i am not sure the best way to solve this problem

I Am Not Sure The Best Way To Solve This Problem

Answers

Answer 1

ANSWER

14.11 s

EXPLANATION

We know that in total, the runner will run a distance of 100m. He runs at constant acceleration for a while and then his velocity gets constant until the end of the track - this means that in the last part, his acceleration is zero.

So we have two parts:

For the first part, we have the acceleration and time. If we set that the initial position is zero, as shown in the diagram above, and that the runner starts from rest - therefore, his initial velocity is zero - we can find the distance of the first part of the path, which we'll call x1:

[tex]x_1=x_0+v_0t+\frac{1}{2}at^2[/tex]

Since x0 and v0 are both zero, then those terms get cancelled:

[tex]x_1=\frac{1}{2}\cdot a\cdot t^2=\frac{1}{2}\cdot1.5\cdot6^2=27m[/tex]

So the first part of the track, where the runner is speeding up, has a distance of 27m. Therefore, the rest of the track where the runner runs at constant acceleration is:

[tex]100-27=73[/tex]

73m.

We want to find the time it took the runner to run the whole 100m. We know that he did the first part in 6 seconds. To find the time of the second part, we can use the distance we just found. Let's call it xf:

[tex]x_f-x_1=\frac{1}{2}at^2+v_0t[/tex]

We know that the acceleration in this part of the track is zero and the initial velocity for this part is the velocity the runner had when he reached 6 seconds - i.e. 27m:

[tex]73m=v_1\cdot t[/tex]

We don't know the time and we don't know the velocity, but we can find the second one using the formula for velocity for the first part of the track with t = 6s:

[tex]\begin{gathered} v_1=a\cdot t+v_0 \\ v_1=1.5\cdot6 \\ v_1=9m/s \end{gathered}[/tex]

Now we can find the time for the second part of the track:

[tex]\begin{gathered} 73m=9m/s\cdot t \\ t=\frac{73m}{9m/s} \\ t\approx8.11s \end{gathered}[/tex]

Therefore, the total time it took the runner to run 100m was:

[tex]\begin{gathered} t=6s+8.11s \\ t=14.11s \end{gathered}[/tex]

14.11 s

I Am Not Sure The Best Way To Solve This Problem

Related Questions

How does the work needed to stretch a spring 2 cm compare to the work needed to stretch it 1 cm.A.Same amount of workB.twice the workC.4 times the work D.8 times the work

Answers

The work required to stretch a string is given by the following equation:

[tex]W=\frac{1}{2}kx^2[/tex]

Where:

[tex]\begin{gathered} k=\text{ string constant} \\ x=\text{ distance the string is stretched} \end{gathered}[/tex]

If the string is stretched 2 cm then we substitute the value of "x = 2" in the formula, we get:

[tex]W_2=\frac{1}{2}k(2)^2[/tex]

Solving the square and simplifying:

[tex]W_2=2k[/tex]

Now, if the string is stretched 1 cm we get:

[tex]W_1=\frac{1}{2}k(1)^2[/tex]

Solving the operations:

[tex]W_1=\frac{1}{2}k[/tex]

Now, we determine the quotient between W2 and W1:

[tex]\frac{W_2}{W_1}=\frac{2k}{\frac{1}{2}k}[/tex]

Simplifying we get:

[tex]\frac{W_2}{W_1}=4[/tex]

Now, we multiply both sides by W2:

[tex]W_2=4W_1[/tex]

Therefore, the work required to stretch the string 2 cm is 4 times the work to stretch it 1 cm.

A runner runs around a circular track. He completes one lap at a time of t = 314 s at a constant speed of v = 3.1 m/s. t = 314 sv = 3.1 m/sWhat is the radius, r in meters, of the track? What was the runners centripetal acceleration, ac in m/s2, during the run?

