We will have the following:
*First: We know that 1 turn will be equal to 360°. So:
[tex]3450\cdot360=1242000[/tex]So, 3450 turns equal to 1 242 000 degrees.
*Second: We have that the expression to convert degrees to radians is:
[tex]d\cdot\frac{\pi}{180}=r[/tex]Here d represents degrees and r radians. So, we replace the number of degrees and solve for radians:
[tex](1242000)\cdot\frac{\pi}{180}=6900\pi[/tex]So, 3450 turns are 6900pi radians.
Jerome rolls two six-sided number cubes. What is the probability that he rolls doubles, given the sum of the numbers is 8?
Answer:
[tex]\frac{1}{6}[/tex]
Step-by-step explanation:
hope you get it thats the last pen that works in my house
Answer: There are five possible outcomes with a sum of 8:
2 and 6,
3 and 5,
4 and 4,
5 and 3,
6 and 2.
There is only one outcome, 4 and 4, that is doubles. Therefore, the probability is 1/5.
Step-by-step explanation: Got it right on Edmentum
what is the image of -3 -7 after a reflection over the x-axis
Given the point (-3, -7)
We need to find the image after a reflection over the x-axis
The rule of reflection over the x-axis is:
[tex](x,y)\rightarrow(x,-y)[/tex]So, the image of the given point will be:
[tex](-3,-7)\rightarrow(-3,7)[/tex]so, the answer is option D. (-3, 7)
URGENT!! ILL GIVE
BRAINLIEST! AND 100 POINTS
Answer:
perimeter: add p + m + n
area: use (p × m)/2
find missing side: use p^2 + m^2 = n^2
A 33-inch piece of steel is cut into three pieces so that the second piece is twiceas long as the first piece, and the third piece is one inch more than five times thelength of the first piece. What is the length of the first piece?
Let;
x = the length of the first piece
y=the length of the second piece
z=the length of the third piece
From the question;
"the second piece is twice as long as the first piece" can be written in equation as:
y = 2x
"the third piece is one inch more than five times the length of the first piece"
can be written as :
z= 5x+ 1
Total length of the 3 pieces = 33
This implies:
x + y + z =33
substitute y=2x and z=5x+1 into the above
x + 2x + 5x+1 = 33
8x + 1 = 33
subtract 1 from both-side of the equation
8x = 33 -1
8x = 32
divide both-side of the equation by 8
x= 32/8
x= 4
The length of the first piece is 4-inches
Find all solutions of the equation in the interval [0,2pi). csc =7/4 If there is more than one solution, separate them with commas.Do not round any intermediate computations. Give your answer(s) in radians, and round your answer(s) to the nearest hundredth
Since the cosecant is the inverse of the sine, we can write the following:
[tex]\begin{gathered} \csc (\theta)=\frac{7}{4} \\ \sin (\theta)=\frac{1}{\csc(\theta)}=\frac{1}{\frac{7}{4}}=\frac{4}{7} \end{gathered}[/tex]Then, using a calculator, we can calculate the angle that has a sine of 4/7:
[tex]\begin{gathered} \theta=\sin ^{-1}(\frac{4}{7})_{} \\ \theta=34.85\degree \end{gathered}[/tex]There is one more angle between 0 and 2π that has the same value of 4/7 for the sine, and it's the supplementary angle to the one we found:
[tex]\theta_2=180-\theta_1=180-34.85=145.15\degree[/tex]Therefore the answers are 34.85° and 145.15°.
Converting to radians, we have:
[tex]\begin{gathered} 34.85\cdot\frac{\pi}{180}=0.61 \\ 145.15\cdot\frac{\pi}{180}=2.53 \end{gathered}[/tex]So the final answer is 0.61 and 2.53.
b. Write
√x
as a single radical in simplest form.
5√x
Answer:
(tenth root of x to the third power)
see image
Step-by-step explanation:
To do this problem you need to know how to convert radicals to an expression with a fraction exponent(and back to radicals again), ALSO exponent rules for division ALSO subtracting fractions.
