Answer:
It slowly decreases and the friction acting on it slowing it down becomes the bigger net force, if that makes sense :)
Explanation:
If you kick a soccer ball across a field the ball travels across the field and slowly comes to a stop. Since the ball slowly comes to a stop, this means about the net force on the ball as it rolls across the field would decrease and finally would be less than the friction force.
What is Newton's second law?Newton's Second Law states that The resultant force acting on an object is proportional to the rate of change of momentum. The mathematical expression for Newton's second law is as follows
As given in the problem if you kick a soccer ball across a field the ball travels across the field and slowly comes to a stop. Since the ball slowly comes to a stop.
Since the ball stops gradually, this implies that the net force exerted on it as it rolls over the field will eventually diminish until it is less than the friction force.
Learn more about Newton's second law here, refer to the link given below ;
brainly.com/question/13447525
#SPJ2
A rock is dropped (from rest) off a bridge over the Merrimack River. The falling rock
accelerates at 10 m/s2 downward. If it takes 2.5 seconds before a splash is heard,
approximately how high is the bridge?
Answer:
31.25 meters or ~31 meters approximately
Explanation:
Let's see which of the 5 variables we are given since this is a constant acceleration problem.
[tex]v_i \ \ \ \ \ \ t \\ v_f \ \ \ \ \ \triangle x \\ a[/tex]We want to find the height of the bridge, aka the vertical displacement of the rock. Let's set the upwards direction to be positive and the downwards direction to be negative.
We are told that the acceleration is 10 m/s² downward, so we have a = -10 m/s².
We are also told that the time it takes the rock to hit the water is 2.5 seconds. Time is the same regardless of the x- or y- direction, so we can say that t = 2.5 seconds.
Now, we aren't told this directly, but we can figure out that the velocity in the y-direction is 0 m/s, since the rock is dropped from rest off the bridge. Therefore, [tex]v_i=0 \frac{m}{s}[/tex].
We want to find the vertical displacement, the height of the bridge, so we can say that [tex]\triangle x= \ ?[/tex]
We have 4 out of 5 variables:
[tex]v_i,\ a, \ t, \ \triangle x[/tex]Look through the constant acceleration equations to see which equation has all 4 of these variables. You should come up with this one (no final velocity):
[tex]x_f=x_i+v_it+\frac{1}{2}at^2[/tex]Subtract [tex]x_i[/tex] from both sides of the equation to get:
[tex]\triangle x=v_it+\frac{1}{2}at^2[/tex]Substitute in our known variables and solve for delta x.
[tex]\triangle x=(0\frac{m}{s})(2.5s) + \frac{1}{2} (-10\frac{m}{s^2})(2.5s)^2[/tex]0 m/s multiplied by 2.5 s is 0, so we have:
[tex]\triangle x =\frac{1}{2} (-10)(2.5)^2[/tex]Evaluate the exponent first and multiply the terms together.
[tex]\triangle x =(-5)(6.25)[/tex] [tex]\triangle x =-31.25[/tex]The vertical displacement is -31.25 meters from the rock's starting position, so we can say that the height of the bridge is 31.25 meters, which is approximately 31 meters tall.
Answer:
31 meters
hope it help you
thanks for free points.........
An electric heater is rated 1000watts. If a current of 5A pass through the heater, find the value of its resistance.
Answer: R=40 Ω
Explanation: [tex]P=I^{2} R[/tex]
R=1000/ (25)=40
PLEASE HELP IF YOU KNOW THE ANSWER QUICK PLEASE!!!
Answer:
d
Explanation:
Which line represents a stationary object?
A. Line A
B. Line B
C. Line C
D. Line D
PLZ HELP
Line D represents a stationary object.
When an object is stationary, the line on the graph is horizontal.
When the object is stationary the gradient is?We know, that an object is stationary means the slope of its position-time graph is zero or its pt graph is a straight line parallel to the x-axis.