Answers

Since the runner completes 1 lap in 314 seconds, and its velocity is 3.1m/s, then the total distance covered in 1 lap is:

[tex]\begin{gathered} d=vt \\ =(3.1\frac{m}{s})(314s) \\ =973.4m \end{gathered}[/tex]

That distance corresponds to the perimeter of the circumference. The perimeter of a circumference with radius r is 2πr. Then:

[tex]\begin{gathered} 2\pi r=d \\ \\ \Rightarrow r=\frac{d}{2\pi} \\ =\frac{973.4m}{2(3.14...)} \\ =154.9...m \end{gathered}[/tex]

The centripetal acceleration of an object in a circular trajectory with radius r and speed v is:

[tex]a_c=\frac{v^2}{r}[/tex]

Replace v=3.1m/s and r=154.9m to find the centripetal acceleration:

[tex]a_c=\frac{(3.1\frac{m}{s})^2}{(154.9m)}=0.062\frac{m}{s^2}[/tex]

Therefore, the radius of the track is approximately 155m and the centripetal acceleration of the runner is approximately 0.062 m/s^2.

A car going at 80 mph comes to a complete stop in 6 seconds. Calculate the acceleration

Answers

The acceleration is defined as:

[tex]a=\frac{v_f-v_0}{t}[/tex]

where vf is the final velocity, v0 is the initial velocity and t is the time. In this case we have:

The initial velocity is 80 mph

The final velocity is 0 mph (since the car stops)

The time it takes to slow down is 6 seconds.

Before we can do the calculation, we need to convert the velocity to appropriate units; let's write the initial velocity in ft/s units. To do this we need to remember that 1 mile is equal to 5280 ft and one hour is equal to 3600 s, then we have:

[tex]80\frac{mi}{h}\cdot\frac{5280\text{ ft}}{1\text{ mi}}\cdot\frac{1\text{ h}}{3600\text{ s}}=117.33\frac{ft}{s}[/tex]

Hence the initial velocity is 177.33 ft/s.

Now that we have all the values we need, we plug them in the equation for the acceleration:

[tex]\begin{gathered} a=\frac{0-117.33}{6} \\ a=-19.56 \end{gathered}[/tex]

Therefore, the acceleration is -19.56 feet per second per second. Note: The minus sign indicates that the car is slowing down.

How long would it take to pass 700 C of charge through a toaster drawing 10 A of current? How many electrons would pass through the toaster in this time?

Answers

Given that the charge of the toaster is q =700 C

The current of the toaster is I = 10 A

We have to find the time and number of electrons.

Time can be calculated by the formula,

[tex]t=\frac{q}{I}[/tex]

Substituting the values, the time will be

[tex]\begin{gathered} t=\frac{700}{10} \\ =70\text{ s} \end{gathered}[/tex]

The number of electrons can be calculated by the formula,

[tex]n=\frac{q}{e}[/tex]

Here, n is the number of electrons

and e is the charge of the electron whose value is

[tex]1.6\text{ }\times10^{-19}\text{ C}[/tex]

Substituting the values, the number of electrons will be

[tex]\begin{gathered} n\text{ = }\frac{700}{1.6\times10^{-19}} \\ =4.375\text{ }\times10^{-17} \end{gathered}[/tex]

A.Calculate the combined force of vector F ?B.Calculate the direction of the combined force vector F ?

Answers

Answer:

A. 282.93 N

B. 1.94 degrees

Explanation:

The combined force is found by first adding the three forces given.

We add the three forces by adding their x and y components separately and then combining the results to produce the total force,

The x component of a force is

[tex]\begin{gathered} \cos \theta=\frac{f_x}{F} \\ \Rightarrow f_x=F\cos \theta \end{gathered}[/tex]

Therefore, x components of the forces is

[tex]F_x=120\cos 65+100\cos 25+200\cos (-45)[/tex]

The y-component of the forces is

[tex]F_y=120\sin 120+100\sin 25+200\sin (-45)[/tex]

Now evaluating the above two components gives

[tex]F_x=282.77N[/tex][tex]F_y=9.597N[/tex]

Let us draw on big vector whose components are the above vectors.

