*You will use the following scenario forquestions 1-4*On the Wechsler Adult IntelligenceScale a mean IQ is 100 with a standarddeviation of 15. You may assume thatIQ scores follow a normal distribution.What percent of people have an IQscore less than 90?*Write your answer as a percent andround to 2 decimal places*

*You Will Use The Following Scenario Forquestions 1-4*On The Wechsler Adult IntelligenceScale A Mean

Answers

Answer 1

The Solution:

Given:

[tex]\begin{gathered} x=90 \\ \mu=100 \\ \sigma=15 \end{gathered}[/tex]

By formula,

[tex]Z=\frac{x-\mu}{\sigma}=\frac{90-100}{15}=\frac{-10}{15}=-0.6667[/tex]

From the z-score tables:

[tex]P(Z\leq90)=0.25248[/tex]

Convert to percent by multiplying with 100.

[tex]0.25248\times100=25.248\approx25.25\text{\%}[/tex]

Thus, the number of people that have an IQ score less than 90 is 25.25%

Therefore, the correct answer si 25.25%


Related Questions

Write 0.000000000054 in scientific notation

Answers

Answer:

5.4 × 10^-11

Step-by-step explanation:

need help, what's the answer for the x and y?

Answers

Line equation in slope and y-intercept form:

y = mx + b

To calculate the slope, we use the first two points: (24,-15) and (28, -17)

m = (y2 - y1)/(x2 - x1)

m = (-17 - (-15))/(28 - 24)

m = (-17 + 15)/(4

m = -2/4 = -1/2

To find b we use the first point: (24, -15)

y = mx + b

b = y - mx = -15 - (-1/2)(24) = -15 + 12 = -3

b = -3

Answer:

y = (-1/2) x - 3

Rosa receives money from her relatives every year on her birthday. Last year, she received a total of $350. This year, she received $441. What is the percent of increase in Rosa’s annual birthday money?

Answers

Answer:

26%

Step-by-step explanation:

use a online percentage calculator

Write an expression for the sequence of operations described below.1)) multiply 7 by 8, then divide f by the resultDo not simplify any part of the expression.Submit

Answers

We need to write an expression for the operations:

[tex]\begin{gathered} \text{ multiply 7 by 8} \\ \\ \text{dived f by the result} \end{gathered}[/tex]

The first operation (multiplication) can be represented as:

[tex]7\cdot8[/tex]

The second operation (the division of f by the previous result) can be represented as:

[tex]f\div(7\cdot8)[/tex]

Notice that we need the parenthesis to indicate that the product is the first operation to be done.

Answer:

[tex]f\div(7\cdot8)[/tex]

A vase is in the shape of a cone. The height is 12 inches and the diameter is 4.4 inches.
What is the lateral surface area to the nearest tenth of a square inch?
O
O
24.3 square inches
149.1 square inches
168.6 square inches
99.5 square inches

Answers

84.27 square inch is the lateral surface area of cone.

Define lateral surface area.

All of an object's sides, excluding its base and top, are considered its lateral surface. The size of the lateral surface is referred to as its area. This must be distinguished from the total surface area, which consists of the base and top areas as well as the lateral surface area. A figure's lateral area consists solely of the non-base faces. The lateral surface area of several forms, such as a cuboid, cube, cylinder, cone, and sphere, is discussed in this article.

Given,

Height = 12 inches

Diameter = 4.4 inches

Radius = 2.2 inches

Lateral surface area:

πr√h² + r²

3.14 × 2.2 √(12)² + (2.2)²

3.14 × 2.2 √144 + 4.84

3.14 × 2.2 √148.84

3.14 × 2.2(12.2)

3.14 × 26.84

84.27

84.27 square inch is the lateral surface area of cone.