What is an example of a stationary object?The nest, or the resting place, is a stationary object, and one cannot put one's foot in front of it. A string is then tied from the head assembly to another stationary object.
Learn more about stationery objects here https://brainly.com/question/19650625
#SPJ2
Please help me idk what dis
Two bowling balls, each with a mass of 8.52 kg, are traveling toward each other. Find the total momentum of the system if both balls have a speed of 2.13 m/s, but are traveling opposite of one another.
a. 18.1
b. 36.3
c. 0.0
d. 17.4
b=36•3
momentum=mass×velocity
The total momentum of the given system is equal to zero. Therefore, option (C) is correct.
What is the law of conservation of momentum?The linear momentum can be described as the product of the mass times the velocity of that object. Conservation of momentum is a property of an object as the total amount of momentum stays the same.
According to the law of conservation of momentum, the sum of the momentum before and after the collision of the objects must be equal.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂v₂
where u₁ and u₂ are initial speed while v₁ & v₂ is final speed and m₁ and m₂ is the mass of the collided objects.
The first ball, m = 8.52 g and v = 2.13 m/s
The momentum of the first ball = 18.15 g.m/s
The second ball is moving in the opposite direction w.r.t. first ball,
The second ball, m = 8.52 g and v = - 2.13 m/s
The momentum of the first ball = - 18.15 g.m/s
The total momentum of the system = 18.15 + (-18.15) = 0
Therefore, the total momentum of the given system is zero.
Learn more about the law of conservation of linear momentum, here:
brainly.com/question/17140635
#SPJ6
What is the force needed to move a 300 kg object if you have an acceleration of 8 m/s2?
Answer: mass = 10 kg, acceleration = 3 m/s2.
Explanation: I hope that helped!!
Two asteroids with masses 5.34 x 103 kg and 2.06 x 104 kg are separated by a distance of 5,000 m. What is the gravitational force between the asteroids? Newton's law of gravitation is F gravity Gmim. The gravitational constant Gis 6.67 x 10-11 N-m²/kg2. A. 400N B. 1.24 x 1032 N C. 1.47 x 10-6 N D. 2.93 x 10-10 N
Answer:
[tex]F=2.93\cdot 10^{-10}~N[/tex]
Explanation:
Newton’s Law of Universal Gravitation
Objects attract each other with a force that is proportional to their masses and inversely proportional to the square of the distance.
[tex]\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}[/tex]
Where:
m1 = mass of object 1
m2 = mass of object 2
r = distance between the objects' center of masses
G = gravitational constant: [tex]6.67\cdot 10^{-11}~Nw*m^2/Kg^2[/tex]
The asteroids have masses of [tex]m1=5.34\cdot 10^{3}~Kg[/tex] and [tex]m2=2.06\cdot 10^{4}~Kg[/tex] and are separated by r=5,000 m.
Calculating the gravitational force:
[tex]\displaystyle F=6.67\cdot 10^{-11}~Nw*m^2/Kg^2~{\frac {5.34\cdot 10^{3}~Kg \cdot2.06\cdot 10^{4}~Kg}{5,000^{2}}}[/tex]
Calculating:
[tex]\mathbf{F=2.93\cdot 10^{-10}~N}[/tex]
Answer:
D. 2.93 x 10-10 N
Explanation:
Answer got deleted? Dont delete my answer 'katie'
btw got it right
An apple and a stone dropped from certain height accelerates:Required to answer. Single choice.Immersive Reader
(1 Point)
equally.
differently.
depending on density.
depending on the position of the sun.
An apple and a stone dropped together from any height accelerate equally.
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
Question:
A cork floats on the surface of an incompressible liquid in a container exposed to atmospheric pressure. The container is then sealed and the air above the liquid is evacuated. The cork:
A. sinks slightly
B. rises slightly
C. floats at the same height
D. bobs up and down about its old position
Answer:
The correct answer is C) floats at the same height
Explanation:
The liquid is incompressible because its density very high and leaves no room for further compaction whether or not there is atmospheric pressure. So when you put a cork on the liquid, pressure or no pressure, there is no displacement hence it floats on the same height regardless of the absence of air.