The angle of the combined vector with respect to the x-axis is

[tex]\tan \theta=\frac{9.59}{282.77}[/tex][tex]\theta=\tan ^{-1}(\frac{9.59}{282.77})[/tex][tex]\boxed{\theta=1.94^o}[/tex]

which is our answer!

The magnitude of the combined vector is

[tex]F=\sqrt[]{F^2_x+F^2_y_{}}[/tex][tex]F=\sqrt[]{(9.59)^2_{}+(282.77)^2_{}}[/tex][tex]\boxed{F=282.93N}[/tex]

which is our answer!

Hence, to summerise:

A. 282.93 N

B. 1.94 degrees

Need help 82x2682 please

Answers

ANSWER:

STEP-BY-STEP EXPLANATION:

We have the following multiplication:

[tex]undefined[/tex]

Write a 5 page research on the topic 'How do migrating birds / animals find their direction? (Two birds / animals)'. Need this ASAP.​

Answers

Answer: Birds migrate to move from areas of low or decreasing resources to areas of high or increasing resources. The two primary resources being sought are food and nesting locations. Here’s more about how migration evolved.

Birds that nest in the Northern Hemisphere tend to migrate northward in the spring to take advantage of burgeoning insect populations, budding plants and an abundance of nesting locations. As winter approaches and the availability of insects and other food drops, the birds move south again. Escaping the cold is a motivating factor but many species, including hummingbirds, can withstand freezing temperatures as long as an adequate supply of food is available.

Explanation: sorry about the anther

7. What is the velocity of a 850kg car after starting at rest when 13,000J of work is done to it.

Answers

Answer:

5.53 m/s

Explanation:

The work is equal to the change in the kinetic energy, so

[tex]\begin{gathered} W=\Delta KE \\ W=\frac{1}{2}m(v^2_f-v^2_i)^{}^{} \end{gathered}[/tex]

Since the car starts at rest, the initial velocity vi = 0 m/s, so we can solve for the final velocity vf as follows

[tex]\begin{gathered} W=\frac{1}{2}mv^2_f \\ 2W=mv^2_f \\ \frac{2W}{m}=v^2_f \\ v_f=\sqrt[]{\frac{2W}{m}} \end{gathered}[/tex]

So, replacing the work W = 13,000J and the mass m = 850kg, we get:

[tex]\begin{gathered} v_f=\sqrt[]{\frac{2(13,000J)}{850\operatorname{kg}}} \\ v_f=5.53\text{ m/s} \end{gathered}[/tex]

Therefore, the velocity is 5.53 m/s

If the planet Mercury has a mass of planet 3.3×10²³ kg and a radius of 2400 km - calculate the magnitude of the gravitational field on its surface?

Answers

Answer:

The magnitude of the gravitational field on the surface of the planet mercury is 3.82 m/s²

Explanation:

The mass of mercury, m = 3.3×10²³ kg

The radius, r = 2400 km

r = 2400 x 1000m

r = 2.4 x 10⁶m

Note that the magnitude of the gravitational field on the surface of the planet is the acceleration due to gravity on that planet

It is given by the formula:

[tex]g=\frac{Gm}{r^2}[/tex]

Substitute the values of G, m, and r into the formula above

[tex]\begin{gathered} g=\frac{6.67\times10^{-11}\times3.3\times10^{23}}{(2.4\times10^6)^2} \\ g=\frac{6.67\times10^{-11}\times3.3\times10^{23}}{(2.4\times10^6)^2} \\ g=\frac{2.2\times10^{13}}{5.76\times10^{12}} \\ g=3.82m/s^2 \end{gathered}[/tex]

The magnitude of the gravitational field on the surface of the planet mercury is 3.82 m/s²

Two drops of mercury each has a charge on 2.42 nC and a voltage of 293.97 V. If the two drops are merged into one drop, what is the voltage on this drop?

