Which statement best describes a weak base in solution?A. The base forms a concentrated solution.B. The base dissociates completely.C. The base forms a dilute solution.D. The base dissociates slightly.

Answers

Answer 1

Answer:

[tex]D[/tex]

Explanation:

Here, we want to get the definition of a weak base

A weak base is a base that does not dissociate completely in solution.

What this means is that when the base is placed in a solution, its dissociation into the corresponding metallic and hydroxide ions is incomplete


Related Questions

metal oxide MO2 reacts with excess HCl to produce chlorine gas at STP as given by the following unbalanced equation:MO2 (s) + HCl (aq) -,> MCl2 (aq) + Cl2 (g) + H20 (l) a. determine limiting reactantb. calculate the mass of MCl2 produced in the reactionc. calculate the percentage yield if the actual mass of MCl2 produced is 0.078g

Answers

1st) It is necessary to balance the chemical equation:

[tex]MO_2+4\text{HCl}\rightarrow MCl_2+Cl_2+2H_2O[/tex]

2nd)

what is the limiting and excess reactant if 15.0g of FePo4 reacts with 5.0g of Na2SO

Answers

Explanation:

We are given: mass of FePO4 = 15g

: mass of Na2SO4 = 5g

We first find the mass of Fe2(SO4)3 from the mass of FePO4:

m is the mass and M is the molar mass

[tex]\begin{gathered} m\text{ = }\frac{m(FePO4)}{M(FePO4)}\times\frac{1mol\text{ Fe2\lparen SO4\rparen3}}{2mol\text{ FePO4}}\times\text{ M\lparen Fe2\lparen SO4\rparen3\rparen} \\ \text{ = }\frac{15}{150.82}\times\frac{1}{2}\times399.88 \\ \text{ = 19.89g} \end{gathered}[/tex]

We then find the mass of Fe2(SO4)3 from Na2SO4:

[tex]\begin{gathered} m\text{ = }\frac{m(Na2SO4)}{M(Na2SO4)}\times\frac{1mol\text{ Fe2\lparen SO4\rparen3}}{3mol\text{ Na2SO4}}\times M(Fe2(SO4)3) \\ \text{ =}\frac{5}{142.04}\times\frac{1}{3}\times399.88 \\ \text{ = 4.69g} \end{gathered}[/tex]

Answer:

Therefore, FePO4 is the excess reactant and Na2SO4 is the limiting reactant

If 1495 J of heat is needed to raise the temperature of a 315 g sample of a metal from 55.0°C to 66.0°C, what is the specific heat capacity of the metal?

Answers

The specific heat capacity of the metal that needs 1495 J of heat to raise the temperature is 0.43J/g°C.

How to calculate specific heat capacity?

Specific heat capacity is the heat capacity per unit mass of a substance. It can be calculated by using the following formula:

Q = mc∆T

Where;

Q = quantity of heat absorbed or releasedm = mass of substancec = specific heat capacity∆T = change in temperature

According to this question, 1495 J of heat is needed to raise the temperature of a 315 g sample of a metal from 55.0°C to 66.0°C. The specific heat capacity can be calculated as follows;

1495 = 315 × c × {66 - 55}

1495 = 3465c

c = 1495/3465

c = 0.43J/g°C

Therefore, 0.43J/g°C is the specific heat capacity of the metal that requires a heat of 1495J.

Learn more about specific heat capacity at: https://brainly.com/question/1747943

#SPJ1

I need help on balancing the equations and on what type of reaction it is.

Answers

Explanations:

Given the balanced chemical reaction expressed as:

[tex]2Au_2O_3\rightarrow4Au+3O_2[/tex]

A Redox reaction is a reaction that involves the transfer of electrons and changes in the oxidation state between the elements.

The given chemical equation is therefore an oxidation-reduction reaction since it involves a change in the oxidation state of the elements.

Determine the moles of Au₂O₃

[tex]\begin{gathered} \text{Mole = }\frac{Mass}{Molar\text{ mass}} \\ \text{Mole of Au}_2O_3=\frac{10g}{441.93g\text{/mol}} \\ \text{Mole of Au}_2O_3=0.02263\text{moles} \end{gathered}[/tex]

According to stochiometry, you can see that 2 moles of Gold(III)oxide produce 4 moles of Gold. Hence the moles of Gold produced will be:

[tex]\begin{gathered} \text{moles of Gold=}\frac{0.02263\times4}{2} \\ \text{moles of Gold=}0.02263\times2 \\ \text{moles of Gold=}0.0453\text{moles} \end{gathered}[/tex]

Determine the mass of Gold.