To learn more about lateral surface area, visit:

https://brainly.com/question/14001755

#SPJ13

a. find a length of segment DF . use decimal rotation _______ unitsb. find the length of segment DF. use decimal rotation _______ units

Answers

[tex]\text{ Since the triangles are similar, we will use the Thales' theorem!}[/tex][tex]\begin{gathered} \text{ By thales' theorem, we have that } \\ \\ \frac{AB}{AC}=\frac{DE}{DF} \\ \frac{2}{4}=\frac{1.2}{DF} \\ \frac{DF}{4}=\frac{1.2}{2} \\ \frac{DF}{4}=0.6 \\ DF=0.6\cdot4 \\ DF=2.4 \end{gathered}[/tex][tex]\begin{gathered} \text{And again, by thales' theorem, we have} \\ \frac{AB}{BC}=\frac{DE}{EF} \\ \frac{2}{3}=\frac{1.2}{EF} \\ \frac{EF}{3}=\frac{1.2}{2} \\ \frac{EF}{3}=0.6 \\ EF=0.6\cdot3 \\ EF=1.8 \end{gathered}[/tex]

Shawn needs to reach a windowsill that is 10 feet above the ground. He placed his ladder 4 feet from the base of the wall. It reached the base of the window.

a. Draw a diagram of the right triangle formed by Shawn's ladder, the ground and the wall.

b. Find the length of Shawn's ladder to the nearest tenth of a foot.​

Answers

If shown needs to reach a windowsill that is 10 feet above the ground and he placed his ladder 4 feet from the base of the wall.

Part a

The diagram of the right triangle formed by Shawn's ladder, the ground and wall has been plotted

Part b

The length of the Shawn's ladder is 10 foot

The distance between ladder base to the base of the wall = 4 feet

The distance between the wall base to the base of the window = 10 feet

Draw the right triangle using the given details

Part b

Using the Pythagorean theorem

[tex]AC^2= AB^2+BC^2[/tex]

Where AC is the length of the ladder

Substitute the values in the equation

AC = [tex]\sqrt{10^2+4^2}[/tex]

= [tex]\sqrt{100+16}[/tex]

= [tex]\sqrt{116}[/tex]

= 10.77

≈ 10 Foot

Hence, if shown needs to reach a windowsill that is 10 feet above the ground and he placed his ladder 4 feet from the base of the wall.

Part a

The diagram of the right triangle formed by Shawn's ladder, the ground and wall has been plotted

Part b

The length of the Shawn's ladder is 10 foot

Learn more about Pythagorean theorem here

brainly.com/question/14930619

#SPJ1

2. The area of the arena is 2160 in.2 a) Will the arena fit on the rug? Show your work and explain your answer below. b) If the length of the arena is 60 inches, what is the width? c) If the arena fits, and is placed exactly in the middle of the rug, how much standing room on the rug could a drive have? Use your measurements from above to help you. ? 3. If 15 robots can fit on the arena floor at one time, how much space does each robot take up?

Answers

Answers:

2a. The arena will fit on the rug

b. Width = 36 in

c. Standing room: 4 in

3. 144 in²

Explanation:

2. Part a.

First, we need to convert the measures of the rug to inches, so taking into account that 1 ft = 12 in, we get

Length = 6 ft x 12 in/ 1ft = 72 in

Width = 4 ft x 12 in/ 1 ft = 48 in

Then, the area of the rug will be

Area = Length x Width

Area = 72 in x 48 in

Area = 3456 in²

Therefore, the area of the arena, which is 2160 in² is lower than the area of the rug. It means that the area will fit on the rug.

Part b.

The area of the arena is equal to

Area = Length x Width

To find the width of the area, we need to solve the equation for the width, so

Width = Area/Length

So, replacing Area = 2160 in² and Length = 60 in, we get

Width = 2160 in² / 60 in

Width = 36 in

Therefore, the width of the area is 36 in.

Part c.

The measures that we get from parts a and b can be represented as

Therefore, the missing length can be calculated as:

(48 in - 36 in)/2 = 12 in/ 2 = 6 in

Therefore, a drive will have 6 in of standing room.

3.

Finally, to know how much space each robot take up, we need to divide the area of the arena by 15, so

2160 in²/ 15 = 144 in²

Therefore, each robot take 144 in²

If students only know the radius of a circle, what other measures could they determine? Explain how students would use the radius to find the other parts.

Answers

Radius of the circle : Radius is the distance from the center outwards.