Answers

The electric potential is given by:

[tex]\begin{gathered} V=\frac{Kq}{r} \\ \end{gathered}[/tex]

Let's find r first:

[tex]\begin{gathered} r=\frac{Kq}{V}=\frac{8.988\times10^9\cdot2.42\times10^{-9}}{293.97} \\ r\approx0.074m \end{gathered}[/tex]

Now we can find the radius of the new drop:

[tex]r_t=2(r)=2(0.074)=0.148[/tex]

So:

[tex]\begin{gathered} V=\frac{K(2q)}{r_t}=\frac{8.988\times10^9\cdot2(2.42\times10^{-9})}{(0.148)} \\ V=293.93V \end{gathered}[/tex]

Ultraviolet light has shorter wavelengths and higherfrequencies than visible light.TRUEFALSE

Answers

Ultraviolet light has shorter wavelengths and higher frequencies than visible light.

The answer is TRUE

The pressure is greater at the bottom of the bucket filled with water ,why?​

Answers

The further down you measure water, the depth increases. With more depth, there’s more water on top of that water. That water on top pushes against the water below, causing more pressure.

25. A student cycles along a level road at a speed of 5.0 m / s. The total mass of the student and bicycle is 120 kg. The student applies the brakes and stops. The braking distance is 10 m. What is the average braking force?

Answers

If a student bikes at a pace of 5.0 m/s down a straight route. The student's bicycle weighs 120 kg in total. The pupil puts on the brakes and comes to a stop. The average braking force of the automobile would be 150 newtons if the stopping distance were 10 meters.

What is Newton's second law?

Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum.

Work done by the braking force of the cycle   = change in kinetic energy of the student

Force  × distance  = 1/2 × mass × velocity²

F = 0.5 x 120 x 5² / 10

F = 150 Newtons

Thus, the average braking force of the cycle would be  150 Newtons.

Learn more about Newton's second law, here , refer to the link ;

brainly.com/question/13447525

#SPJ1

nd in Atlanta you decide to drive around the city. You turn a corner and are driving up a steep hill. Suddenly, a small boy runs out on the street chasing a ball. You slam on the brakes and skid to a stop leaving a 50-foot-long skid mark on the street. The boy calmly walks away but a policemen watching from the sidewalk walks over and gives you a speeding ticket. He points out that the speed limit on this street is 25mph. After you recover your wits, you begin to examine the situation. You determine that the street makes an angle of 25◦with the horizontal and that the coefficient of static friction between your tires and the street is0.80. You also find that the coefficient of kinetic friction between your tires and the street is 0.60. Your car’s information book tells you that the mass of your car is 1600 kg. You weigh 140 lbs. Will you fight the ticket

Answers

skid = 50 ft

Speed limit = 25 mph

angle = 25°

friction coefficient = 0.80

mass = 1600 kg

weight = 140 lbs

When you step off a bus moving at 2 m/s, your horizontal speed when you meet the ground isA) zero.B) less than 2 m/s but greater than zero.C) about 2 m/s.D) greater than 2 m/s.

Answers

ANSWER:

C) about 2 m/s.

STEP-BY-STEP EXPLANATION:

While step off the bus, it acquires a vertical component of velocity, but it still has the initial horizontal component of velocity due to the movement of the bus.

Which means that the velocity is either 2 m/s or about 2 m/s

Analyze the benefits and consequences of sleep create (continue) their own fitness programs incorporating sleep as a fundamental pillar of fitness

Answers

Explanation:

The Intimate Relationship Between Fitness and Sleep

*“If you don’t sleep, you undermine your body,” says W. Christopher Winter, MD, the president of Charlottesville Neurology and Sleep Medicine and the author of "The Sleep Solution: Why Your Sleep Is Broken and How to Fix It."

When it comes to working out, you know that what you do in the gym is important. But what you do outside the gym — what you eat, what you drink, and especially how you sleep, is just as crucial. In fact, you must sleep in order for exercise to actually work.

“We exercise for a purpose: for cardiovascular health, to increase lean muscle mass, to improve endurance, and more. All of these 'goals' require sleep,” says W. Christopher Winter, MD, the president of Charlottesville Neurology and Sleep Medicine and the author of The Sleep Solution: Why Your Sleep Is Broken and How to Fix It.