[tex]\begin{gathered} \text{Mass of Gold=moles}\times molar\text{ mass} \\ \text{Mass of Gold=}0.0453\times196.97 \\ \text{Mass of Gold}=8.91\text{grams} \end{gathered}[/tex]

Next is determining the mole of Oxygen

According to stochiometry, you can see that 2 moles of Gold(III)oxide produce 3 moles of Oxygen. Hence the moles of Oxygen produced will be:

[tex]\begin{gathered} \text{moles of Oxygen=}\frac{0.02263\times3}{2} \\ \text{moles of Oxygen}=0.033945\text{moles} \end{gathered}[/tex]

Determine the mass of oxygen produced

[tex]\begin{gathered} \text{Mass of O}_2=moles\times\text{Molar mass} \\ \text{Mass of O}_2=0.033945\times16 \\ \text{Mass of O}_2=0.543\text{grams} \end{gathered}[/tex]

Hence the mass of oxygen produced is 0.543 grams

Calculate the pH of the resulting solution when 25.0mL of 0.30M HClO4 is added to 60.0ml of 0.35 M CH3NH2. Kb for CH3NH2 = 4.4*10^-4

Answers

The pH of the resulting solution  is 10.9 .

given that :

for HClO₄

volume = 25 mL = 0.025 L

M = 0.30 M

no. of moles = 0.025 × 0.30

                     = 0.0075

for CH₃NH₂

no. of moles = 0.35 × 0.06

                    = 0.021

as a resultant no. of moles of CH₃NH₂ that remain in solution

= 0.021-0.0075

= 0.0135

total volume = 0.025 + 0.060

                     = 0.085

the concentration will be :

concentration for HClO₄ = 0.0075 / 0.085

                                         = 0.088 M

concentration for  CH₃NH₂ = 0.0135 / 0.088

                                             = 0.153

kb = 4.4 × 10⁻⁴

pkb = - log kb

pkb = 3.3

the pOH formula is given as :

POH = pKb + log [ acid ] / [ base ]

pOH = 3.3 + log [ 0.088 ] / [ 0.153 ]

pOH = 3.06

pH + pOH = 14

pH = 14 - 3.06

pH = 10.9

Thus, The pH of the resulting solution when 25.0mL of 0.30M HClO₄ is added to 60.0ml of 0.35 M CH₃NH₂. Kb forCH₃NH₂ = 4.4 × 10^-4 . pH is 10.9.

To learn more about pH here

https://brainly.com/question/15289741

#SPJ1

Express the following in liters at STP:
4.83 x 10^-3 moles HF

Answers

Considering the definition of STP conditions, 4.83 × 10⁻³ moles of HF will occupy a volume of 0.108192 L at STP.

STP conditions

The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases, and 1 mole of any gas occupies an approximate volume of 22.4 liters.

Volume in this case

In this case, you have 4.83×10⁻³ moles of HF. You can apply the following rule of three: if by definition of STP conditions 1 mole of HF occupies a volume of 22.4 liters, 4.83×10⁻³ moles occupies how much volume?

volume= (4.83×10⁻³ moles ×22.4 L)÷ 1 mole

volume= 0.108192 L

Finally, there is a volume of 0.108192 L at STP.

Learn more about STP conditions:

brainly.com/question/17915431

#SPJ1

A compound containing 63.88% Cl and 36.12% Ca has a molecular mass of 443.92 g/mol, what is the molecular formula?

Answers

The molecular formula of a compound containing 63.88% Cl and 36.12% Ca that has a molecular mass of 443.92 g/mol is Ca₄Cl₈.

How to calculate molecular formula?

Molecular formula is the notation indicating the number of atoms of each element present in a compound.

To calculate the molecular formula of a compound, the empirical formula must first be calculated as follows:

63.88% Cl = 63.88g ÷ 35.5g/mol = 1.79mol36.12% Ca = 36.12g ÷ 40g/mol = 0.903mol

Cl = 1.79mol ÷ 0.903 = 1.98Ca = 0.903mol ÷ 0.903 = 1

The approximate empirical ratio of Cl and Ca is 2:1, hence, the empirical formula is CaCl₂.

{CaCl₂}n = 443.92

{(40 + 35.5(2)}n = 443.92

111n = 443.92

n = 4

The molecular formula is Ca₄Cl₈.