Square root x can be written as x^ 1/2
fifth root x can be written as x^ 1/5
When you are dividing expressions with the same base, exponent rules say to SUBTRACT the exponents.
1/2 - 1/5 change to common denominator
5/10 - 2/10
= 3/10
x^1/2 / x^1/5 =
x^ (1/2 - 1/5) =
x^ (5/10-2/10) =
x^ 3/10
Then change back to a radical. Remember "down and out" or "roots are down" and "up, up, up" or "exponents are up"
the number down below goes out (outside) the radical. And the number up top is up and exponents are up, up, up
see image.
x^3/10 =
tenth root (x^3)
see image.
The director of a film festival received 9 submissions, 7 of which were sci-fi films. If the director randomly chose to play 6 of the submissions on the first day of the festival, what is the probability that all of them are sci-fi films? Write your answer as a decimal rounded to four decimal places .
Given data:
9 submissions out of which 7 were sci-fi
If the director randomly chose to play 6 of the submissions on the first day of the festival
Then, the probability that all of them are sci-fi films will be obtained as follows
At the first selection, it will be: 7/9
At the second selection, it will be: 6/8
At the third selection, it will be: 5/7
At the fourth selection, it will be: 4/6
At the fifth selection, it will be: 3/5
At the sixth selection, it will be: 2/4
Thus, the probability will be
[tex]\frac{7}{9}\times\frac{6}{8}\times\frac{5}{7}\times\frac{4}{6}\times\frac{3}{5}\times\frac{2}{4}=\frac{5040}{60480}[/tex]=>
[tex]\frac{5040}{60480}=\frac{1}{12}[/tex]=>
[tex]\frac{1}{12}=0.0833[/tex]Answer = 0.0833
6) Write the equation of the line, in point-slope form, that passes through the point (-2,5) and has a slopeof 3.
Write the equation of the line, in point-slope form, that passes through the point (-2,5) and has a slope
of 3
___________________________________________________
The point-slope form
y-y1 = m (x-x1)
The slope (m)= 3
The point (x1, y1) = (-2,5)
____________
Replacing
y-5 =3 (x- (-2))
_______________
Answer
(y-5) =3 (x +2)
Do you have any questions regarding the solution?
Solve each system of the equation by elimination. y=-4x+14y=10x-28
Explanation:
The elimination method consists in substracting one equation from the other, so you eliminate one of the variables and you have only one equation to solve for one variable.
In this case, y has the same coefficient in both equations, so this is the variable we will eliminate.
Substract the first equation from the second:
[tex]\begin{gathered} y=10x-28 \\ - \\ y=-4x+14 \\ \text{ ---------------------} \\ y-y=10x+4x-28-14 \\ 0=14x-42 \end{gathered}[/tex]And solve for x:
[tex]\begin{gathered} 14x=42 \\ x=\frac{42}{14} \\ x=3 \end{gathered}[/tex]Now, we replace x = 3 into one of the equations and solve for y:
[tex]y=-4\cdot3+14=-12+14=2[/tex]Answer:
• x = 3
,• y = 2
Use the quadratic function fly)=-22 +53411 to answer the following questions,a) Use the vertex formula to determine the vertes.The verteris(Type an ordered pair Simplify your answer.)
The vertex of a quadratic function can be found by using the following expression:
[tex]x=\frac{-b}{2a}[/tex]Where "a" is the number multiplying x² and b is the number multiplying x. For this function a = -2 and b = 5. Applying these on the problem we have:
[tex]x=\frac{-5}{2\cdot(-2)}=\frac{-5}{-4}=\frac{5}{4}=1.25[/tex]To find the y coordinate of the vertex we need to use the value for x that we found above. We have:
[tex]\begin{gathered} f(x)=-2x^2+5x+11 \\ f(\frac{5}{4})=-2\cdot(\frac{5}{4})^2+5\cdot(\frac{5}{4})+11 \\ f(\frac{5}{4})=-2\frac{25}{16}+\frac{25}{4}+11 \\ f(\frac{5}{4})=\frac{-50}{16}+\frac{25}{4}+11 \\ f(\frac{5}{4})=-3.125+6.25+11=14.125 \end{gathered}[/tex]The ordered pair for this function's vertex is (1.25, 14.125)
(2, -3) (4, -2)
Slope intercept
The slope of the given coordinates is m = 1/2.
