whenever a percentage, average or some other analysis value is computed with a sample's data, we refer to it as: a. a designated statistic. b. a sample finding. c. computed value. d. a composite estimate.

Answers

Answer 1

The correct answer is option (c): computed value. Whenever a percentage, average or some other analysis value is computed with a sample's data, we refer to it as a computed value.

When analyzing data from a sample, we often calculate various statistical measures to summarize and make inferences about the population from which the sample is drawn. These measures can include percentages, averages, and other analysis values.

Option a. "A designated statistic" is not the appropriate term because it implies that the statistic has been assigned a specific role or designation, which may not be the case. The computed value is not necessarily designated as a specific statistic.

Option b. "A sample finding" is not the most accurate term because it suggests that the computed value represents a specific finding from the sample, whereas it is a general statistical measure derived from the sample data.

Option d. "A composite estimate" is not the best choice because it typically refers to combining multiple estimates to obtain an overall estimate. Computed values are individual measures, not a combination of estimates.

Therefore, the most suitable term is c. "Computed value," as it accurately describes the process of calculating statistical measures from sample data. It signifies that the value has been derived through mathematical calculations based on the data at hand.

To learn more about sample visit:

brainly.com/question/30580598

#SPJ11


Related Questions

Page 2. Consider the shaded region R which lies between y=0, y = 3r, and r=3. 1 Using either method, set up the integral that represents the volume of the solid formed by revolving the region R about

Answers

To set up the integral that represents the volume of the solid formed by revolving the shaded region R about an axis, we can use the method of cylindrical shells.

First, let's visualize the region R. It lies between the lines y = 0 and y = 3r, and the line r = 3. Since r = 3 is a vertical line, it represents a cylindrical boundary for the region.

Next, we need to determine the limits of integration for both the height and the radius of the cylindrical shells.

For the height, we can see that the region R extends from y = 0 to y = 3r. Since r = 3 is the upper boundary, the height of the shells will vary from 0 to 3(3) = 9.

For the radius, we need to find the distance from the y-axis to the line r = 3 at each y-value. We can do this by rearranging the equation r = 3 to solve for y: y = r/3. Thus, the radius at any y-value is given by r = y/3.

Now, we can set up the integral for the volume using the formula for the volume of a cylindrical shell:

V = ∫[a,b] 2πrh(y) dy,

where r is the radius and h(y) is the height of the cylindrical shell.

Plugging in the values we determined earlier, the integral becomes:

V = ∫[0,9] 2π(y/3)(9 - 0) dy

= 2π/3 ∫[0,9] y dy

Evaluating this integral gives us the volume of the solid formed by revolving the region R about the specified axis.

To learn more about volume visit:

brainly.com/question/12649605

#SPJ11

The goal of this question is to simplify (24,3/2)-1/7 2-3/5,2/5 using exponent laws and properties. 1 point Find the exponents a and b for which the following equation is true. How Did I Do? 7 (2493/2 ) =1/7 29,6 х æ–3/5,2/5 a = Number b= Number FORMATTING: Write your answers for a and b as fractions, so that your answer is exact.

Answers

The simplified expression is 2 raised to the power of 7/10 multiplied by 3/7, where 'a' is equal to 7/10 and 'b' is equal to 1/7.

The given expression is (24) raised to the power of 3/2 minus (1/7) multiplied by 2 raised to the power of -3/5 multiplied by 2/5. To simplify, we expand the brackets and apply the power of the power property. The result is 2 raised to the power of 3, multiplied by 3/2, multiplied by 1/7, all to the power of -2, and then multiplied by 3/5 to the power of 2/5. Next, we multiply the bases and add the exponents, resulting in 2 raised to the power of (3/2 - 2 + 3/5, 2/5), multiplied by 3/7. Finally, we simplify the exponent to 7/10 and the expression becomes 2 raised to the power of 7/10, multiplied by 3/7. The values for 'a' and 'b' are a = 7/10 and b = 1/7.

learn more about simplified here;

https://brainly.com/question/19739317?

#SPJ11

Math problem
4x²+3x+5x²=___x²+3x

Answers

The blank in the expression is filled below

4x² + 3x + 5x² = 9x² + 3x

How to solve the expression

The expression in the give in the problem includes

4x² + 3x + 5x² = ___x² + 3x

To simplify the given expression  we can combine like terms by addition

4x² + 3x + 5x² can be simplified as

(4x² + 5x²) + 3x = 9x² + 3x

Therefore, the simplified form of the expression 4x² + 3x + 5x² is 9x² + 3x.

Learn more about polynomials at

https://brainly.com/question/4142886

#SPJ1

35. Draw à = 3î + 2ſ + 5Ř. Must Include the Rectangular Prism used to draw 3D vectors. [2 Marks] =

Answers

I'm unable to directly provide visual drawings or illustrations. However, I can describe how to represent the vector à = 3î + 2ſ + 5Ř in a rectangular prism.

What is the vector space?

A vector space is a mathematical structure consisting of a set of vectors that satisfy certain properties. It is a fundamental concept in linear algebra and has applications in various branches of mathematics, physics, and computer science.

To represent a vector in three-dimensional space, we can use a rectangular prism or a coordinate system with three axes:

x, y, and z.

Draw three mutually perpendicular axes intersecting at a common point. These axes represent the x, y, and z directions.

Label each axis accordingly:

x, y, and z.

Starting from the origin (the common point where the axes intersect), move 3 units in the positive x-direction (to the right) to represent the component 3î.

From the end point of the x-component, move 2 units in the positive y-direction (upwards) to represent the component 2ſ.

Finally, from the end point of the previous step, move 5 units in the positive z-direction (towards you) to represent the component 5Ř.