With the help of radius we can determine the following terms:

1. Diameter : Diameter is the twice of radius and it is teh staright line that passes through the center. Expression for the diameter is :

[tex]\text{ Diameter= 2}\times Radius[/tex]

2. Circumference: Circumference of the circle or perimeter of the circle is the measurement of the boundary of the circle. It express as:

[tex]\begin{gathered} \text{ Circumference of Circle=2}\Pi(Radius) \\ \text{ where }\Pi=3.14 \end{gathered}[/tex]

3. Area of Circle: Area of a circle is the region occupied by the circle in a two-dimensional plane. It express as:

[tex]\begin{gathered} \text{ Area of Circle = }\Pi(radius)^2 \\ \text{where : }\Pi=3.14 \end{gathered}[/tex]

4. Center Angle of the Sector: Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one. It express as :

[tex]\text{ Central Angle of sector=}\frac{Area\text{ of Sector}}{\Pi(radius)^2}\times360[/tex]

5. Arc length : An arc of a circle is any portion of the circumference of a circle. It express as :

[tex]\text{ Arc Length = }Radius(\text{ Angle Substended by the arc from the centerof crircle)}[/tex]

In the given figure the radius is AO & BO

how do I find the perimeter of a quadrilateral on a graph?

Answers

The perimeter of a figure is always the sum of the lengths of the sides.

If we have the coordinates of the vertices of the quadrilateral, we can calculate the length of each side as the distance between the vertices.

For example, the length of a side AB will be the distance between the points A and B:

[tex]d=\sqrt[]{(x_b-x_a)^2+\mleft(y_b-y_a\mright)^2}[/tex]

Adding the length of the four sides will give the perimeter of the quadrilateral.

Find the perimeter of the rectangle. Write your answer in scientific notation.Area = 5.612 times 10^14 cm squared9.2 times 10^7cm is one side of the perimeter

Answers

Answer: Perimeter = 1.962 x 10^8 cm

Explanation:

The first step is to calculate the width of the rectangle. Recall,

Area = length x width

width = Area /length

From the information given,

Area = 5.612 times 10^14 cm squared

Length = 9.2 times 10^7cm

Thus,

width = 5.612 times 10^14 /9.2 times 10^7

width = 6.1 x 10^6

The formula for calculating the perimeter is

Perimeter = 2(length + width)

Thus,

Perimeter = 2(9.2 x 10^7 + 6.1 x 10^6)

Perimeter = 1.962 x 10^8 cm

write an equation in slope intercept form of the line that passes through the given point and is parallel to the graph of the equation(-3, -5); y = -5x+2

Answers

The equation is y = -5x-20.

GIven:

The equation is, y = -5x + 2.

A point on the line is (-3, 5).

The objective is to write an equation that passes throught the point and parallel to the given equation.

For parallel lines the product of slope values will be equal.

From the given equation, consider the slope of the equation as, m1 = -5.

Then, the slope of the parallel line will also be, m2 = -5.

Then, the equation of parallel line can be written as,

[tex]\begin{gathered} y=m_2x+b \\ y=-5x+b \end{gathered}[/tex]

Here b represents the y intercept of the parellel line.

To find the value of b, substitute the given points in the above equation.

[tex]\begin{gathered} -5=-5(-3)+b \\ -5=15+b \\ b=-5-15 \\ b=-20 \end{gathered}[/tex]

Now, substitute the value of b in the equation of parellel line.

[tex]y=-5x-20[/tex]

Hence, the equation of parellel line is y = -5x-20.

Solve this system of equations by substitution. Enter your answer as an ordered pair (x,y). Do not use spaces in your answer.

Answers

We have the following:

[tex]\begin{gathered} y=-\frac{1}{2}x+4 \\ y=2x-1 \end{gathered}[/tex]

Solving by substitution

[tex]\begin{gathered} -\frac{1}{2}x+4=2x-1 \\ 2x+\frac{1}{2}x=4+1 \\ \frac{5}{2}x=5 \\ x=\frac{2\cdot5}{5} \\ x=2 \end{gathered}[/tex]

Now for y

[tex]\begin{gathered} y=2\cdot2-1=4-1=3 \\ \end{gathered}[/tex]

Therefore, the answer is:

[tex](2,3)[/tex]

A survey stopped men and women at random to ask them where they purchased groceries, at a local grocery store or online.Grocery OptionsStoreOnlineTotalWomen231235Men221537Total452772What percent of the people surveyed shop at a local grocery store? Round your answer to the nearest whole number percent

Answers

Given:

A survey stopped men and women at random to ask them where they purchased groceries, at a local grocery store or online. Grocery Options

Store Online Total

Women 23 12 35

Men 22 15 37

Total 45 27 72

Required:

To find the percentage of the people surveyed shop at a local grocery store.