In other words, without sleep, exercise does not deliver those benefits, Dr. Winter explains. “If you don’t sleep, you undermine your body.”

If the mass m of the wrecking ball is 3920 kg , what is the tension TB in the cable that makes an angle of 40 ∘ with the vertical? What is the tension TA in the horizontal cable?

Answers

The tension TB in the cable makes an angle of 40 ∘ and  the tension TA in the horizontal cable

TB=49380.9NTA=31741.4N

This is further explained below.

What is tension?

Generally, To represent tension in a vertical direction, the term is:

[tex]T_B=\frac{m g}{\cos \theta}[/tex]

Substitute $3860kg for m, 9.8m/s^2 for g, and 40^0 for [tex]\theta[/tex].

[tex]T_B &=\frac{(3860 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^2\right)}{\cos 40^{\circ}} \\[/tex]

=49380.9N

Because the cosine of the tension in the cable, which is pushing up on the item, is equal to the weight force, which is pressing down on the ground, the ball is not moving and is thus in equilibrium.

The expression for the horizontal cable tension is,

[tex]T_A=T_B \sin \theta[/tex]

Substitute $49380.9N for T_B and $40^o for [tex]\theta[/tex]

[tex]T_A &=(49380.9 \mathrm{~N}) \sin 40^{\circ}[/tex]

=31741.4N

Read more about tension

https://brainly.com/question/15880959

#SPJ1

A penny is dropped from a building and it takes 7.00 seconds to hit the ground.

Answers

Based on the given question, the final velocity of the penny is 68.6m/s

Calculations and Parameters

Based on the definition of velocity, we can see that it has to do with the speed at which an object moves with at a particular direction.

If we observe the 1st law of motion:

v = u + gt

Where:

v = final velocity

u = initial velocity

g = acceleration due to gravity

t = time taken

We need to find the velocity as it was not given.

We already know that

u = 0 (it was at rest),

t = 7s

v = unknown

Let us put in the given values based on the equation and solve for the answer.

v = u + gt

v = 0 + ( 9.8m / s ² × 7.00s )

v = 9.8m / s ² × 7.00s

v = 68.6m/s

Therefore, the final velocity of the penny is 68.6m/s

Read more about velocity here:

https://brainly.com/question/25749514

#SPJ1

A penny is dropped from a building, and it takes 7 seconds to hit the ground, so the final velocity will be 68.6 m/s.

What is Velocity?

The ratio of displacement to time is referred to as velocity of the object. It has SI unit meter per second or m/s and has a dimension formula LT⁻¹.

We already know that

Initial speed, u = 0

Time, t = 7 seconds

Use the equation of motion to find the final velocity,

v = u + gt

v = 0 + ( 9.8 m / s ² × 7.00s )

v = 9.8 m / s ² × 7.00s

v = 68.6 m/s

Hence, the penny hit the ground with a final velocity of  68.6 m/s.

To get more information about Velocity :

https://brainly.com/question/18084516

#SPJ1

A person pushes a 500 kg crate with a force of 1200 N and the crate accelerates at .5 m/s^2. What is the force of friction acting on the crate?

Answers

The force of friction acting on the crate is 950 N.

What is force of friction?

Force of friction is defined as the force that opposes the motion of an object when two surfaces are in contact.

The frictional force on the object is determined by applying Newton's second law of motion as shown below.

F - Ff = ma

where;

F is the applied force = 1200 NFf is the frictional forcem is the mass of the crate = 500 kga is the acceleration of the crate = 0.5 m/s²

1200   -  Ff = 500(0.5)

1200 - Ff = 250

Ff = 1200 - 250

Ff = 950 N

Thus, the force of friction acting on the crate preventing the motion of the crate is determined by applying Newton's second law of motion.