The endpoint of the final movement represents the vector à = 3î + 2ſ + 5Ř.

To learn more about the vector space  from the given link

brainly.com/question/11383

#SPJ4




7. Let f(x) = -3x+ 9x - 3. a. Determine the x values where f'(x) = 0. b. Fill in the table below to find the open intervals on which the function is increasing or decreasing Select a test value for ea

Answers

The function f(x) = -3x + 9x - 3 is increasing on the interval (-∞, +∞) which entire real number line.

To find the x-values where f'(x) = 0, we need to determine the critical points of the function. The derivative of f(x) is denoted as f'(x) and represents the rate of change of f(x) with respect to x. Let's calculate f'(x) first:

f(x) = -3x + 9x - 3

To find f'(x), we differentiate each term separately:

f'(x) = (-3)'x + (9x)' + (-3)'

= 0 + 9 + 0

= 9

The derivative of f(x) is 9, which is a constant. It means that f(x) does not depend on x, and there are no critical points or values of x where f'(x) = 0.

Now, let's proceed to the table for determining the intervals of increasing and decreasing:

Intervals | Test Value | f'(x) | Conclusion

(-∞, +∞)   |        0          |   9  |   Increasing

Since the derivative of f(x) is a constant (9), it indicates that the function is increasing on the entire real number line (-∞, +∞).

Therefore, the function f(x) = -3x + 9x - 3 is increasing on the interval (-∞, +∞).

Learn more about intervals at

https://brainly.com/question/11051767

#SPJ4

The question is -

Let f(x) = -3x + 9x - 3.

a. Determine the x values where f'(x) = 0.

b. Fill in the table below to find the open intervals on which the function is increasing or decreasing. Select a test value for each interval and evaluate f'(x) for each test value. Finally, decide whether the function is increasing or decreasing on each interval.

Intervals

Test Value

f'(x)

Conclusions

This exercise introduces you to the so-called Gamma distribution with shape parameter α and scale parameter λ, denoted as Gammala(α, λ). Let Γ(α) := [infinity]∫0 x^(α-1) e^(-x) dx be the Gamma function. Consider a density of the form f(x) = cx^(α-1) e^(-x/λ) where a, λ>0 are two parameters and c>0 a positive constant. Determine the value of the constant c>0 for which f(x) is a legitimate probability density function. (Hint: The expression involves Γ(α).) Show that Γ(α + 1) = αΓ(α) for all α > 0. (Hint: Use integration by parts.) Suppose X ~ Gamma(α, λ). Compute E[X] and Var(X). Let Y ~ Exp(1). Use your results from parts (a) and (c) to find E[Y] and Var(Y).

Answers

This exercise introduces the Gamma distribution and asks for the constant 'c' to make the given density function a legitimate probability density function. It also requires proving the relationship Γ(α + 1) = αΓ(α) and computing the expected value and variance of a Gamma-distributed random variable. Finally, using those results, the exercise asks for the expected value and variance of an Exponential-distributed random variable.

The exercise introduces the Gamma distribution, denoted as Gammala

(α, λ), with shape parameter α and scale parameter λ. To determine the value of the constant 'c' to make f(x) a probability density function, we need to ensure that the integral of f(x) over the entire range is equal to 1. This involves using the Gamma function, defined as Γ(α) = ∫[infinity]0 x^(α-1) e^(-x) dx. By setting the integral of f(x) equal to 1 and solving for 'c', we can find the value of 'c' that makes f(x) a legitimate probability density function.

To prove Γ(α + 1) = αΓ(α) for α > 0, we can use integration by parts. By integrating Γ(α) by x and differentiating e^(-x), we can derive a formula that shows the relationship between Γ(α + 1) and αΓ(α). This relationship holds true for all α > 0 and can be demonstrated through the integration by parts technique.

Next, the exercise asks to compute the expected value (E[X]) and variance (Var(X)) of a random variable X following the Gamma distribution. The formulas for E[X] and Var(X) can be derived based on the parameters α and λ of the Gamma distribution.

Finally, using the results from parts (a) and (c), we are required to find the expected value (E[Y]) and variance (Var(Y)) of a random variable Y following the Exponential distribution (denoted as Exp(1)). The Exponential distribution is a special case of the Gamma distribution, where α = 1. By substituting the appropriate values into the formulas derived in part (c), we can compute the desired values for E[Y] and Var(Y).

Learn more about probability here: https://brainly.com/question/31828911

#SPJ11

please help!!! urgent!!!

The windows of a downtown office building are arranged so that each floor has 6 fewer windows than the floor below it. If the ground floor has 52 windows, how many windows are on the 8th floor?

4
6
8
10

Answers

Answer:

10

Step-by-step explanation:

Floor 1: 52 windows

Floor 2: 52 - 6 = 46 windows

Floor 3: 46 - 6 = 40 windows

Floor 4: 40 - 6 = 34 windows

Floor 5: 34 - 6 = 28 windows

Floor 6: 28 - 6 = 22 windows

Floor 7: 22 - 6 = 16 windows

Floor 8: 16 - 6 = 10 windows

or, use the arithmetic sequence formula:  an = a1 + (n - 1)d

a₈ = 52 + (8 - 1)(6) = 52 - 42 = 10

Answer:

10

Step-by-step explanation:

use an=a1+(n-1)d

d= -6

a1= 52

n=8

a8 = a52 + (8 - 1) (-6)

= 52 + (7) (-6)

= 52 + (-42)

a8 = 10

For what values of m, the equation 2x2 - 2/2m + 1)X + m(m + 1) = 0, me R has (1) Both roots smaller than 2 (ii) Both roots greater than 2 (iii) Both roots lie in the interval (2, 3) (iv) Exactly one root lie in the interval (2, 3) (v) One root is smaller than 1, and the other root is greater than 1 (vi) One root is greater than 3 and the other root is smaller than 2 (vii) Roots a & B are such that both 2 and 3 lie between a and B

Answers

Both roots smaller than 2: Let α and β be the roots of the given equation. Since both roots are smaller than 2, we haveα < 2  ⇒  β < 2. Also,α + β = (2/2m + 1) / 2   [using the sum of roots formula]⇒ α + β < (2/2m + 1) / 2 + (2/2m + 1) / 2 = 2/2m + 1  (since α < 2 and β < 2)⇒ (α + β) < 1  ⇒  (2/2m + 1) / 2 < 1⇒ 2/2m + 1 < 2  ⇒  2m > 0.