Cheers!
A positive charge is 1 m to the left of a negative charge. The positive charge is then moved and placed 1 m to the right of the negative charge. What happens to the electrostatic force between the charges?
The electrostatic force remains attractive, and the magnitude does not change.
The electrostatic force remains repulsive, and the magnitude does not change.
The electrostatic force remains repulsive, but the magnitude changes.
The electrostatic force remains attractive, but the magnitude changes.
Answer:
Option (a) is correct.
Explanation:
Let the magnitude of the positive charge = [tex]q_1[/tex] and the magnitude of the negative charge = [tex]q_2[/tex]
Earlier, the distance between both the charge, d = 1m
By using Coulomb's law, the magnitude of the force between two charge
[tex]F=k\frac {q_1 q_2}{d^2}[/tex], where k is a constant.
So, the magnitude of the force in the initial configuration,
[tex]F_i = k\frac {q_1 q_2}{1^2}= k q_1q_2\cdots(i)[/tex]
The nature of the force is attractive, as both the charges are opposite in nature.
On replacing the positive charge from 1m left to 1 m right side of the negative charge, the distance between the charges remains the same, i.e d=1m.
Moreover, the magnitude, and nature of each charge, [tex]q_1[/tex] as well as [tex]q_2[/tex], are remain the same.
So, the magnitude of the force in the final configuration,
[tex]F_f = k\frac {q_1 q_2}{1^2}= k q_1q_2[/tex]
From equation (i), [tex]F_f=F_i[/tex]
The nature of the force is attractive, as both the charges are opposite in nature.
So, the electrostatic force remains attractive, and the magnitude does not change.
Hence, option (a) is correct.
When the electrostatic force lies between the charges so here the force should remain attractive, also the magnitude should remain the same.
Impact on the electrostatic force:Here we assume the magnitude of the positive charge should be q1 and the magnitude of the negative charge should be q2
Also, the distance between the charge should be d = 1 m
So here we use the columb law
F = kq1q2/d2
here k should be constant
Here the nature of the force should be attractive since the both the charges should be opposite.
Hence, the first option is correct.
Learn more about force here: https://brainly.com/question/3398162
a cyclist accelerates from a initial speed of 0 m/s to a final speed of 8 m/s in 3 second what is his acceleration?
Answer:
3 m/s ^2 rounded to one signifiicant figure.
Explanation:
Hope this helped!
The kinetic energy of a roller coaster is 100 joules. The potential energy of the same coaster is 100 joules. What is the mechanical energy of the coaster?
Answer/Explanation:
The mechanical energy is 200 joules. Mechanical energy is determined by adding the total kinetic energy by the total potential energy.
M = kp
100 + 100 = 200
What is a transverse wave like?
Answer:
a transverse wave is a moving wave whose oscillations are perpendicular to the direction of the wave or path of propagation
Explanation:
wave oscillate along paths at right angles to the direction of the wave’s advance.
Explanation:
A space shuttle travels around the Earth at a constant speed of 28000 kilometers per hour. If it takes 90 minutes to complete one orbit, how far is its journey around Earth?
42000 kilometers
Explanation:
distance is velocity × time
28000 ×1.5
42000
remember to match units
thats why i wrote 1.5 hours instead of 90minutes
what is the direction of the sum of these two vectors?
Answer:
what is the direction of the sum of these two vectors?
Answer:
69.6
Explanation:
Ax= 0
Ay= 63.5
Bx= 101 cos 57= 55.009
By= 101 sin 57= 84.706
Tan-1 = (84.706/55.009)
= 69.6
Exit ticket: A lamp is plugged into a 110 Volt electrical outlet. There is a 9 Watt LED bulb in the lamp. a. What is
the current in the bulb? b. What is the resistance of the bulb?