Learn more about force of friction here: https://brainly.com/question/4618599
#SPJ1

what is the velocity of the boat from point x to point y

Answers

The distance between the points X and Y is,

[tex]\begin{gathered} d=9\text{ km} \\ =9000\text{ m} \end{gathered}[/tex]

The time taken to move the distance is,

[tex]\begin{gathered} t=12\text{ min} \\ =12\times60\text{ s} \end{gathered}[/tex]

The velocity is given by,

[tex]\begin{gathered} v=\frac{d}{t} \\ =\frac{9000\text{ m}}{12\times60\text{ s}} \\ =12.5\text{ m/s} \end{gathered}[/tex]

Hence the velocity is 12.5 m/s.

Toaster uses a nichrome heating coil and operates at 120 V. When the toaster is turned on at 20°C, the current in the cold coil is 1.5 A. When the coil warms up, the current has a value of 1.3 A. If the thermal coefficient of resistivity for nichrome is 4.5x10-4 1/Co, what is the temperature of the coil?Group of answer choices68oC490oC160oC360oC260oC

Answers

Given that the operating voltage is V = 120 V.

The initial temperature of the toaster is T1 = 20 degrees Celsius

The initial current in the coil is I1 = 1.5 A

The final current in the coil is I2 = 1.3 A

The thermal coefficient of resistivity for nichrome is

[tex]\alpha=4.5\times10^{-4}^{}\text{ }^{\circ}C^{-1}[/tex]

We have to find the final temperature of the coil, T2.

The initial resistance of the coil is

[tex]\begin{gathered} R1=\frac{V}{I1} \\ =\frac{120}{1.5} \\ =80\Omega \end{gathered}[/tex]

The final resistance of the coil is

[tex]\begin{gathered} R2\text{ =}\frac{V}{I2} \\ =\frac{120}{1.3} \\ =92.307\Omega \end{gathered}[/tex]

The formula to calculate the final temperature of the coil is

[tex]\begin{gathered} \alpha=\frac{(R2-R1)}{R1(T2-T1)} \\ T2-T1=\frac{(R2-R1)}{\alpha\times R1} \\ T2=\frac{(R2-R1)}{\alpha\times R1}+T1 \end{gathered}[/tex]

Substituting the values, the final temperature will be

[tex]\begin{gathered} T2=\text{ }\frac{92.307-80}{4.5\times10^{-4}\times80}+20 \\ \approx360^{\circ}\text{ C} \end{gathered}[/tex]

Thus, the final temperature is 360 degrees Celsius.

Can all rocks be dated with radiometer methods? Explain

Answers

Answer: No.

Explanation:

Radiometer dating is used on igneous rocks.

Unlike the other two rock types, sedimentary annd metamorphisis, all igneous rocks possess one specific age/ time of origin.

Full working out…….2.A vibrating mass-spring system has a frequency of 0.56 Hz. How much energy ofthis vibration is carried away in a one-quantum change?

Answers

ANSWER

3.7128 x 10⁻³⁴ J

EXPLANATION

The energy carried in a one-quantum change is the product of Planck's constant, h, and the frequency of vibration, f,

[tex]E=hf[/tex]

Planck's constant is 6.63 x 10⁻³⁴ J*s and, in this case, the frequency of vibration is 0.56 Hz. So, the energy carried away is,

[tex]E=0.56Hz\cdot6.63\cdot10^{-34}J\cdot s=3.7128\cdot10^{-34}J[/tex]

Hence, the energy carried away in a one-quantum change is 3.7128 x 10⁻³⁴ J.

Describe the mathematical relationship between the distance (d) and the attractive force (F) between protons and electrons.

Answers

The attractive force and the distance are inversely proportional.

[tex]F\propto\frac{1}{r}[/tex]

This relation means that the attractive force decreases as the distance increases, and the attractive force increases as the distance decrease.

A) the frictional force F newtonsB)The resultant normal reaction of the surface on the metal block

Answers

Given:

The mass of the block is.

[tex]m=10\text{ kg}[/tex]

The tension on the rope is,

[tex]T=100\text{ N}[/tex]

The angle with the horizontal is,

[tex]\theta=60^{\circ}[/tex]

The block is moving with constant speed.

as the block is moving with constant speed, the net force on the block will be zero.