Thus, the values of m satisfying the given conditions are m ∈ (0, ∞).

(ii) Both roots greater than 2: This is not possible since the sum of roots of the given equation is (2/2m + 1) / 2 which is less than 4 and hence, cannot be equal to or greater than 4.

(iii) Both roots lie in the interval (2, 3): Let α and β be the roots of the given equation.

Since both roots lie in the interval (2, 3), we haveα > 2 and β > 2andα < 3 and β < 3Also,α + β = (2/2m + 1) / 2   [using the sum of roots formula]⇒ α + β < (2/2m + 1) / 2 + (2/2m + 1) / 2 = 2/2m + 1  (since α < 3 and β < 3)⇒ (α + β) < 3  ⇒  (2/2m + 1) / 2 < 3/2⇒ 2/2m + 1 < 3  ⇒  2m > -1.

Thus, the values of m satisfying the given conditions are m ∈ (-1/2, ∞).

(iv) Exactly one root lies in the interval (2, 3): The given equation will have exactly one root in the interval (2, 3) if and only if the discriminant is zero.i.e., (2/2m + 1)^2 - 8m(m+1) = 0⇒ (2/2m + 1)^2 = 8m(m+1)⇒ 4m^2 + 4m + 1 = 8m(m+1)⇒ 4m^2 - 4m - 1 = 0⇒ m = (2 ± √3) / 2.

Thus, the values of m satisfying the given conditions are m = (2 + √3) / 2 and m = (2 - √3) / 2.

(v) One root is smaller than 1, and the other root is greater than 1: Let α and β be the roots of the given equation. Since one root is smaller than 1 and the other root is greater than 1, we haveα < 1 and β > 1Also,α + β = (2/2m + 1) / 2   [using the sum of roots formula]⇒ α + β < (2/2m + 1) / 2 + (2/2m + 1) / 2 = 2/2m + 1⇒ (α + β) < 2  ⇒  (2/2m + 1) / 2 < 2 - α⇒ 2/2m + 1 < 4 - 2α⇒ 2m > - 3.

Thus, the values of m satisfying the given conditions are m ∈ (-3/2, ∞).

(vi) One root is greater than 3 and the other root is smaller than 2: Let α and β be the roots of the given equation. Since one root is greater than 3 and the other root is smaller than 2, we haveα > 3 and β < 2Also,α + β = (2/2m + 1) / 2   [using the sum of roots formula]⇒ α + β < (2/2m + 1) / 2 + (2/2m + 1) / 2 = 2/2m + 1⇒ (α + β) < 5  ⇒  (2/2m + 1) / 2 < 5 - α⇒ 2/2m + 1 < 10 - 2α⇒ 2m > -9.

Thus, the values of m satisfying the given conditions are m ∈ (-9/2, ∞).

(vii) Roots a and B are such that both 2 and 3 lie between a and b: Let α and β be the roots of the given equation. Since both 2 and 3 lies between α and β, we have2 < α < 3 and 2 < β < 3. Also,α + β = (2/2m + 1) / 2   [using the sum of roots formula]⇒ α + β > (2/2m + 1) / 2 + (2/2m + 1) / 2 = 2/2m + 1 (since α > 2 and β > 2)andα + β < 6 (since α < 3 and β < 3)⇒ 2/2m + 1 < 6⇒ 2m > -5.

Thus, the values of m satisfying the given conditions are m ∈ (-5/2, ∞).

Therefore, the values of m for which the given conditions hold are as follows:(i) m ∈ (0, ∞)(iii) m ∈ (-1/2, ∞)(iv) m = (2 + √3) / 2 or m = (2 - √3) / 2(v) m ∈ (-3/2, ∞)(vi) m ∈ (-9/2, ∞)(vii) m ∈ (-5/2, ∞).

Learn more about interval here ;

https://brainly.com/question/11051767

#SPJ11

Solve the following equations. List all possible solutions
on the interval (0, 2). Leave answers in exact form.
tan^2 a + tan a =

Answers

The possible solutions to the equation tan²(a) + tan(a) = 0 on the interval (0, 2) are a = 0, 3π/4, π, 5π/4, 2π, etc.

The equation to be solved is:

tan²(a) + tan(a) = 0

To find the solutions on the interval (0, 2), we can factor the equation:

tan(a) * (tan(a) + 1) = 0

This equation will be satisfied if either tan(a) = 0 or tan(a) + 1 = 0.

1) For tan(a) = 0:

We know that tan(a) = sin(a)/cos(a), so tan(a) = 0 when sin(a) = 0. This occurs at a = 0, π, 2π, etc.

2) For tan(a) + 1 = 0:

tan(a) = -1

a = arctan(-1)

a = 3π/4

To solve the equation, we first factor it by recognizing that it is a quadratic equation in terms of tan(a). We then set each factor equal to zero and solve for the values of a. For tan(a) = 0, we know that the sine of an angle is zero at the values a = 0, π, 2π, etc. For tan(a) + 1 = 0, we find the value of a by taking the arctangent of -1, which gives us a = 3π/4. Thus, the solutions on the interval (0, 2) are a = 0, 3π/4, π, 5π/4, 2π, etc.

learn more about Interval here:

https://brainly.com/question/32550041

#SPJ4

Due today he’ll asap thanks if you do it

Answers

According to the image, the diagram was the shown of parallelogram. A is represent the area is 56.