Learn more about molecular formula at: https://brainly.com/question/14425592

#SPJ1

Answer:

Ca4Cl8

Explanation:

Canva

2022

PLS HELP, IT’S DUE TODAY
In a nuclear fusion reaction, two small, light ___ (hydrogen atoms) combine under extreme __ and pressure to form one larger, heavier nucleus (helium).

Answers

Answer:

In a nuclear fusion reaction, two small, light 'nuclei' (hydrogen atoms) combine under extreme 'temperature' and pressure to form one larger, heavier nucleus (helium).

give the n and l values and the number of orbitals for sublevel 5g.

Answers

The n and l values and the number of orbitals for sublevel 5g is :

5g shell , n= 5 subshell g , l = 4, Number of orbitals for sublevel = 9.

There are total four quantum numbers:

1) Principal quantum number , n

2) Angular quantum number , l

3) Magnetic quantum number , ml

4) spin quantum number , ms

For 5g shell, n = 5

subshell g , l = 4     ....0 - s , 1 - p , 2 - d, 3 - f, 4 -g

number of orbitals in subshell = (2l + 1)  ( 2×4 + 1) = 9

Thus,  The n and l values and the number of orbitals for sublevel 5g is :

5g shell , n= 5 subshell g , l = 4, Number of orbitals for sublevel = 9.

To learn more about quantum numbers here

https://brainly.com/question/14650894

#SPJ1

Please help with Chemistry I'm confused at the elements reactivity:

Question:
Which of the following combination of elements is the most reactive?

Answer options:
A: Potassium and Iodine
B: Caesium and Iodine
C: Sodium and Bromine
D: Caesium and Bromine

Answers

The combination of elements that is the most reactive would be caesium and bromine.

Reactivity of metals and non-metals

The reactivity series of elements is a table that shows how reactive elements are, usually in descending order.

Elements are classified as metals, non-metals, and metalloids. Metals or non-metals that are at the top of the reactivity series are highly reactive and cannot be displaced in solution by metals below them.

Highly reactive non-metals are also usually at the top of the reactivity series of non-metals. They are able to form compounds with a wide variety of elements.

A typical reactivity series of metals include caesium, rubidium, potassium, sodium, lithium, etc. A reactivity series of non-metals include fluorine, chlorine, oxygen, bromine, iodine, etc.

Thus, bromine is more reactive than iodine and caesium is more reactive than potassium and sodium.

The combination of elements that are the most reactive among the options is, therefore, Caesium and Bromine.

More on the reactivity series of elements can be found here: https://brainly.com/question/6906793

#SPJ1

How many moles of argon atoms are present in 11.2 L of argon gas at STP? Round your molar mass to whole numbers andgive your answer in the correct number of sig figs and units

Answers

STP or Standard Pressure and Temperature is widely used when the subject is gases. The used standard temperature is 273 K or 0°C and the standard temperature used is 1 atm. At these conditions 1 mol will be equal to 22.4 L of volume, therefore if we have 11.2 L of Argon:

22.4 L = 1 mol

11.2 L = x moles of Argon

22.4x = 11.2 L

x = 0.500 moles of Ar will be present in 11.2 L of volume

help me please if you can a. ammonia b. battery acid c.pure waterd. sea water

Answers

Answer:

ammonia

Explanation:

4. An ice cube (25 g) is at -8.0°C. How much energy is required to take it to the
melting point, 0 °C? Heat capacity (c) for solid water is 2.10 J/g C

Answers

the heat energy required to take it to the melting point is 420J.

What is specific heat capacity?

The heat capacity, abbreviated Cp, is the amount of heat needed to elevate a mole of a substance's heat content by precisely one degree Celsius.

A material has more thermal energy the hotter it is, says basic thermodynamics. Additionally, when a chemical is present in greater concentrations at a particular temperature, it will have a higher total thermal energy.

Mathematically,

Q = mc∆T

Where,

Q = quantity of heat absorbed by a body

m = mass of the body

∆t = Rise in temperature

C = Specific heat capacity of a substance depends on the nature of the material of the substance.

S.I unit of specific heat is J kg-1 K-1.

Given,

An ice cube of mass = m=25g

initial temperature = T1 = -8°C

final temperature = T2 = 0°C

Heat capacity for solid water = c = 2.1J/g°C

According to heat energy required to take it to the melting point,

Q = mc∆T

Q = 25g×2.1J/g°C × (0+8) °C

Q = (25×2.1×8) J

Q = 420J

Hence, the heat energy required to take it to the melting point is 420J.