What is the slope?A line's steepness can be determined by looking at its slope. The slope is calculated mathematically as "rise over run" (change in y divided by change in x). The slope-intercept form of an equation is used whenever the equation of a line is expressed in the form y = mx + b. M represents the line's slope. B is the b in the point where the y-intercept is located (0, b). For instance, the slope and y-intercept of the equation y = 3x - 7 are 3 and 0, respectively.So, the slope of (2, -3) (4, -2):
The slope formula: m = y₂ - y₁/x₂ - x₁Now, solve for slope by putting the values as follows:
m = y₂ - y₁/x₂ - x₁m = -2 - (-3)/4 - 2m = -2 + 3/2m = 1/2Therefore, the slope of the given coordinates is m = 1/2.
Know more about slopes here:
https://brainly.com/question/3493733
#SPJ13
The correct question is shown below:
Find the slope using the coordinates (2, -3) (4, -2).
What is the mean and median of the data set
The mean of a data set is the sum of the data divided by the total number of data.
The median of a data set is the middle number in the set (after the numbers have been arranged from least to greatest, or, if there is an even number of data, the median is the average of the two middle numbers.
You have the next data set:
[tex]\begin{gathered} \lbrace11,11,11,11,12,12,12,13,13,13,13,13,13,14,15,15,15,15,15, \\ 15,16,16,16,16,16,17,17,17\rbrace \end{gathered}[/tex]A total of 28 data.
The mean is equal to the sum of the 28 numbers and then divided into 28:
[tex]undefined[/tex]Complete the table .....Which parts of the arithmetic sequence in the left of the table match up with the linear function on the right?
Let's expand the formula for arithmetic sequence.
[tex]\begin{gathered} a_n=a_1+d(n-1) \\ a_n=a_1+dn-d \\ a_n=dn+(a_1-d) \end{gathered}[/tex]The linear function is:
[tex]f(x)=ax+b_{}[/tex]Matching both equations, we can say:
[tex]\begin{gathered} a_n\gg\gg f(x) \\ d\gg\gg a \\ n\gg\gg x \\ a_1-d\gg\gg b \end{gathered}[/tex]If np ≥5 and nq≥5, estimate P(at least 6) with n=13 and p = 0.5 by using the normal distribution as an approximation to the binomial distribution; if np < 5 or nq < 5, then state that the
normal approximation is not suitable.
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
O A. P(at least 6) =
(Round to three decimal places as needed.)
O B. The normal distribution cannot be used
Using normal distribution we know that the value is P(at least 6) = 0.866.
What is Normal Distribution?A continuous probability distribution for a real-valued random variable in statistics is known as a normal distribution or a Gaussian distribution.The mean is 8.4 according to the formula:
q = 1 - p = 1 - 0.5 = 0.5Np = (13)(0.5) = 6.5 > 5Nq = (13)(0.5) = 6.5 > 5Consequently, the normal distribution will indeed resemble the binomial.
sqrt(Npq) = sqrt(13*0.5*0.5) = 1.802 is the standard deviation.Since it's ≥ and not > and to the right, we use 6-0.5 = 5.5Because going right from 5.5 includes 6.
P(x > 5.5) with μ = 6.5 and σ = 1.802Either find the z-score and use the table or use technology to find
Hence, Answer = 0.866Therefore, using normal distribution we know that the value is P(at least 6) = 0.866.
To learn more about Normal Distribution click on the link:
brainly.com/question/4079902
#SPJ13
Two lines are shown on the grid below.Read the statements below about the graph of the two lines.Which statements are true about the two lines on the graph?A.I,II, and IV onlyB.II,III, and IV onlyC.II and III only D.I,II,III,and IV
Answer:
B. II, III, and IV only
Explanation:
Vertical lines have an undefined slope and the equation of these lines is x = c, where c is a constant value
Horizontal lines have a slope equal to 0 and the equation of these lines is y = c, where c is a constant value.