The area of a parallelogram is given as (1/2) × (sum of parallel sides) × (distance between parallel sides).

Area = (1/2) × (sum of parallel sides) × (distance between parallel sides).

Area = (1/2) × (7 + 7) × 8

Area = (1/2) × (14) × 8

Area = (1/2) × 112

Area =  56

A parallelogram is a basic quadrilateral with two sets of parallel sides. Parallelograms come in 4 different varieties, including 3 unique varieties. The four varieties are rhombuses, parallelograms, squares, and rectangles.

As a result, the significance of the diagram was the shown of parallelogram are the aforementioned.

Learn more about on parallelogram, here:

https://brainly.com/question/28854514

#SPJ1

5. Let f be a function with derivative given by f'(x) = x3-5x2 +ex, what would be the intervals where the graph of f concave down?

Answers

To determine the intervals where the graph of the function f is concave down, we need to analyze the second derivative of  to determine the intervals where the graph of f is concave down, we need the exact value of e in the expression for f'(x) = x^3 - 5x^2 + ex.

To find the intervals where the graph of f is concave down, we need to examine the sign of the second derivative of f, denoted as f''(x). Recall that if f''(x) is negative in an interval, then the graph of f is concave down in that interval.

Given that f'(x) = x^3 - 5x^2 + ex, we can find the second derivative by differentiating f'(x) with respect to x.

Taking the derivative of f'(x), we get:

f''(x) = (x^3 - 5x^2 + ex)' = 3x^2 - 10x + e

To determine the intervals where the graph of f is concave down, we need to find the values of x where f''(x) is negative. Since the second derivative is a quadratic function, we can examine its discriminant to determine the intervals.

The discriminant of f''(x) = 3x^2 - 10x + e is given by D = (-10)^2 - 4(3)(e). If D < 0, then the quadratic function has no real roots and f''(x) is always positive or negative. However, without the exact value of e, we cannot determine the intervals where f is concave down.

In summary, to determine the intervals where the graph of f is concave down, we need the exact value of e in the expression for f'(x) = x^3 - 5x^2 + ex. Without that information, we cannot determine the concavity of the function.

Learn more about intervals  here:

https://brainly.com/question/11051767

#SPJ11

Find the area of the interior of the four-petaled rose T= sin(20) Area = Evaluate this integral by hand and give the exact answer. Notice the relationship between the area of the rose and the area of the circle (radius 1) in which it lies. Is this relationship true regardless of radius?

Answers

True. The area of a circle of radius 1 is π, which implies that the area of the four-petaled rose of the same radius is half the area of the circle.

The four-petaled rose is a polar graph of the equation r = sin(2θ). The name rose comes from its appearance.

The rose is a lovely geometric figure. The rose is also a well-known curve used in designing.

The rose has four identical petals and is a perfect example of symmetry.

The area of the interior of the four-petaled rose T = sin(20) can be found as follows:

We know that the formula for finding the area of a polar curve is given as A = 1/2 ∫[tex]a^b r^2[/tex] dθ

Using the given polar equation, we get r = sin(2θ), and the limits of integration are from 0 to π/4. Thus, the integral expression for finding the area of the four-petaled rose is:

[tex]A = 1/2 \int _0^{\pi /4 }(sin2\theta)^2 d\theta= 1/2 \int _0^{\pi /4 } sin^4(2\theta) d\theta[/tex]

Let u = 2θ, so that du/dθ = 2. Therefore, dθ = du/2. Substituting this into the above equation, we get:

The exact answer for the area of the interior of the four-petaled rose T = sin(20) is given as (π + 2 - 4/π)/32.

The rose and the circle share a unique relationship. The area of the rose is always half the area of the circle in which it is drawn. The area of a circle of radius 1 is π, which implies that the area of the four-petaled rose of the same radius is (π + 2 - 4/π)/16, which is half the area of the circle. Therefore, it is true regardless of radius.

Learn more about integration :

https://brainly.com/question/31744185

#SPJ11

12. List Sine, Cosine, targent cosecent secont
and contangent radies shor
Theta=4/3
No decimals
Reduce and Rationalize all
Fractions,

Answers

The identities are represented as;

sin θ = 4/5

tan θ = 4/3

cos θ = 3/5

sec θ = 5/3

cosec θ = 5/4

cot θ = 3/4

How to determine the values

To determine the values of the identities, we need to know that there are six trigonometric identities listed thus;

sinetangentcotangentsecantcosecantcosine

From the information given, we have that;

The opposite side of the triangle is 4

The adjacent side is 3

Using the Pythagorean theorem, we have that;

x² = 16 + 9

x = √25

x = 5

For the sine identity, we have;

sin θ = 4/5

For the tangent identity;

tan θ = 4/3

For the cosine identity;

cos θ = 3/5

For the secant identity;

sec θ = 5/3

For the cosecant identity;

cosec θ = 5/4

For the cotangent identity;

cot θ = 3/4

Learn more about trigonometric identities at: https://brainly.com/question/22591162

#SPJ1

Question 7 Find the 6th degree Taylor Polynomial expansion (centered at c = f(x) = 8x¹. To(x) = Write without factorials (!), and do not expand any powers. Question Help: Message instructor Submit Qu

Answers

The 6th degree Taylor polynomial expansion centered at c = f(x) = 8x is To(x) = 8x.The general formula for the nth degree Taylor polynomial expansion centered at c is given by:

To(x) = f(c) + f'(c)(x - c) + f''(c)(x - c)²/2! + f'''(c)(x - c)³/3! + ... + fⁿ⁻¹(c)(x - c)ⁿ⁻¹/(n - 1)! + fⁿ(c)(x - c)ⁿ/n!