Learn more about specific heat capacity here :

brainly.com/question/11783514

#SPJ13

Your spaceship has docked at a space station above Mars. The temperature inside the space station is a carefully controlled 24 ∘C at a pressure of 745 mmHg . A balloon with a volume of 443 mL drifts into the airlock where the temperature is − 95 ∘C and the pressure is 0.115 atm . What is the final volume, in milliliters, of the balloon if n does not change and the balloon is very elastic?

Answers

Answer: the final volume of the balloon is 2.26 x 10^3 mL

Explanation:

The question requires us to determine the new volume of a balloon, given the initial and final conditions.

The following information was provided by the question:

initial temperature = T1 = 24 °C = 297.15 K

initial volume = V1 = 443 mL

initial pressure = P1 = 745 mmHg = 0.980 atm

final temperature = T2 = -95 °C = 178.15 K

final pressure = P2 = 0.115 atm

To solve this problem, we'll need to apply the equation of ideal gases to calculate the number of moles of gas in the balloon, and then use this value and the final temperature and pressure provided to determine the final volume,

The equation of ideal gases can be written as:

[tex]PV=nRT[/tex]

And we can rearrange it to calculate the number of moles:

[tex]PV=nRT\rightarrow n=\frac{PV}{RT}[/tex]

Applying the values provided by the question:

[tex]n=\frac{(0.980atm)\times(443mL)}{R\times(297.15K)}=\frac{1.46}{R}(\frac{atm\times mL}{K})[/tex]

Now, we can rearrange the equation of ideal gases to calculate the volume:

[tex]PV=nRT\rightarrow V=\frac{nRT}{P}[/tex]

And, applying the values provided and the number of moles as calculated:

[tex]V=\frac{(\frac{1.46}{R}atm.mL.K^{-1})\times R\times(178.15K)}{0.115atm}=2.26\times10^3mL[/tex]

Therefore, the final volume of the balloon is 2.26 x 10^3 mL.

A redox reaction:A. is a reaction where oxygen is returned it its natural state.B. is a reduction reaction where oxygen is removed.C. is comprised of two half reactions, a reduction and an oxidation.D. is a reaction where oxygen is added to a compound.

Answers

In this question, we have to classify what is a redox reaction, and as the name suggests, we have a reduction and an oxidation reaction occurring in this type of reaction, where one element will lose electrons, or will be oxidized, and another element will gain electrons or will be reduced. Therefore the best answer will be letter C

when a bunsen burner is properly adjusted, what should the flame look like?

Answers

when a bunsen burner is properly adjusted, the flame looks Blue with no gap between the burner and the flame.

A Bunsen burner is a particular kind of gas burner that is frequently utilized as a heat source in lab investigations. The barrel or chimney of the burner is made up of a straight tube that extends vertically from a flat base. At the bottom of the chimney, liquid petroleum gas, such as propane or butane, or natural gas, primarily methane, is delivered.

The base of the chimney on Bunsen burners typically has a hose barb installed so that rubber tubing may supply the gas from a gas nozzle on the lab bench.

Visit the link below to learn more about the Bunsen burners:

https://brainly.com/question/1477483

Which naturally occurring gas can be found in certain rocks and soils and is considered a hazardous air pollutant?A. argonB. carbon dioxideC. radonD. mercury

Answers

Radon is a naturally-occuring radioactive gas that can cause lung cancer to those who are near it. Radon is also an inert, colorless and odorless gas. Although it is dangerous and hazardous, it disperses rapidly and, usually, is not a health issue. Answer is Radon

A 7.94 g of solid CO2 (Dry ice) is allowed to sublime in a balloon. The final volume of the balloon is 1.00 L at 301 K. What is the pressure?

Answers

In order to find the pressure in this situation, we will be using the Ideal gas Law, which perfectly correlates these informations, the formula for this Law is:

PV = nRT

Where:

P = pressure, we want to find it

V = volume, 1.00 L

n = number of moles, we will also find it

R = is the gas constant, 0.082

T = 301 K

To find the number of moles, we need to use the mass provided in the question and also the molar mass of CO2, 44.01g/mol

44.01g = 1 mol

7.94g = x moles

x = 0.180 moles of CO2

Now we can use the ideal gas formula:

P * 1.00 = 0.180 * 0.082 * 301

P = 4.44 atm

PLEASE HELP, WILL MARK BRANLIEST!!
The half-life of cobalt-60 is 10.47 min. How many grams of cobalt-60 remain after 104.7 min if you start with 1024g?