Part (A)

we can write in the horizontal direction the component of the tension will be equal to the frictional force and we write,

[tex]\begin{gathered} T\cos 60^{\circ}=F \\ F=100\cos 60^{\circ} \\ F=50\text{ N} \end{gathered}[/tex]

Hence the frictional force is 50 N.

\\

Part(B)

The resultant normal reaction will be,

[tex]\begin{gathered} N=T\sin 60^{\circ}-mg \\ =100sin60^{\circ}-10\times9.8 \\ =-11.4\text{ N} \end{gathered}[/tex]

hence the resultant normal reaction is -11.4 N.

A 20.0 kg penguin slides at a constant velocity of 3.3 m/s down an icy incline. The incline slopes above the horizontal at an angle of 6.0°. Determine the coefficient of kinetic friction.

Answers

The coefficient of kinetic friction down the slope is 0.105.

What is kinetic friction?

Kinetic friction is the friction that exists or acts between the surfaces of one object moving over another.

The kinetic frictional force of an object moving on an inclined plane is give by the formula below:

Kf = μk * mg *cosθ

where;

μk = coefficient of kinetic friction.

mg cosθ = component of the weight perpendicular to the inclined plane

θ = angle of inclination

For an object moving at a constant velocity, the component of the weight down the slope (mg sinθ) is equal to the kinetic frictional force.

Hence, μk * mg *cosθ = mg sinθ

μk =  mg sinθ / mg *cosθ

μk = tan θ

μk = tan 6.0

μk = 0.105

Learn more about kinetic friction at: https://brainly.com/question/20241845

#SPJ1

Suppose a 345-g kookaburra (a large kingfisher bird) picks up a 75-g snake and raises it 2.1 m from the ground to a branch.How much work, in joules, did the bird do on the snake? How much work, in joules, did it do to raise its own center of mass to the branch?

Answers

The work done in each case can be calculated with the change in potential energy of the body:

[tex]Work=m\cdot g\cdot h[/tex]

The work done by the bird on the snake will use only the mass of the snake (in kg):

[tex]\begin{gathered} Work=0.075\cdot9.8\cdot2.1\\ \\ Work=1.5435\text{ J} \end{gathered}[/tex]

The work done by the bird to raise its own center of mass will use only the bird mass (in kg):

[tex]\begin{gathered} Work=0.345\cdot9.8\cdot2.1\\ \\ Work=7.1\text{ J} \end{gathered}[/tex]

a 298 kg boat is being propelled forward with a force of 2,365 N. What is the acceleration of the boat if it has a resistance force (rewarded) due to wind and water of 878 N? (Write answer as a 2 digit number)​

Answers

The acceleration of the boat is 4.9m/s²

Mass of boat= 298 kg

Forward force= 2365 N

Resistance force= 878N

We need to apply the concept of laws of motion

Net force= Forward force- Resistance force

Net force= 2365-878 N

= 1487 N

Net force= mass x acceleration

2365= acceleration x 298

acceleration = 4.9 m/s²

Therefore, the acceleration of the boat is 4.9 m/s²

To know more about acceleration, click on https://brainly.com/question/14344386

A ski jumper competing for an Olympic gold metal wants to jump
a horizontal distance of 149 meters. The takeoff point of the ski
jump is at a height of 38.0 meters. With what horizontal velocity
must he leave the jump in order to travel 149 meters?

Answers

19.25 m/s is horizontal velocity must he leave the jump in order to travel 149 meters .

How fast is horizontal moving?

Standard definitions of horizontal velocity include miles per hour and meters per second, which are horizontal displacement times time. The distance an object has traveled since its origin is simply referred to as displacement.

How can one calculate vertical velocity using horizontal velocity?

V * cos() equals the horizontal velocity component Vx. V * sin() is equal to the vertical component of velocity, Vy.