Explanation:

The total number of people is 75.

And the total number of people surveyed shop at a local grocery store is 45.

Now the percentage of the people surveyed shop at a local grocery store is,

[tex]=\frac{45}{72}\times100[/tex][tex]\begin{gathered} =62.5\% \\ \\ \approx63\% \end{gathered}[/tex]

Final Answer:

63% of the people surveyed shop at a local grocery store.

Martin earns $7.50 per hour proofreading ads per hour proofreading ads at a local newspaper. His weekly wage can. e found by multiplying his salary times the number of hours h he works.1. Write an equation.2. Find f(15)3. Find f (25)

Answers

If Martin earns 7.50 per hour (that is h), then the equation for his weekly wage can be expressed as;

[tex]\begin{gathered} (A)f(h)=7.5h \\ (B)f(15)=7.5(15) \\ f(15)=112.5 \\ (C)f(25)=7.5(25) \\ f(25)=187.5 \end{gathered}[/tex]

Therefore, answer number A shows the equation for his salary

Answer number 2 shows his salary at 15 hours ($112.5)

Answer number 3 shows his salary at 25 hours ($187.5)

Can u please help me solve ? I'm reviewing for a final, ty

Answers

Part A

we have that

Both students verify the identity properly

student A ----> expand the left side of the identity

student B ----> expand the right side of the identity

but the result is the same

both students proved that the given equation is an identity

Part B

Identities

[tex]\begin{gathered} sin^2x+cos^2x=1\text{ ----> identity N 1 in step 3} \\ cos^2x=1-sin^2x \end{gathered}[/tex]

and

[tex]cscx=\frac{1}{sinx}\text{ -----> identity N 2 step 5}[/tex]

Lucky's Market purchased a new freezer for the store.When the freezer door stays open, the temperatureinside rises. The table shows how much thetemperature rises every 15 minutes. Find the unit rate.temperature (°F) =10number of minutes =15(answer) °F per minute

Answers

Notice that the information in the table can be modeled using a linear function. To find the slope (rate of change) given two points, use the formula below

[tex]\begin{gathered} (x_1,y_1),(x_2,y_2) \\ \Rightarrow slope=m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

Therefore, in our case,

[tex]\begin{gathered} (15,10),(30,20) \\ \Rightarrow slope=\frac{20-10}{30-15}=\frac{10}{15}=\frac{2}{3} \end{gathered}[/tex]

If the inflation has been 2.7%, how much more do you have to pay this year foran item that cost $11.50 last year?

Answers

Given data:

The cost of the item is $11.50.

The inflation percentage is 2.7%.

Increase in the price is,

[tex]\begin{gathered} =11.50\times(\frac{2.7}{100}_{}) \\ =11.50\times0.027 \\ =0.3105 \end{gathered}[/tex]

Total amount to be paid last year,

[tex]\begin{gathered} =11.50+0.3105 \\ =11.8105 \end{gathered}[/tex]

Therefore you will have to pay $ 0.3105 more.

write the following comparison as a ratio reduced to lowest terms. 21 quarters to 13 dollars

Answers

In order to calculate the ratio of these values, let's divide them, using the fraction form:

[tex]\text{ratio}=\frac{21}{13}[/tex]

Since the numbers 21 and 13 don't have any common factor, the fraction is already in the lowest terms.