Answers

Answer: 1 gram

Explanation:

- the equation is 1024(.5)^10

• so 1024g is your initial amount and it’s the amount that is being decayed

• since it’s half-life, the decay factor is 0.5

• the half life is 10.47 minutes, so 10.47 minutes would be considered one round of half life.

-basically, if you were finding the half life after 10.47 minutes you would use the equation 1024(.5)^1.

-as said, it’s raised to the 1st power because 10.47 minutes is one round.

• since you’re looking for the amount after 104.7 minutes, the equation is raised to the 10th power because 104.7 / 10 = 10.47. so 104.7 is 10 rounds of half-life.

- so 1024(.5)^10 = 1

so the half-life of 1024g of Cobalt-60 after 104.7 minutes is 1

hope this helps :)

What is the correct formula that wouldresult from the combination of the twoionic species?Na¹+ and CIO ¹-1-4BNa₂(CIO4)2NaCIO4

Answers

To determine how the formula will be when combining two ionic species, we must look at the oxidation states of the ions. The Na ion has an oxidation state of +1 and the ClO4 ion has an oxidation state of -1.

The number of ions must be such that the total sum of the oxidation states is zero. If we have a Na+1 ion and a ClO4(-1) ion, the sum will be equal to zero. So there must be one ion of each species in the molecule.

[tex]Na^{+1}ClO_4^{-1}\rightarrow NaClO_4[/tex]

Therefore, the answer will be: NaCIO4

An organic compound contains carbon hydrogen and oxygen. If it contains 45.27% carbon and 4.43 % hydrogen by mass determine the empirical formula

Answers

This organic compound has in its structure the next element: C, H, and O

45.27% C

4.43 % H

The rest 100%-45.27%-4.43 = 50.3 % O

-----------------------------------------------------------------------------------------------------------------

The empirical formula of a chemical compound is the simplest whole-number ratio of atoms present in a compound.

Procedure:

Step 1)

We convert % into grams (g). Let's assume we have a 100g sample. Therefore,

45.27 % C = 45.27 g

4.43 % H = 4.43 g

50.3 % O = 50.3 g

Step 2)

We calculate the number of moles of each element. To do this, we need every atomic mass

For C)

[tex]45.27\text{ g x }\frac{1\text{ mol}}{12.01\text{ g}}=3.767\text{ moles}[/tex]

For H)

[tex]4.43\text{ g x }\frac{1\text{ mol}}{1.00\text{ g}}=\text{ 4.43 moles}[/tex]

For O)

[tex]50.3\text{ g x }\frac{1\text{ mol}}{16.0\text{ g}}=3.14\text{ moles}[/tex]

Step 3)

We divide all moles by the smallest one of them (3.14 moles of O)

For C) 3.767 moles/3.14 moles = 1.19 = 1 (we need integer numbers)

For H) 4.43 moles/3.14 moles = 1.41 = 1

For O) 3.14 moles/3.14moles = 1

The empirical formula is CHO

How many significant figures (SF) are in each of the following measured quantities? Drag the appropriate measurement to the respectable bins

Answers

Chemistry => Measurements => Significant Figures

Significant figures correspond to the number of digits in a number. We have to take into account the following:

• Zeros at the beginning of a number or at the end are not counted as digits, but zeros in between the number should be counted.

,

• When we write a number in scientific notation, the 10 that accompanies the number should not be counted.

Following these indications, let's count the significant figures of each given number:

In summary, we have the answer will be:

1SFs

3.00 m

4.0x10^3 mL

3SFs

50 100 00g

80.10 mL

60.4 °C

6SFs

9018.17 kg

PLEASE HELP!!
For this car, the airbag must have a volume of 58 liters when fully inflated. To provide an adequate cushion for the driver’s head, the air pressure inside the airbag should be 4.4 psi. This pressure value is in addition to the normal atmospheric pressure of 14.7 psi, giving a total absolute pressure of 19.1 psi, which equals 1.30 atmospheres.


One of the main components of an airbag is the gas that fills it. As part of the design process, you need to determine the exact amount of nitrogen that should be produced. Calculate the number of moles of nitrogen required to fill the airbag. Show your work. Assume that the nitrogen produced by the chemical reaction is at a temperature of 495°C and that nitrogen gas behaves like an ideal gas.

Part C
Recall the balanced chemical equation from part B of task 1:

2NaN3 → 2Na + 3N2.

Calculate the mass of sodium azide required to decompose and produce the number of moles of nitrogen you calculated in part B of this task. Refer to the periodic table to get the atomic weights.