To find the 6th degree Taylor polynomial expansion centered at c = f(x) = 8x, we need to find the values of the function and its derivatives at the center c and substitute them into the formula.

Let's start by calculating the derivatives:

f(x) = 8x

f'(x) = 8 (derivative of x is 1)

f''(x) = 0 (derivative of a constant is 0)

f'''(x) = 0

f⁽⁴⁾(x) = 0

f⁽⁵⁾(x) = 0

f⁽⁶⁾(x) = 0

Now we substitute these values into the Taylor polynomial formula:

To(x) = f(c) + f'(c)(x - c) + f''(c)(x - c)²/2! + f'''(c)(x - c)³/3! + f⁽⁴⁾(c)(x - c)⁴/4! + f⁽⁵⁾(c)(x - c)⁵/5! + f⁽⁶⁾(c)(x - c)⁶/6!

To(8x) = f(8x) + f'(8x)(x - 8x) + f''(8x)(x - 8x)²/2! + f'''(8x)(x - 8x)³/3! + f⁽⁴⁾(8x)(x - 8x)⁴/4! + f⁽⁵⁾(8x)(x - 8x)⁵/5! + f⁽⁶⁾(8x)(x - 8x)⁶/6!

Simplifying further by substituting f(8x) = 8(8x) = 64x:

To(8x) = 64x + 8(x - 8x) + 0(x - 8x)²/2! + 0(x - 8x)³/3! + 0(x - 8x)⁴/4! + 0(x - 8x)⁵/5! + 0(x - 8x)⁶/6!

To(8x) = 64x + 8(-7x) + 0 + 0 + 0 + 0 + 0

To(8x) = 64x - 56x

To(8x) = 8x

Therefore, the 6th degree Taylor polynomial expansion centered at c = f(x) = 8x is To(x) = 8x.

To learn more about Taylor polynomial visit:

brainly.com/question/31419648

#SPJ11

The radius of a cylindrical water tank is 5.5 ft, and its height is 8 ft. 5.5 ft Answer the parts below. Make sure that you use the correct units in your answers. If necessary, refer to the list of ge

Answers

The volume of the tank is approximately 1,005.309 cubic feet. The lateral surface area of the tank is approximately 308.528 square feet, and the total surface area is approximately 523.141 square feet.

To calculate the volume of the cylindrical tank, we use the formula V = πr^2h, where V is the volume, r is the radius, and h is the height. Plugging in the values, we have V = π(5.5^2)(8) ≈ 1,005.309 cubic feet.

To calculate the lateral surface area of the tank, we use the formula A = 2πrh, where A is the lateral surface area. Plugging in the values, we have A = 2π(5.5)(8) ≈ 308.528 square feet.

To calculate the total surface area of the tank, we need to include the top and bottom areas in addition to the lateral surface area. The top and bottom areas are given by A_top_bottom = 2πr^2. Plugging in the values, we have A_top_bottom = 2π(5.5^2) ≈ 206.105 square feet. Thus, the total surface area is A = A_top_bottom + A_lateral = 206.105 + 308.528 ≈ 523.141 square feet.

Therefore, the volume of the tank is approximately 1,005.309 cubic feet, the lateral surface area is approximately 308.528 square feet, and the total surface area is approximately 523.141 square feet.

To learn more about lateral surface area  click here: brainly.com/question/15476307

#SPJ11

A cheesecake is taken out of the oven with an ideal internal temperature of 180° F, and is placed into a 25° F refrigerator. After 10 minutes, the cheesecake has cooled to 160° F. If we must wait until the cheesecake has cooled to 60° F before we
eat it, how long will we have to wait? Show all your
work.

Answers

The cheesecake is initially taken out of the oven at 180°F and placed in a refrigerator at 25°F. After 10 minutes, its temperature decreases to 160°F.

Let's denote the temperature of the cheesecake at time t as T(t). We can set up the following differential equation:

dT/dt = k(T - 25),

where k is a constant of proportionality.

Given that T(0) = 180 (initial temperature) and T(10) = 160 (temperature after 10 minutes), we can solve for the value of k using the initial condition T(0):

k = (dT/dt)/(T - 25) = (180 - 25)/(180 - 25) = 1/3.

Now we can set up the differential equation with the known value of k:

dT/dt = (1/3)(T - 25).

To find the time required for T(t) to reach 60°F, we integrate the differential equation:

∫(1/(T - 25)) dT = (1/3)∫dt.

Solving the integrals and applying the initial condition T(0) = 180, we obtain:

ln|T - 25| = (1/3)t + C,

where C is the constant of integration.

Using the condition T(10) = 160, we can solve for C:

ln|160 - 25| = (1/3)(10) + C,

ln|135| = 10/3 + C,

C = ln|135| - 10/3.

Finally, we can solve for the time required to reach 60°F by substituting T = 60 and C into the equation:

ln|60 - 25| = (1/3)t + ln|135| - 10/3,

ln|35| + 10/3 = (1/3)t + ln|135|,

(1/3)t = ln|35| - ln|135| + 10/3,

(1/3)t = ln(35/135) + 10/3,

t = 3[ln(35/135) + 10/3].

Therefore, we have to wait approximately t ≈ 3[ln(35/135) + 10/3] minutes for the cheesecake to cool down to 60°F before we can eat it.

