in each molecule of the compound.

Know more about hydrogen atoms here:

https://brainly.com/question/30886690

#SPJ11

a sample of gas is found to exert 14.00 kPa at 353 K.What pressure would the sample exert if the gas was heated to 376 K

Answers

As the gas is heated to 376 K, the sample would exert a pressure of approximately 14.91 kPa according to Gay-Lussac's law.

What is the final pressure of the gas?

Gay-Lussac's law states "that the pressure exerted by a given quantity of gas varies directly with the absolute temperature of the gas".

It is expressed as;

[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]

Given that

P₁ = initial pressure = 14.00 kPa

T₁ = initial temperature (in Kelvin) = 353 K

T₂ = final temperature (in Kelvin) = 376 K

P₂ = final pressure = ?

Plug the given values into the above formula and solve for the final pressure.

[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}\\\\P_1T_2 = P_2T_1\\\\P_2 = \frac{P_1T_2 }{T_1} \\\\P_2 = \frac{ 14\ *\ 376 }{353} \\\\P_2 = 14.91 \ kPa[/tex]

Therefore, the final pressure is approximately 14.91 kPa.

Learn more about Gay-Lussac's law here: brainly.com/question/1358307

#SPJ1

polysaccharides are made when monosaccharides are bound together through

Answers

Polysaccharides are formed when monosaccharides are linked together through glycosidic bonds, resulting in complex carbohydrate molecules.

Polysaccharides are large carbohydrates composed of repeating units of monosaccharides. Monosaccharides, such as glucose, fructose, and galactose, are simple sugars that serve as the building blocks for more complex carbohydrates. The formation of polysaccharides occurs through a process called condensation or dehydration synthesis. During this process, the hydroxyl (-OH) group of one monosaccharide combines with the hydrogen atom (-H) of another monosaccharide, resulting in the formation of a glycosidic bond.

This bond is a covalent linkage between the carbon atoms of the monosaccharides, specifically between the anomeric carbon of one monosaccharide and the hydroxyl group of another. Through repeated condensation reactions, numerous monosaccharides can be joined together, forming long chains or branched structures, resulting in the formation of various polysaccharides. Examples of polysaccharides include starch, glycogen, cellulose, and chitin, each with unique functions and properties in living organisms.

Learn more about Polysaccharides here:

https://brainly.com/question/28264521

#SPJ11

what is the molarity of a salt solution that is made from 31.0 grams of ca3(p04)2 placed in a volumetric flask and filled to the 2 liter line with distilled water?

Answers

The molarity of the Ca3(PO4)2 solution is approximately 0.05 M.

The molarity of the salt solution made from 31.0 grams of Ca3(PO4)2 in a 2 liter volumetric flask filled with distilled water can be calculated as follows. Firstly, determine the molar mass of Ca3(PO4)2 which is 310.18 g/mol. Next, calculate the number of moles of Ca3(PO4)2 using the formula moles = mass/molar mass. Therefore, moles = 31.0 g / 310.18 g/mol = 0.100 moles. Finally, calculate the molarity using the formula molarity = moles/volume (in liters). Therefore, the molarity of the salt solution is 0.050 M (0.100 moles / 2 liters = 0.050 M). To calculate the molarity of a Ca3(PO4)2 solution, first find the moles of the salt, then divide by the volume of the solution in liters. The molar mass of Ca3(PO4)2 is 310.18 g/mol. Divide the mass (31.0 g) by the molar mass to find moles: 31.0 g / 310.18 g/mol ≈ 0.1 mol. The solution volume is 2 liters. Now, divide moles by volume: 0.1 mol / 2 L = 0.05 mol/L. The molarity of the Ca3(PO4)2 solution is approximately 0.05 M.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

Other Questions
body "x-rays" produce pictures of ___ body tissue and bones: Complete the proof that HJ LGI.4I5StatementK1ZHKI ZGKH2m2GKH + mZHKI = 1803 m2GKH+mZGKH= 180mZGKH = 90HJ L GIGHReasonGivenAngles forming a linear pair sum to 180Definition of congruence( Find a + b, 4a + 2b, Ja], and la b]. (Simplify your vectors completely.) a = 5i + j, b = 1 4j a + b = 6i 3j x 4a + 2b = 22i 4j al = 26 Ja b] = 5 x Need Help? Read It Use the formula for the sum of a geometric series to find the sum. (Use symbolic notation and fractions where needed. Enter the symbol oo if the series diverges.) M8 12(-2)" 71 8" = 00 n=0 Incorre Hint: Use method of undetermined coefficient Solve using the differential operator D=d/dx y" - 2y + 5y = 4efcos 2x + x2 ' 2 Evaluate the derivative of the given function for the given value of x using the product rule. y = (3x - 1)(5-x), x= 6 Construct A Truth Table For The Following: Xyz + X(Y Z)' + X'(Y + Z) + (Xyz)' (X + Y')(X' + Z')(Y' + Z') Using De Morgan's Law answer wuestion pleaseA bond with a face value of $2000 and a 4.4% interest rate compounded semiannually) will mature in 8 years. What is a fair price to pay for the bond today? A fair price to buy the bond at would be $| detoxification procedures may involve any of the following excepta. giving the client other drugs to reduce withdrawal symptoms during detoxification.b. gradually reducing the dose of the substance the client uses.c. initially increasing the substance dose to make the substance aversive.d. All the answers are commonly used detoxification procedures. Write the number for the correct concentration zone for natural disasters in America 1. Hurricane Zone 2. Earthquake Zone 3. Volcano Zone 4. Tornado Zone Rone C e zone B 1 zone O zone D A World Clim Parameterize the line segment going from (0,2) to (3,-1), with 0 of the reverse reaction is 31 kj/mol ( 7.5 kcal/mol) 31 kj/mol ( 7.5 kcal/mol) . instead of reversing the pyruvate kinase reaction, the step is bypassed in gluconeogenesis.several steps for the conversion of pyruvate to phosphoenolpyruvate via gluconeogenesis are given. place the steps in the correct order. you will not place all of the steps. 3. Explain why the nth derivative, y(n) for y=e* is y(n) = e*. Bradley entered the following group of values into the TVM solver of his graphing calculator and N equals 36 I percent equals 0.8 PV equals PMT equals -350 FB equals 0P/Y equals 12 C/Y equals 12 PMT equals N which of these problems could he be trying to solve USECALC 2 TECHNIQUES ONLY. Given r=1-3 sin theta, find the following.Find the area of the inner loop of the given polar curve rounded 4decimal places. PLEASE SHOW ALL STEPS Which is NOT a condition / assumption of the chi-square test for two-way tables? a.Large enough expected counts b.Normal data or large enough sample size c.None of these options: all three conditions / assumptions are necessary d.Random sample(s) of individuals that fall into just once cell of the table Calculate ( 5+ 6i)". Give your answer in a + bi form, and please show your answers to 2 decimal places (if necessary). Calculate ( - 3 + 6i)". Give your answer in a + bi form, and please show yo Tell me about your new book. jobs costing $1,461,900 to manufacture according to their job cost sheets were completed during the year. jobs were sold on account to customers during the year for a total of $3,172,500. the jobs cost $1,471,900 to manufacture according to their job cost sheets. foundational 3-2 (algo) 2. what is the ending balance in raw materials? Use the new variable t = et to evaluate the limit. = Enter the exact answer. 6e3x 1 lim- x=07e3x + ex + 1