Part D
What would happen if the amount of sodium azide used was far greater or far less than what you calculated in part C? Describe both cases.

Answers

The number of moles of nitrogen required to fill the airbag is 1.197 moles.

The mass of sodium azide required to decompose and produce 1.197 moles of nitrogen is 51.87 g.

If the mass used was greater, the airbag could burst, but if the mass used was smaller, the airbag would not inflate properly.

What amount in moles of nitrogen is required to fill the bag?

The number of moles of nitrogen required to fill the airbag is calculated from the equation of reaction as follows:

Using the ideal gas equation; PV = nRT

where;

P = pressureV = volumen = number of molesR = molar gas constantT = temperature

From the data provided:

P = 1.30 atm

V = 58 Liters

n = ?

R = 0.082 atm.L.mol⁻¹K⁻¹

T = 495 °C or ( 273.15 + 495) K = 768.15 K

solving for n;

n = PV/RT

n = (1.3 * 58) / (0.082 * 768.15)

n = 1.197 moles

Equation of reaction: 2 NaN₃ → 2 Na + 3 N₂

moles ratio =  2 moles of sodium azide produce 3 moles of N₂

Moles of azide required = 1.197 * 2/3 = 0.798 moles

molar mass of sodium azide = 65 g/mol

mass of sodium azide = 0.798 * 65

mass of sodium azide required = 51.87 g

Learn more about moles ratio at: https://brainly.com/question/26510857

#SPJ1

What is the concentration in molarity of a solution which is 2.91 %m/v benzene (C₆H₆, MM =78.11 g/mol ) in CCl₄ (MM = 153.81 g/mol)?

Answers

According to molar concentration,concentration in molarity  of the solution is 3.77×10[tex]^-7[/tex] M.

What is molar concentration?

Molar concentration is defined as a measure by which concentration of chemical substances present in a solution are determined. It is defined in particular reference to solute concentration in a solution . Most commonly used unit for molar concentration is moles/liter.

The molar concentration depends on change in volume of the solution which is mainly due to thermal expansion. Molar concentration is calculated by the formula, molar concentration=mass/ molar mass ×1/volume of solution in liters.

In terms of moles, it's formula is given as molar concentration= number of moles /volume of solution in liters.

In the given problem,mass of benzene =2.91 g  and molar mass of benzene=78.11 g/mole and volume=100-2.91=97.09 ml or 97.09×10[tex]^-3[/tex] L.

Substituting in the formula,molarity=2.91/78.11×1/97.09×10[tex]^-3[/tex]=3.77×10[tex]^-7[/tex] M.

Hence, the molarity of solution is 3.77×10[tex]^-7[/tex] M.

Learn more about molar concentration,here:

https://brainly.com/question/21841645

#SPJ1

DUE AT 11:59 PLEASE HELP
A student has a calorimeter with 211.7 grams of 20.4 degrees Celsius water contained within it. The student then adds 128.9 grams of 94.2 degrees Celsius water to that calorimeter and stirs. To what maximum temperature will the cold water in the calorimeter rise to?

Answers

The maximum temperature the cold water in the calorimeter will rise to is 48.3 °C

How to determine the maximum temperature

The maximum temperature the cold water can attain can be obtained by calculating the equilibrium temperature. This can be obtained as follow:

From the question given above, the following data were obtained:

Mass of cold water (M) = 211.7 grams Temperature of cold water (T) = 20.4 °CMass of warm water (Mᵥᵥ) = 128.9 gramsTemperature of warm water (Tᵥᵥ) = 94.2 °CSpecific heat capacity of the water (C) = 4.18 J/gºC Equilibrium temperature (Tₑ) =?

Heat loss = Heat gain

MᵥᵥC(Tᵥᵥ – Tₑ) = MC(Tₑ – T)

Cancel out C

Mᵥᵥ(Tᵥᵥ – Tₑ) = M(Tₑ – T)

128.9 × (94.2 – Tₑ) = 211.7 × (Tₑ – 20.4)

Clear bracket

12142.38 – 128.9Tₑ = 211.7Tₑ – 4318.68

Collect like terms

12142.38 + 4318.68 = 211.7Tₑ + 128.9Tₑ

16461.06 = 340.6Tₑ

Divide both side by 340.6

Tₑ = 16461.06 / 340.6

Tₑ = 48.3 °C

Thus, we can conclude that the maximum temperature is 48.3 °C

Learn more about heat transfer:

https://brainly.com/question/12910957

#SPJ1

I need to understand how to do problem number 5

Answers

Answer:

[tex]\begin{gathered} \text{ - molecule of H}_2SO_4=2.408\times10^{24} \\ -4\text{ atoms of Oxygen} \end{gathered}[/tex]

Explanations:

Given the following parameters

Moles of sulfuric acid = 14 moles

According to the Avogadro's constant;

[tex]1\text{mole}=6.02\times10^{23}molecules[/tex]

The number of molecules of 14 moles of sulfuric acid is calculated as:

[tex]\begin{gathered} \text{ molecule of H}_2SO_4=14\times6.02\times10^{23} \\ \text{ molecule of H}_2SO_4=24.08\times10^{23} \\ \text{ molecule of H}_2SO_4=2.408\times10^{24} \end{gathered}[/tex]

Hence the molecule of sulfuric acid that is contained in 14moles if sulfuric acid is 2.408 * 10^24 molecules

Since the chemical formula of sulfuric acid is expressed as H₂SO₄. This shows that the compound has 2 atoms of Hydrogen, 1 atom of sulfur, and 4 atoms of oxygen.

Hence the number of atoms of oxygen contained in this sample is 4 atoms

. At standard pressure, what state of matter is xenon at -111 °C?
A) solid
B) liquid
C) gas
D) can be both solid and liquid
E) can be both liquid and gas

Answers

At standard pressure, C) gas state of matter is xenon at -111 °C

What is the state of matter of xenon?

Xenon is an extremely uncommon, odourless, colourless, tasteless, chemically inert gas. It was thought to be absolutely innocuous until Neil Bartlett published the synthesis of xenon haxafluoroplatinate in 1962. When stimulated by an electrical discharge, xenon generates blue light in a gas-filled tube.

Noble gases, which are most commonly encountered as monatomic gases, have entirely filled outer electron shells and hence have little desire to react with other elements, resulting in relatively few compounds with other elements.

In its +6 oxidation state, xenon trioxide is an unstable molecule. It is a highly potent oxidising agent that progressively liberates oxygen from water when exposed to sunshine. When it comes into touch with organic materials, it becomes highly explosive.

learn more about Xenon refer

https://brainly.com/question/2085589

#SPJ13

I’m getting certain numbers but I want to be sure I’m doing this right

Answers

To write the numbers with the specific number of significant figures, we need to remember that zeros to the left don't count as a significant figure and also that we can add zeros to the right to add significant figures to the numbers.

1) 1.5408 to 3 significant figures, we start counting from left to right, so we will maintain the numbers until the second decimal place, the "8". Since the next is "0", the rounding is "8", so the number is 1.54.

2) Here is similar, but since we don't have decimal places, we need to put the zeros in place of the numbers we are rounding. Since we want 2 significant figures, we will maintain only the first two. However, since the third is greater than 5, we need to round up, so the number is 4400.

3) To get this, we will maintain the zeros to the elft, but they don't count, so we start counting from the "1". Since the third number is less than 5, we round down, so the number is 0.019.

4) Now, here we have an example we need to add zeros. The way it is, 0.5 has only 1 significant figure, so we need to add 3 more zeros to the right to get to 4 significant figures. The number is 0.5000.

5) Here, is the same as item 3, but we want 3 significant figures and since the fourth is greater than 5 we round it up. So, the number is 0.066.

How many atoms of oxygen are in the reactants of the following equation? 3NO2 + H2O --> NO + 2HNO3

Answers

The reactants are the compounds before the arrow and the products are after the arrow. Just as they show us, the oxygen atoms in the reagents will bJust as the reaction shows, the oxygen atoms in the reactants will be:

Answer: There are 7 atoms of oxygen in the reactants

How many grams of CO2 are produced if 12 liters of H2O are produced?

Answers

Answer

[tex]14653.7181\text{ g }CO_2\text{ }[/tex]

Procedure

Considering the following balanced equation.

2CH₃OH + 3O₂ ---> 2CO₂ + 4H₂O

To determine the grams of CO₂ that will be produced, you will first need to get the grams of water produced, then convert the grams of water into moles of water and use the molar proportios to get the moles of CO₂. Lastly, convert the moles of CO₂ into grams.