Answer:
(a) 0.081 A (b) 1358.02 ohms
Explanation:
Voltage, V = 110 volt
Power of a LED bulb, P = 9 Watt
(a) Let the current is I. The formula for ower in terms of voltage and power is given by :
P = VI
[tex]I=\dfrac{P}{V}\\\\I=\dfrac{9}{110}\\\\=0.081\ A[/tex]
(b) Let R is the resistance of the bulb. Using Ohm's law as follows :
V = IR
[tex]R=\dfrac{V}{I}\\\\R=\dfrac{110}{0.081}\\\\=1358.02\ \Omega[/tex]
Hence, this is the required solution.
(a) The current in the bulb is 82mA
(b) The resistance of the bulb is 1340 Ω
Given information:
Supply voltage, V = 110V
The power rating of the bulb, P = 9 W
Electrical Power:(a) Current in the bulb:
The electrical power is given by:
P = VI
where V is the voltage, and I is the current
So, I = P/V
I = 9W / 110V = 0.082A
I = 82 mA
(b) Resistance of the bulb:
According to the Ohm's Law:
The relation between voltage (V), current (I), and resistance (R) is given by:
V = IR
110 = 0.082R
R = 1340 Ω
Learn more about electrical power:
https://brainly.com/question/20002509?referrer=searchResults
can somone pls help me??!! i’m very stuck
Answer:
R
Explanation:
Her distance from home and Time increase
the stops when she gets to the library
then her distance from home decreases while her time increases
How do you solving kinematic equations for horizontal projectiles?
What is the power of a crane that does 5.60 kJ of work in 2.80 s?
Answer:
I don't understand what is a power cane??
The yoga term asanas are which of the following?
A.
The yoga breathing method.
B.
The yoga term for mediation.
C.
The yoga term for exercises or poses.
D.
The yoga term for spiritual enlightenment.
Answer:
i guss its A
Explanation:
Calculate Vector component in Y if the hypotenuse is 32 and angle is 45
Answer:
The correct option is;
c. 22.6
Explanation:
The given parameters are;
The hypotenuse of the vector = 32
The angle of the vector = 45°
Therefore, the vector component in the y-axis is given as follows;
[tex]v_y = v \times sin(\theta)[/tex]
Substituting the values from the question gives;
[tex]v_y = 32 \times sin(45^{\circ}) \approx 22.6[/tex]
The vector component in the y-axis, [tex]v_y[/tex], is approximately 22.6.
brainlists please help
on the coner opposite of 8n is 5n
Answer:
resultant force=16N→(TOWARDS THE DIRECTION OF 8N)
Explanation:
resultant force=8N+13N-5N
=16N→(TOWARDS THE DIRECTION OF 8N)
If the astronaut from question #9 collides with a satellite and comes to a complete stop, where did his momentum go? Explain this in terms of conservation of momentum.
Answer:
m v ´- MV = (m + M) v ’
Explanation:
If the astronaut initially has a speed v the satellite has a speed V, we can define a system that is formed by the two bodies, therefore the forces during the collision are internal, so the momentum is conserved
initial instant. Before the crash
p₀ = m v - MV
final instatne. After the crash, we have two cases
1) inelastic shock
m_f = (m + M) v '
p₀ = p_f
m v ´- MV = (m + M) v ’
2) elastic collision with the astronaut's velocity, zero in this case the moment remains
m v - MV = mv ’+ Mv’
also the kinetic energy is conserved
mv'2 + M V2 = mv'2 + m v'2
with these two equations we can find the speed of the cars
How much power is required to lift a 2.00-kg object 5.00 meters in 4.50 seconds? (If there is a formula for this please, tell me what it is also it is about pulleys one of the simple machines)
A soccer ball takes 30 seconds to roll 15 meters. calculate the average speed ot the ball using distance and tome measurements?