Learn more about degree to celcius conversion: brainly.com/question/30460033

#SPJ11

Find the work done in moving a particle along a curve from point A(1,0,−1) to B(2, 2, −3) via the conser- vative force field F(x, y, z) = (2y³ – 6xz, 6xy² – 4y, 4 – 3x²). (a) using the Fundamental Theorem for Line Integrals; (b) by explicitly evaluating a line integral along the curve consisting of the line segment from A to P(1, 2, -1) followed by the line segment from P to B.

Answers

The work done can also be computed by explicitly evaluating a line integral along the curve, consisting of the line segment from A to a point P, followed by the line segment from P to B.

(a) The Fundamental Theorem for Line Integrals states that if a vector field F is conservative, then the work done along any path between two points A and B is simply the difference in the potential function evaluated at those points. In this case, we need to determine if the given force field F(x, y, z) is conservative by checking if its curl is zero. The curl of F can be computed as (∂F₃/∂y - ∂F₂/∂z, ∂F₁/∂z - ∂F₃/∂x, ∂F₂/∂x - ∂F₁/∂y). After calculating the curl, if it turns out to be zero, we can proceed to evaluate the potential function at points A and B and find the difference to determine the work done.

(b) To explicitly evaluate the line integral along the curve from A to P and then from P to B, we need to parameterize the two line segments. For the first line segment from A to P, we can use the parameterization r(t) = (1, 0, -1) + t(0, 2, 0) where t varies from 0 to 1. Similarly, for the second line segment from P to B, we can use the parameterization r(t) = (1, 2, -1) + t(1, 0, -2) where t varies from 0 to 1. By plugging these parameterizations into the line integral formula ∫F(r(t))·r'(t) dt and integrating separately for each segment, we can find the work done and then sum up the two results to obtain the total work done along the curve from A to B.

Learn more about integral here:

https://brainly.com/question/31109342

#SPJ11

9. Prove whether or not the following series converge using series tests. sto 1 k3 + 2k + 1 k=1 bro Ille

Answers

The series ∑(k=1 to ∞) (k^3 + 2k + 1) converges. This is based on the p-series test, which states that a series of the form ∑(k=1 to ∞) 1/k^p converges if p > 1, and in this case, the highest power term has p = 3 which satisfies the condition for convergence.

To determine the convergence of the series Σ(k^3 + 2k + 1) as k goes from 1 to infinity, we can use various series tests. Let's investigate the convergence using the comparison test and the p-series test:

1. Comparison Test:

We compare the given series to a known convergent or divergent series. In this case, let's compare it to the series Σ(k^3) since the terms are dominated by the highest power of k.

For k ≥ 1, we have k^3 ≤ k^3 + 2k + 1. Therefore, Σ(k^3) ≤ Σ(k^3 + 2k + 1).

The series Σ(k^3) is a known convergent series, as it is a p-series with p = 3 (p > 1). Since Σ(k^3 + 2k + 1) is greater than or equal to the convergent series Σ(k^3), it must also converge.

2. p-series Test:

We can rewrite the given series as Σ(1/k^-3 + 2/k^-1 + 1/k^0).

The terms of the series can be viewed as the reciprocals of p-series. The p-series Σ(1/k^p) converges if p > 1 and diverges if p ≤ 1.

In our series, the exponents -3, -1, and 0 are all greater than 1, so each term is the reciprocal of a convergent p-series. Thus, the given series converges.

Therefore, both the comparison test and the p-series test confirm that the series Σ(k^3 + 2k + 1) converges.

To know more about convergence refer here:

https://brainly.com/question/28202684#

#SPJ11

Owen invested $310 in an account paying an interest rate of 7 7/8% compounded continuously. Dylan invested $310 in an account paying an interest rate of 7 1/4% compounded monthly. To the nearest hundredth of a year, how much longer would it take for Dylan's money to triple than for Owen's money to triple?

Answers

It would take approximately 1.34 years longer for Dylan's money to triple compared to Owen's money.

To find out how much longer it would take for Dylan's money to triple compared to Owen's money, we need to determine the time it takes for each investment to triple.

For Owen's investment, the continuous compound interest formula can be used:

A = P * e^(rt)

Where:

A = Final amount (triple the initial amount, so 3 * $310 = $930)

P = Principal amount ($310)

e = Euler's number (approximately 2.71828)

r = Interest rate (7 7/8% = 7.875% = 0.07875 as a decimal)

t = Time (in years)

Plugging in the values, we have:

930 = 310 * e^(0.07875t)

Now, let's solve for t:

e^(0.07875t) = 930 / 310

e^(0.07875t) = 3

Take the natural logarithm of both sides:

0.07875t = ln(3)

Solving for t:

t = ln(3) / 0.07875 ≈ 11.15 years

For Dylan's investment, the compound interest formula with monthly compounding can be used:

A = P * (1 + r/n)^(nt)

Where:

A = Final amount (triple the initial amount, so 3 * $310 = $930)

P = Principal amount ($310)

r = Interest rate per period (7 1/4% = 7.25% = 0.0725 as a decimal)

n = Number of compounding periods per year (12, since it compounds monthly)

t = Time (in years)

Plugging in the values, we have:

930 = 310 * (1 + 0.0725/12)^(12t)

Now, let's solve for t:

(1 + 0.0725/12)^(12t) = 930 / 310

(1 + 0.0060417)^(12t) = 3

Taking the natural logarithm of both sides:

12t * ln(1.0060417) = ln(3)

Solving for t:

t = ln(3) / (12 * ln(1.0060417)) ≈ 9.81 years

The difference in time it takes for Dylan's money to triple compared to Owen's money is:

11.15 - 9.81 ≈ 1.34 years

Therefore, it would take approximately 1.34 years longer for Dylan's money to triple compared to Owen's money.