Additional data:

Dnsity of water = 1 g H₂O=/ of H₂O

CO₂ molar mass = 44.01 g/mol

H₂O molar mass = 18.02 g/mol

Calculations

Convert to mass

[tex]12L\text{ }H₂O\text{ }\frac{1kg\text{ }H_2O}{1L\text{ }H_2O}=12kg\text{ }H_2O[/tex]

Convert to moles

[tex]12kg\text{ }H₂O\text{ }\frac{1000g\text{ }H_2O\text{ }}{1kg\text{ }H_2O}\frac{\text{ }1\text{ }mole\text{ }H_2O}{18.02g\text{ }H_2O}=665.9267\text{ }mole\text{ }H_2O[/tex]

Convert to moles of CO₂ using the relationship

[tex]665.9267\text{ }mole\text{ }H_2O\frac{2moleCO_2}{4mole\text{ }H_2O}=332.9634\text{ }mole\text{ }CO_2[/tex]

Convert to grams of CO₂

[tex]332.9634\text{ }mole\text{ }CO_2\text{ }\frac{44.01g\text{ }CO_2}{1\text{ }mole\text{ }CO_2}=14653.7181\text{ g }CO_2\text{ }[/tex]

Other Questions
A 5p coin weighs 4.2g. Approximately, how much will one million pounds worth of 5p piecesweigh? What is the energy of a proton accelerated through a potential difference of 500,000 V? Choose one of the goals listed in the Preamble.How do you think creating rules for a newgovernment to follow could help meet that goal? Calculate the amount of money that was loaned at 4.00% per annum for 2 years if the simple interest charged was $1,240.00. what is the image of 2,10 after a dilation by a scale factor of 1/2 centered at the origin Write an equation in slope-intercept form of the line that passes through the given points. how does an ips differ from an ids? an ips is passive and an ids is active. an ips uses heuristics and an ids is signature-based. an ips will block, reject, or redirect unwanted traffic; an ids will only send an alert. an ids will block, reject, or redirect unwanted traffic; an ips will only send an alert. Mr. Mangan now sees a hoard of zombies running toward him. There are toomany for him to fight, so he makes a run for it. Starting from rest andaccelerating at a rate of 7 m/s2, he reaches a final velocity of 25 m/s. Howmuch time did it take for him to reach his final velocity? The table shows the fraction of students from differentgrade levels who are in favor of adding new items tothe lunch menu at their school. Which list shows the grade levels in order from the greatest fraction of students to the least fraction of students ? Paleontologists find a fossil ape with long arms. What type of environment can they infer it inhabited?. The soft drinks sold at county fairs are often dispensed from large pressurized containers that contain carbon dioxide gas above the liquid at a partial pressure of about 4 atm, compared to carbon dioxides normal partial pressure of 0.00035 atm in the air at sea level. a. Describe the reversible change that takes place inside one of these soft drink containers when the pressure of CO2 above the liquid is first brought from 0.00035 atm to 4 atm. Explain why this system comes to a dynamic equilibrium in which there is no net change in the amount of gas above the liquid or the amount of gas dissolved in the liquid. what is thought to be one of the major neurotransmitters involved in mood regulation, motor behaviors, feeding behaviors, and daily rhythms and is a common target in the treatment of depression? Owners of a recreation area are filling a small pond with water. They are adding water at a rate of 29 L per minute. There are 400 L in the pond to start. Let W represent the total amount of water in the pond (in liters) and let T represent the total number of minutes that water has been added.Write an equation relating W to T. Then use this equation to find the total amount of water after 13 minutes.Equation : Total amount of water after 13 minutes : liters you run a nail salon. fixed monthly cost is $5,806.00 for rent and utilities, $5,924.00 is spent in salaries and $1,174.00 in insurance. also every customer requires approximately $3.00 in supplies. you charge $125.00 on average for each service. you are considering moving the salon to an upscale neighborhood where the rent and utilities will increase to $10,627.00, salaries to $6,295.00 and insurance to $2,022.00 per month. cost of supplies will increase to $8.00 per service. however you can now charge $146.00 per service. at what point will you be indifferent between your current location and the new location? A building is 5 feet tall. the base of the ladder is 8 feet from the building. how tall must a ladder be to reach the top of the building? explain your reasoning.show your work. round to the nearest tenth if necessary. are figures A and B congruent? explain your reason if x=10 units, then what is the volume of the cube Which of the following statements about Shakespearean dramas is best supported by the textA. Shakespeare's writing style and meter is consistent throughout his plays.B. Shakespeare's works all follow a common formula that contain specific elements.C. Shakespeare's language is known for being base and commonplace.D. Shakespeare's dramas were not considered to be particularly dramatic. 3. Explain how the railroads were funded. the restorative action an individual takes after they have done something that that has the potential to damage or discredit their identity is known as a(n) .