Answer:
average speed = 0.5 m/s
Explanation:
average speed = (distance) / (elapsed time)
Given time elapsed = 30 seconds and distance = 15 meters
average speed = 15 meters / 30 seconds = 0.5 meters/second = 0.5 m/s
Define acceleration. Give its mathematical formula and SI unit. When is acceleration of a body negative? Give two examples of situations in which acceleration of the body is negative.
Answer:
The rate of change of velocity of a moving body is called acceleration. mathematical formula of Acceleration = Final velocity-Initial velocity
________________________
Time taken
SI Unit of Acceleration is m/s2. If the Velocity of a moving body decreases, it's acceleration will be negative. Two examples of situations in which acceleration of the body is negative are ÷
* Applying brakes * When a ball is thrown upward it experiences a negative Acceleration2. A 75 kg runner accelerates from 0.00 m/s to 10.0 m/s in 1.5 seconds.
a) What is the runner's acceleration?
b) How much Kinetic Energy does the runner have at 0.0m/s, 5.0m/s, 10.0 m/s?
c) graph his kinetic energy. Use velocity on the x-axis and KE on the y-axis
Given, Unknown: Equation, Substitute: Solution:
In a perfectly insulated container of negligible mass, 4.00 × 10−2 kg of steam at 100◦C and atmospheric pressure is added to 0.200 kg of water at 50.0◦C.
A) If no heat is lost to the surroundings, what is the final temperature of the system? B) At the final temperature, how many kilograms are there of steam and how many of liquid water?
Answer:
Following are the solution to this question:
Explanation:
Given value:
[tex]m_s= 4.00 \times 10^{-2} \ kg \\\\L_v=2256 \times 10^{3} \ \frac{J}{kg}\\\\m_w= 0.2 \ kg\\\\\Delta T= 50^{\circ}[/tex]
In point A:
[tex]Q_{Steam}=m_s \ L_v[/tex]
[tex]=0.04 \times 2256 \times 10^{3}\\\\=9.02 \times 10^4 \ J[/tex]
[tex]Q_{water}= m_w \ c_w \ \Delta T\\\\[/tex]
[tex]=0.2 \times 4190 \times 50\\\\=4.19 \times 10^4 \ J[/tex]
[tex]Q_{steam}> Q_{water}[/tex], that's why the final temperature is [tex]= 100^{\circ}[/tex]
In point B:
[tex]\to \Delta m_s L_v=m_w\ c_w \Delta T\\\\\to \Delta m_s \times 2256\times 10^3= 0.2 \times 4190 \times 50\\\\\to \Delta m_s= 1.86 \times 10^{-2} \ kg\\\\\to m_s = 2.14 \times 10^{-2} \ kg\\\\\to liquid \ left = 0.2+ 2.14 \times 10^{-2} = 2.34 \times 10^{-2} \\[/tex]
Consider again the objects you ranked by distance. Suppose each object emitted a burst of light right now. Rank the objects from left to right based on the amount of time it would take this light to reach Earth, from longest time to shortest time.a. star on far side of Andromeda Galaxyb. star on near side of Andromeda Galaxyc. star on far side of Milky Way Galaxyd. star near center of Milky Way Galaxy1. Orion Nebula2. Alpha Centauri3. Pluto4. The Sun
Answer:
Following are the solution to this question:
Explanation:
That light takes a very long time to hit the planet, and the object is far off the earth. The light of such an item near to the planet takes less time to enter it. The star is 2,5 million light-years from the Planet on the far side of the Andromeda Galaxy. But on the other hand, the moon is 15 crore miles from the earth, so sunlight is quickly reached on the ground as the other thing.
That milky way away from the earth is 66,500 light-years far, that distance between Earth and Orion nebula is 1,344 light-years, with such a distance of 4,367 light-years. The earth is 5.2261 trillion km apart from Pluto.