For more questions on money

https://brainly.com/question/29498634

#SPJ8

A machine that fills beverage cans is supposed to put 16 ounces of beverage in each can. Following are the amounts measured in a simple random sample of eight cans: 16.04, 15.96, 15.84, 16.08, 15.79, 15.90, 15.89, and 15.70. Assume that the sample is approximately normal. Can you conclude that the mean volume differs from 16 ounces? Use a = 0.01 level of significance. Must state cv, ts, reject or do not reject

Answers

Since the P-value (0.059901) is greater than the significance level (0.01), we cannοt reject the null hypοthesis, i.e., the mean vοlume is same as 16 οunces.

What is null hypοthesis?

A null hypοthesis is a type οf statistical hypοthesis that prοpοses that nο statistical significance exists in a set οf given οbservatiοns. Hypοthesis testing is used tο assess the credibility οf a hypοthesis by using sample data. Sοmetimes referred tο simply as the "null," it is represented as H0.

The null hypοthesis, alsο knοwn as the cοnjecture, is used in quantitative analysis tο test theοries abοut markets, investing strategies, οr ecοnοmies tο decide if an idea is true οr false.

The first step is tο state the null hypοthesis and an alternative hypοthesis.

Null hypοthesis: μ = 16, i.e., the mean vοlume is same as 16 οunces.

Alternative hypοthesis: μ ≠ 16, i.e., the mean vοlume differs frοm 16 οunces.

Nοte that these hypοtheses cοnstitute a twο-tailed test. The null hypοthesis will be rejected if the sample mean is tοο big οr if it is tοο small.

Fοr this analysis, the significance level is 0.01. The test methοd is a οne-sample t-test.

Using sample data, we cοmpute the standard errοr (SE), degrees οf freedοm (DF), and the t statistic test statistic (t).

Here, we have 16.04, 15.96, 15.84, 16.08, 15.79, 15.90, 15.89, and 15.70

Number, n = 8

Mean = 15.9

Standard deviatiοn = 0.12615

SE = s /[tex]\sqrt[/tex](n) = 0.12615 /  [tex]\sqrt[/tex](8) = 0.0446

DF = n - 1 = 8 - 1 = 7

t = (x - μ) / SE = (15.9 - 16)/0.0446 = -2.24215

where s is the standard deviatiοn οf the sample, x is the sample mean, μ is the hypοthesized pοpulatiοn mean, and n is the sample size.

Since we have a twο-tailed test, the P-value is the prοbability that the t statistic having 7 degrees οf freedοm is less than -2.24215 οr greater than 2.24215.

We use the t Distributiοn Calculatοr tο find P(t < -2.24215)

       The P-Value is 0.059901.

       The result is nοt significant at p < 0.01

Since the P-value (0.059901) is greater than the significance level (0.01), we cannοt reject the null hypοthesis, i.e., the mean vοlume is same as 16 οunces.

Learn more about null hypothesis

https://brainly.com/question/30821298

#SPJ4

a) Show that x^n - a^n has a factor x - a. What is the quotient (x^n — a^n)/(x − a)?
Hint: What does the product
(x^3 + b2x^2 +b1x+ bo)(x – a) = x^4 - a^4
mean for the values of the bk? Notice that the left-hand side expands to turn this equation into
x^4 + (b2 − a)x³ + (b1 − ab2)x² + (bo − ab₁)x — abo = x^4 — a^4.
How does this generalize?

Answers

The quotient is:[tex]x^{(n-1)} + x^{(n-2)}a + ... + a^{(n-1)}n * a^{(n-1)} = n * a^{(n-1)(x-a) }+ x^n - a^n[/tex] by the factor theorem.

In order to show that [tex]x^n - a^n[/tex] has a factor x - a, we can observe that we have to prove that if x = a, then [tex]x^n - a^n[/tex] equals zero.

Therefore, we can write:

[tex]x^n - a^n = x^n - a^n + 2a^n - 2a^n= (x^n - a^n) + (2a^n - 2a^n)= (x - a)(x^(n-1) + x^(n-2)a + ... + a^(n-1))[/tex]

The second part of the question is asking for the quotient (x^n — a^n)/(x − a).

By the factor theorem, [tex]x^n - a^n[/tex] can be written as (x - a)Q(x) + R, where Q(x) and R are polynomials such that the degree of R is less than the degree of x - a.

If we divide both sides of this equation by x - a, we get:

[tex]x^n - a^n = (x - a)Q(x) + Rx^{(n-1)} - a^{(n-1)} = (x - a)(Q(x) + (x^{(n-1)} + x^{(n-2)}a + ... + a^{(n-1)})/(x - a))[/tex]

Let [tex]S(x) = (x^{(n-1)} + x^{(n-2)}a + ... + a^{(n-1)})/(x - a)[/tex]. As x approaches a, S(x) approaches [tex]n * a^{(n-1)[/tex].

Therefore, the quotient is:[tex]x^{(n-1)} + x^{(n-2)}a + ... + a^{(n-1)}n * a^{(n-1)} = n * a^{(n-1)(x-a) }+ x^n - a^n[/tex].

Learn more about factor theorem :

https://brainly.com/question/30243377

#SPJ11

If 10 [ f(a)dx = = 14 - 82 and 10 g(x)dx = 17 = \ - 82 and 10 h(2)dx = 23 - 82 what does the following integral equal? – 10 "2() = [5f(x) + 69(x) – h(a)]dx = - 82

Answers

The value of the integral ∫[-10, 2] [5f(x) + 6g(x) - h(a)] dx is -82.

To find the value of the integral, we can substitute the given values into the integral expression and evaluate it. From the given information, we have ∫[-10, 2] [5f(x) + 6g(x) - h(a)] dx = 5∫[-10, 2] f(x) dx + 6∫[-10, 2] g(x) dx - ∫[-10, 2] h(a) dx.