So the ratio is 21:13

The shorter leg of a right triangle is 9cm shorter than the longer leg. The hypotenuse is 9cm longer than the longer leg. Find the side lengths of the triangle.Length of the shorter leg: _ cmLength of the longer leg:__ cmLength of hypotenuse __ cm

Answers

Explanation:

let the longer leg = x

The shorter leg = 9cm shorter than the longer leg

The shorter leg = x - 9

hypotenuse = 9cm longer than the longer leg

hypotenuse = x + 9

Using pythagoras theorem:

hypotenuse² = shorter leg² + longer leg²

(x + 9)² = x² + (x - 9)²

Expanding:

x² + 9x + 9x + 81 = x² + x ² - 9x -9x + 81

x² + 18x + 81 = 2x² -18x + 81

collect like terms:

18x + 18x + 81 - 81 = 2x² - x²

36x + 0 = x²

x² - 36x = 0

x(x - 36) = 0

x = 0 or (x - 36) = 0

x = 0 or x = 36

if x = 0

shorter side = x - 9 = 0 - 9 = -9

Since the length cannot be negative, x = 36

The longer leg = x = 36 cm

The shorter leg = x - 9 = 36 - 9

The shorter leg = 27cm

The hypotenuse = x + 9 = 36 + 9

The hypotenuse = 45 cm

Use Polya's four-step problem-solving strategy and the problem-solving procedures presented in this section to solve the following exercise.A shirt and a tie together cost $68. The shirt costs $30 more than the tie. What is the cost of the shirt (in dollars).

Answers

Let x and y be the cost of a shirt and a tie, respectively; therefore, the two equations are

[tex]\begin{gathered} x+y=68 \\ \text{and} \\ x=30+y \end{gathered}[/tex]

We have two variables and two equations; we need to solve the system of equations to find the values of x and y.

Solve using the substitution method.

Use the second equation into the first equation, as shown below

[tex]\begin{gathered} x=30+y \\ \Rightarrow(30+y)+y=68 \\ \Rightarrow30+2y=68 \\ \Rightarrow2y=68-30=38 \\ \Rightarrow y=\frac{38}{2} \\ \Rightarrow y=19 \end{gathered}[/tex]

Now, use this value of y in the second equation

[tex]\begin{gathered} y=19 \\ \Rightarrow x=30+y=30+19 \\ \Rightarrow x=49 \end{gathered}[/tex]

Remember that x is the cost of a shirt and y is the cost of a tie. Therefore, the answers are

Cost of a shirt: $49

Cost of a tie: $19

One can verify the answer by noticing that a shirt and a tie cost $49+$19=$68, and that a shirt costs $30+$19=$49

the first yr a community college offered a Certificate in data management , 12 people earned the certificate. the next year 17 people earned the certificate. what was the percent increase in the # of people earning the certificate?

Answers

we make an expression

[tex]12\times x=17[/tex]

we know that if we multiply to twelve by the ratio of increase we will obtain 17

now solve for x that is the ratio

[tex]x=\frac{17}{12}=1.42[/tex]

multiply by 100 to obtain a percentage

[tex]1.42\times100=142[/tex]

the percentage is 142%

During a game, 65% of the pitches Tina threw were strikes. She threw 120 2 poi total pitches during the game. How many throws were strikes? * a) 92 O b) 65 c) 78 d) 44

Answers

[tex]\begin{gathered} \text{She threw 120 and 65\% of them were strikes, thus} \\ 120\cdot\frac{65}{100}=78 \\ \\ 78\text{ throws were strikes!} \end{gathered}[/tex]

9. The Elite Vacuum Company has determined its cost for making vacuums to beC = 24V + 1000, where C is the cost in dollars and V is the number of vacuums.If the cost must be between $49,000 and $121,000, how many vacuums can they makeper week? (You must set up and solve an inequality.)

Answers

We are given the relationship between the cost in dollars (C) and the number of vacuums (V) to be:

[tex]C\text{ = 24V + 1000}[/tex]

From the constraint, we have that the cost(C) must be greater than $49000 and less than $121000

Writing this as inequality:

[tex]\begin{gathered} 24V\text{ + 1000 }\ge\text{ 49000 } \\ 24V\text{ + 1000 }\leq\text{ 121000} \end{gathered}[/tex]

Solving the linear inequalities for V:

[tex]\begin{gathered} 24V\text{ + 1000 }\ge\text{ 49000} \\ 24V\text{ }\ge\text{ 49000 - 1000} \\ 24V\text{ }\ge\text{ 48000} \\ \text{Divide both sides by 24} \\ \frac{24V}{24}\text{ }\ge\text{ }\frac{48000}{24} \\ V\text{ }\ge\text{ 2000} \end{gathered}[/tex]

Similarly for the second inequality:

[tex]\begin{gathered} 24V\text{ + 1000 }\leq\text{ 121000} \\ 24V\text{ }\leq121000\text{ - 1000} \\ 24V\text{ }\leq\text{ 120000} \\ \text{Divide both sides by 24} \\ \frac{24V}{24}\text{ }\leq\text{ }\frac{120000}{24} \\ V\text{ }\leq5000 \end{gathered}[/tex]

Hence, the number of vacuums they can make per week can be between 2000 and 5000 or in inequality:

[tex]2000\text{ }\leq\text{ V }\leq\text{ 5000}[/tex]

Answer:

Between 2000 and 5000 vacuums

Use the formula for n^P_r to evaluate the following expression.

Answers

Use the following formula:

[tex]_nP_r=\frac{n!}{(n-r)!}[/tex]

Then, for 11P6:

[tex]\begin{gathered} _{11}P_6=\frac{11!}{(11-6)!}=\frac{11!}{5!}=\frac{5!\cdot6\cdot7\cdot8\cdot9\cdot10\cdot11}{5!} \\ _{11}P_6=6\cdot7\cdot8\cdot9\cdot10\cdot11=332640 \end{gathered}[/tex]

Hence, the result is 332640

Saltarecis a maker of high-end apparel for woman. For market research one afternoon, Saltare’s sales team surveyed adult women at a busy airport on the number of blouses they own. The histogram below summarizes the data. Use the histogram to answer each of the questions

Answers

(a)

The class width of the histogram is given by the range of each bar in the histogram, that is, the upper limit minus the lower limit of a bar (plus 1, since we need to include the boundary values of the range).

Looking at the first bar, the upper limit is 19 and the lower limit is 11, therefore the class width is 9 (because there are 9 elements between 11 and 19, so we need to add 1 to the subtraction of 19 and 11)

(b)

The most frequent class is the third one (third vertical bar).

The frequency of this bar (that is, the value in the y-axis) is equal to 8.

Therefore 8 women are in this class.

(c)

The number of women with 28 or fewer blouses is given by the frequency of the first two bars.

Adding the frequency of the first bar (1) and the frequency of the second bar (5), we have that 6 women have 28 or fewer blouses.

Slove for p 14 = -(p - 8)

Answers

Solve:

[tex]\begin{gathered} 14=-(p-8) \\ -14=p-8 \\ -14+8=p \\ p=-14+8 \\ p=-6 \end{gathered}[/tex]

p=-6

As you landscape a 4 leaf clover intersection, you will need to buy enough grass seed to cover all 4 circies. Each of the circles has the same diameter: 41 meters. Calculate the total area of all grass seed needed to cover all 4 circles.

Answers

SOLUTION

Each of the circles has the same diameter: 41 meters.

If the diameter = 41 meters

Then the Radius =

[tex]\frac{41}{2}\text{ m}[/tex]

Then we need to find the total area of the 4 circles =

[tex]\begin{gathered} 4\text{ X }\pi r^2 \\ =\text{ 4 X }\frac{22}{7\text{ }}\text{ X }\frac{41}{2}\text{ X}\frac{41}{2} \\ =\text{ }5283\text{ }\frac{1}{7}m^2 \end{gathered}[/tex]

CONCLUSION: The total area of all grass seeds needed to cover all 4 circles =

[tex]5283\text{ }\frac{1}{7}m^2[/tex]

Write the equation of a line that is parallel to y = 1/2x -4 and that passes through the point (9, -6)

Answers

The most appropriate choice for equation of line in slope intercept form will be given by-

[tex]y = \frac{1}{2}x - \frac{21}{2}[/tex] is the required equation of line

What is equation of line in slope intercept form?

The most general form of equation of line in slope intercept form is given by [tex]y = mx + c[/tex]

Where m is the slope of the line and c is the y intercept of the line.

Slope of a line is the tangent of the angle that the line makes with the positive direction of x axis.