Time before landing = sqrt ( 2 x height / gravity ), sqrt ( 2 x 38/ 9.81) = 7.75

distance / time = avg speed

149/ 7.75 ≅ 19.25 m/s

To know more about horizontal velocity visit:-

https://brainly.com/question/14059839

#SPJ13

An object is dropped from rest out of the window of a building, and the time to hit the ground is found to be 5 seconds. The same object is then dropped from rest out of a window twice as high above the ground as the original window. The time it takes the object to hit the ground is closest to:

Answers

ANSWER:

7 s

STEP-BY-STEP EXPLANATION:

Given:

u = 0m/s

t = 5 sec

g = 9.8 m/s^2

The first thing is to calculate the height of the building, using the following formula:

[tex]\begin{gathered} s=ut+\frac{1}{2}gt^2 \\ \text{ Replacing} \\ s=0\cdot5+\frac{1}{2}\cdot9.8\cdot5^2 \\ s=122.5\text{ m} \end{gathered}[/tex]

Now, we apply the same formula, but we substitute the double value of the distance and solve for t, just like this:

[tex]\begin{gathered} 2\cdot122.5=\frac{1}{2}\cdot9.8\cdot\: t^2 \\ 9.8\cdot t^2=245\cdot2 \\ t^2=\frac{490}{9.8} \\ t=\sqrt[]{50} \\ t=7.07\text{ sec} \\ t\approx7\text{ sec} \end{gathered}[/tex]

The time it takes for the object to fall is 7 seconds.

Other Questions
A student opens a recently purchased software package and begins reading the enclosed materials. what information might be included in the software license? check all that apply. ""this software can only be used on two computers."" ""this software will help you get a better grade in school."" ""this software cannot be shared with others."" ""this software can be shared with one other computer."" ""this software must be opened before the end of the year."" Whats the answer plss I really need help What is the best definition of fossil range?answer: The period of time when an organism first and last appears in the sedimentary record. Which is the factored form of 3a2 - 24a + 48?. ( 8)( 6)b. 3a - 4)(a 4)c. (3a - 16)(a 3)d. 3( -8)(a -8) Which psychological perspective understands anxiety disorders by examining temperament, parenting, and life stress?. Invented by the well-known quality control statistician dr. Kaoru ishikawa, what is the name of the analysis tool that provides a systematic way of looking at effects and the causes that create or contribute to those effects?. I would really appreciate your help How to find the (r) or difference in this scenario:Aliens Away is a new video game where a player must eliminate a certain number of aliens on the screen by scaring them with an adorable house cat. When James plays the game, he eliminates 64 aliens in the first level and 216 aliens in the fourth level. If the number of aliens are destroyed in a geometric sequence from one level to the next, how many total aliens will James have wiped out by the end of the sixth level? It is given that it is a geometric sequence, if I am not mistaken it is the explicit formula.IF YOU COULD PLASE EXPLAIN:) la pagina=______ web it's important to note that sometimes private solutions to externalities do not work. for example, this occurs when one party repeatedly holds out for a better deal. this describes the problem of 1/3 divided by 2 (1/2)^3please help me How do you manage your online presence? What kind of sites are you most active on, and what steps can you take to manage your image on these sites better? How does a coyote producer consumer decomposer melvin charges a fee of $1,080 for merchandise purchased by a customer. assuming that the amount includes 8% of sales tax, melvin should credit sales tax payable for: Because diffusion depends upon random article movements substances diffuse across membrane with out requiring the cell to?c What causes online disinhibition? I need help figuring out how to find sides a and b using the law of sine a 68.1-kg boy is surfing and catches a wave which gives him an initial speed of 1.60 m/s. he then drops through a height of 1.56 m, and ends with a speed of 8.51 m/s. how much nonconservative work (in kj) was done on the boy? Consider the reaction between sodium metal and chlorine gas to form sodium chloride (table salt):2 Na(s) + Cl2 (g) > 2 NaCI(s)If 12.5 g of sodium react with sufficient chlorine, how many grams of sodium chloride should form?1. 12.1 grams2. 1.18 x 10^2 grams3. 15.9 grams4. 3.18 x 10^1 grams5. 51.0 grams Solve the equation on the interval [0, 2\small \pi). Show all work. Do not use a calculator - use your unit circle!