Therefore, the statements that are true about the graph are:
The equation of line b is y = -5
Line b has a slope of 0
The equation of line a is x = 3
4(x - 3) - (x - 5) = 0
4(x - 3) - (x - 5) = 0
Solving for x:
4(x - 3) - (x - 5) = 0
4x - 12 - x + 5 = 0
4x - x = 12 - 5
3x = 7
x = 7/3
Answer:
x = 7/3 = 2.33
Explain how you know 437,160 is greater than 43,716.4 grade student
437,160 is read as four hundred thirty-seven thousand one hundred sixty and 43,716 is read as fourty-three thousand seven hundred sixteen.
The first number has hundreds of thousand and the second one only has tens of thousand. It means that the first number is greater than the second one.
Another way to know this is because of the number of figures before the decimal point. The first number has 6 figures before the decimal point and the second one only has 5.
That way, we know that 437,160 is greater than 43,716.
Is the graph of the distance a person has driven over time an example of a continuous or discrete graph?
Let us first understand what are discrete and continuous variables.
Discrete variable:
A discrete variable is countable in a finite amount of time.
For example:
The number of coins in your pocket
The number of trees in the garden
It is not possible to have 2.5 coins or 7.3 trees
Continuous variable:
A continuous variable can take any numeric value.
For example:
The height of the tree
The room temperature
These values can be in decimal like 7.3, 0.23 etc
Now let us come to the question, the distance a person has driven can take any value
for example, it can be 50 miles or 23.4 miles or 120.5 miles
So, decimal values are possible
This means that it must be a continuous graph
The distance a person has driven over time an example of a continuous graph.
Khloe is going to invest $7,100 and leave it in an account for 9 years. Assuming the interest is compounded continuously, what interest rate, to the nearest hundredth of a percent, would be required in order for Khloe to end up with $12,600?
Solution
For this case we can use the following formula:
[tex]A=Pe^{rt}^{}[/tex]and for this case we have the following:
P= 12600
A= 7100
t = 9 years
And r is the value that we need to find, so we can do the following:
[tex]12600=7100e^{9r}[/tex]We can do the following:
[tex]\ln (\frac{12600}{7100})=9r[/tex]And we got for r:
[tex]r=\frac{\ln (\frac{12600}{7100})}{9}=0.0637[/tex]And then the rate would be:
6.37%
I attached the questions as images. The first image is actually the second.You can send in the work on paper like the graphing part.The questions can be typed on the solution tab or messages whichever is easier for you.Thanks again for the help :)
SOLUTION
Consider the image below,
The lenght of the compass is the radius, using a lenght of 5 unit, we have circle below as the sphere .
Where
[tex]\begin{gathered} r=\text{ radius, O= origin } \\ And \\ r=5\text{unit } \end{gathered}[/tex]Using the formula, we have
[tex]\begin{gathered} \text{Volume of sphere} \\ =\frac{4}{3}\pi r^3 \\ \text{where} \\ \pi=3.14,\text{ r=}5 \end{gathered}[/tex]Substitute into the formula, we have
[tex]\begin{gathered} \text{Volume of the sphere is } \\ =\frac{4}{3}\times3.14\times5^3 \\ \text{Hence } \\ 523.33\text{ cubic unit} \end{gathered}[/tex]Therefore
The volume of the sphere is 523.33 cubic unit
Find the reference angle for the given angles 745 degree.
Maisa,. let's recall the formula for calculating the reference angle when the angle is > 360 degrees:
Reference angle = Given angle - 360
Reference angle = 745 - 360
Reference angle = 385
It's still higher value than 360, therefore we subtract 360 again.