If [tex]\theta[/tex] is the angle that the line makes with the positive direction of x axis, then slope (m) is given by

m = [tex]tan\theta[/tex]

The distance from the origin to the point where the line cuts the x axis is the x intercept of the line

The distance from the origin to the point where the line cuts the y axis is the y intercept of the line

Here,

The given equation of line is [tex]y = \frac{1}{2} x - 4[/tex]

Slope of this line = [tex]\frac{1}{2}[/tex]

Slope of the line parallel to this line = [tex]\frac{1}{2}[/tex]

The line passes through (9 , -6)

Equation of the required line =

[tex]y - (-6) = \frac{1}{2}(x - 9)\\2y + 12 = x - 9\\2y = x - 9 -12\\2y = x -21\\y = \frac{1}{2}x - \frac{21}{2}[/tex]

To learn more about equation of line in slope intercept form, refer to the link-

https://brainly.com/question/25514153

#SPJ9

8% of the students at Jemerson Middle School are absent because of illness. If there are 150 students in the school, how many are absent? 12015128

Answers

12 students

Explanation

when you have 8% , it means 8 of every 100 students are absent

find the decimal form

[tex]8\text{ \% = }\frac{8}{100}=0.08[/tex]

then, to find the 8% of any number, just multiply the number by 0.08

Step 1

If there are 150 students in the school, how many are absent?

[tex]\begin{gathered} \text{absent}=\text{total}\cdot0.08 \\ \text{absent}=150\cdot0.08 \\ \text{absent}=12 \end{gathered}[/tex]

so, 12 students are absent

Other Questions
alena is performing a floor routine. in a tumbling run she spins through the air, increasing her angular velocity from 43.00 to6 5.00 rev/s while rotating through one-half of a revolution. how much time does this maneuver take? Judy is 12 years old and is 8 years old mukta is 16 years old which of the following ratios best expresses the relationship between the ages 4 ratio 3 ratio to 2 ratio 3 ratio 4:3 ratio 2 ratio 4:3 ratio 4 ratio 2 ratio 4 ratio 3 Determine whether a tangent line is shown in this figure p(x) = x^3 3x^2 10x + 24 , has a known factor of (x-4). rewrite p(x) as the product of linear factors Write the equation of the line in the slope-intercept form which is parallel toy = 2x +5 and passing through the point (1, 4) 1 pts4. If line segment AB has coordinates A(-2,4) and B(2,0) and line segmentCD has coordinates C(3,4)and D(-3,-2), how would you describe these twoline segments?A: neitherB: perpendicular C: parallel amazon is selling 24 pack of 3x3 sticky notes for 28.99 Each pack has 100 sticky notes. What is the price for each pack? How much is each single sticky note? Can you explain this math to me please Ive never seen it before and dont understand An object is dropped from rest out of the window of a building, and the time to hit the ground is found to be 5 seconds. The same object is then dropped from rest out of a window twice as high above the ground as the original window. The time it takes the object to hit the ground is closest to: Which compound results from covalent bonding? AgF K2S NaCl CO2 [please help asap tyyyyyyyy In how many ways can the letters in the word PAYMENT be arranged using 4 letters?A. 42B. 840C. 2520D. 1260 When a gardener only plants seeds from the roses that are dark red, the process involved isSelect one:a.artificial variation.b.natural selection.c.artificial selection. Discuss the important of abiotic factors for animals that live in the soil Isaac is practicing his volleyball skills by volleying a ball straight up and down, over and over again. His teammateMarie notices that after one volley, the ball rises 3.6 m above Isaac's hands. What is the speed with which the ball leftIsaac's hand? (8.4 m/s) Determine the required value of a missing probability to make the distribution a discrete probability distribution p(4) = 79.853 ml of 4.988 m sodium fluoride (aq) is added to 23.760 ml of 1.471 m beryllium sulfate. after the reaction is complete, what is the mass of precipitate that has formed? Name the functional group in thefollowing molecule:NH2A. aldehydeB. amineC. amideD. thiol Matt and Amy each had summer jobs. Matt worked at a restaurant as a bus boy. He earned $10 per hour, plus tips. Amy worked as a dog-groomer. She earned $8 per hour, plus tips.A) Create an equation to represent their total earnings in each situation. Explain what each of the variables represent. You start a trip when your odometer reads 23,672 miles, and you have a full tank of gas. Afterdriving a few hours, you fill up your tank. If you buy 16.5 gallons and your odometer reads23,927, how many miles to the gallon are you getting, rounded to the nearest tenth of a gallon.I need helppp with example pliss