Reference angle = 385 - 360
Reference angle = 25 degrees
2000.5 - 351.748 +62.1
Given the expression :
[tex]2000.5-351.748+62.1[/tex]At first make all the decimal digits equally for all terms
The maximum decimal is 3 so, add 00 to the first and the last terms
So,
[tex]\begin{gathered} 2000.5-351.748+62.1 \\ =2000.500-351.748+62.100 \\ =1710.852 \end{gathered}[/tex]So, the answer is : 1,710.852
A toy car that is 0.5 ft long is used to model the actions of an actual car that is 15 ft long. Which ratio shows the relationship between the sizes of the model and the actual car? A. 2:5 B. 5:2 C. 30:1 D. 1:30
A toy car that is 0.5 ft long is used to model the actions of an actual car that is 15 ft long. Which ratio shows the relationship between the sizes of the model and the actual car?
A. 2:5
B. 5:2
C. 30:1
D. 1:30
_____________________
0.5 ft the toy car: 15 the actual car
0.5*2 =1
15 *2 = 30
1: 30
_____________________________________
The ratio1:30 shows the relationship between the sizes of the model and the actual car
____________
Do you have any questions regarding the solution?
The ordered pairs represent a function. (0,-1), (1,0), (2,3), (3,8) and (4,15). Answer the questions in the picture.
In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
ordered pairs:
(0,-1), (1,0), (2,3), (3,8) and (4,15)
Step 02:
functions:
graph:
The function is nonlinear
x ==> increases by 1
y ==> increases by 2
y = x² - 1E-14x - 1
That is the full solution.
1c. Clue 1The number has three digits.Clue 2 The number is less than 140.Clue 3 The number has 7 as a factor.Clue 4 The number is even.Clue 5 The sum of the digits of the number is less than 9.
We have an even 3 digits number whose sum lie is less than 9, has got 3 digits and less than 140.
We will establish the inequalities that satisfies the conditions given and then figure out the number.
[tex]\begin{gathered} 100x+10y+z<140 \\ x+y+z<9 \\ 100x+10y+z=14a\text{ where a lies between 8 and 9} \end{gathered}[/tex]From our last inequality, we can easily see that the number in question is 14 x 8 or 14 x 9. Any multiple of 7 that is even is also a multiple of 14.
[tex]\begin{gathered} 14\times8=112\text{ AND} \\ 14\times9=126 \end{gathered}[/tex]From the above, it can be easily seen that 112 satisfies the conditions listed.
The number is 112
Write the following equation in standard form: x + x4 + 6x +1
To answer this question, we need to know that the standard form of an equation of this type is written as follows:
[tex]ax^5+bx^4+cx^3\ldots[/tex]We have that the polynomial given is:
[tex]\frac{8}{7}x^3+x^4+6x+1[/tex]In the standard form, we need to write it as follows:
[tex]x^4+\frac{8}{7}x^3+0x^2+6x+1=x^4+\frac{8}{7}x^3+6x+1[/tex]Therefore, the correct answer is option C. This is the standard form for this fourth-degree polynomial.
Which phrase represents this expression?
5 + 4 ÷ 2
Responses
the product of 5 and the quotient of 4 and 2
the product of 5 and the quotient of 4 and 2
the product of 5 and 4 is divided by 2
the product of 5 and 4 is divided by 2
the sum of 5 and 4 is divided by 2
the sum of 5 and 4 is divided by 2
the sum of 5 and the quotient of 4 and 2
The function f (x) = x+4/3 is in a system with its inverse f-1(x). What is the solution to the system?
Use a trig equation to solve for x. Round to the nearest tenth.
Given a right angle triangle
We need to find the measure of the angle x
The opposite side to the angle x = 19
the adjacent side to the angle x = 15
We will find x using the tan function as follows:
[tex]\begin{gathered} \tan x=\frac{opposite}{adjacent} \\ \\ \tan x=\frac{19}{15} \\ \\ x=\tan ^{-1}\frac{19}{15}\approx51.7098^{} \end{gathered}[/tex]Round the answer to the nearest tenth
so, the answer will be x = 51.7
Lines that are perpendicular have slopes that arethe same or opposite and reciprocal.
When lines are perpendicular the slopes of both are opposite and reciprocal, that is:
[tex]m\text{ and - }\frac{1}{m}[/tex]In words, if we have a line with slope = m, the perpendicular line to that line will have a slope = - 1/m ( opposite and reciprocal).