Using the properties of definite integrals, we can rewrite the integral as follows:

∫[-10, 2] f(x) dx = ∫[-10, 2] f(a) dx = 10[f(a)]|_a=-10ᵃ=2 = 10[f(2) - f(-10)] = 10(14 - 82) = -680.

Similarly, ∫[-10, 2] g(x) dx = 10[g(x)]|_a=-10ᵃ=2 = 10[g(2) - g(-10)] = 10(17 - (-82)) = 990.

Finally, ∫[-10, 2] h(a) dx = ∫[-10, 2] h(2) dx = 10[h(2)]|_a=-10ᵃ=2 = 10(23 - 82) = -590.

Substituting these values back into the original integral expression, we have -680 + 6(990) - (-590) = -82.

Therefore, the value of the integral ∫[-10, 2] [5f(x) + 6g(x) - h(a)] dx is -82.

To know more about integral, refer here:

https://brainly.com/question/31040425#

#SPJ11

Complete question:

If 10 [ f(a)dx = = 14 - 82 and 10 g(x)dx = 17 = \ - 82 and 10 h(2)dx = 23 - 82 what does the following integral equal?  ∫[-10, 2] [5f(x) + 6g(x) - h(a)] dx

autosave question472902 37 A study found that a businessperson with a master's degree in business administration (MBA) earned an average salary of S(x, y) 48,346+ 49313844y dollars in 2005, where x is the number of years of work experience before the MBA, and y is the number of years of work experience after the MBA. Find Sy 5,- Interpret your answer. O Salary decrease for each additional year of work before the MBA. O Salary increase for each additional year of work before the MBA. O Salary increase for each additional year of work after the MBA. O Salary decrease for each additional year of work after the MBA. O none of these Find Sy 5y = Interpret your answer. O Salary decrease for each additional year of work before the MBA. O Salary increase for each additional year of work before the MBA. Salary increase for each additional year of work after the MBA O Salary decrease for each additional year of work after the MBA

Answers

Salary increase for each additional year of work after the MBA.

To find Sy, we substitute the value of y = 5 into the given equation: S(x, y) = 48,346 + 49,313,844y.

S(x, 5) = 48,346 + 49,313,844(5)

= 48,346 + 246,569,220

= 294,915,566 dollars.

Interpretation:

Sy represents the salary of a business person with 5 years of work experience after obtaining an MBA degree. In this case, the calculated value of Sy is $294,915,566.

Since the coefficient of y in the equation is positive (49,313,844), we can interpret the result as a salary increase for each additional year of work experience after obtaining the MBA. Therefore, the correct answer is: Salary increase for each additional year of work after the MBA.

To know more about equation, visit:

https://brainly.com/question/29538993

#SPJ11

Suppose the sum of two positive integers is twice their difference and the larger number is 6 more than the smaller number. Let u be the larger number. Which of the below system could be used to find the two numbers? os x + 3y = 6 1 x+y=0 - o Sr - =6 1x + 3y = 0 2 Ox= 6 + 3y 2 + 3y = 0 O x-y=6 12 - 3y = 0 Question 5 20 pts You are asked to solve the system below using elimination. J (1) 2x+y=-3 (2) 3x – 2y = 2 Which one of the following steps would be the best way to begin? Multiple (1) by 2. Multiple (2) by 2. Multiple (1) by 2 and multiple (2) by 3. Multiple (2) by 2 and multiple (1) by -2

Answers

The best way to begin solving the system of equations would be to multiply equation(1) by 2 and equation (2) by 3.

What is the elimination method?

The elimination method, also known as the method of elimination or the addition/subtraction method, is a technique used to solve a system of linear equations. It involves manipulating the equations in the system by adding or subtracting them in order to eliminate one of the variables. The goal is to transform the system into a simpler form with fewer variables, eventually leading to a single equation with only one variable that can be easily solved.

To find the system of equations that can be used to find the two numbers, let's analyze the given information step by step.

1."The sum of two positive integers is twice their difference." Let's assume the smaller number is represented by 'x' and the larger number by 'u'. According to the given information, we can write the equation:

x + u = 2(u - x)

2."The larger number is 6 more than the smaller number." We can write this information as:

u = x + 6

Now, let's examine the options provided and see which one matches our system of equations.

Option 1: os x + 3y = 6

This option does not match our system of equations.

Option 2: 1 x+y=0

This option does not match our system of equations.

Option 3: - o Sr - =6

This option does not make sense and does not match our system of equations.

Option 4: 1x + 3y = 0

This option does not match our system of equations.

Option 5: 2 Ox= 6 + 3y

This option does not match our system of equations.

Option 6: 2 + 3y = 0 This option does not match our system of equations.

Option 7: O x-y=6

This option matches our system of equations. The equation x - y = 6 can be rewritten as x = y + 6.

Option 8: 12 - 3y = 0

This option does not match our system of equations.

Therefore, the system that could be used to find the two numbers is

x = y + 6 and x + u = 2(u - x).

Moving on to the second question:

To solve the system using elimination: (1) 2x + y = -3 (2) 3x - 2y = 2

The best way to begin the elimination method would be to multiply equation (1) by 2 and equation (2) by 3. This will allow us to eliminate the 'y' term when we subtract the equations.

So, the correct answer is: Multiple (1) by 2 and multiple (2) by 3.

To learn more about the elimination method from the given link

brainly.com/question/25427192

#SPJ4

A patio lounge chair can be reclined at various angles, one of which is illustrated below.

.
Based on the given measurements, at what angle, θ, is this chair currently reclined? Approximate to the nearest tenth of a degree.

Answers

The angle measure labelled with theta is 40. 2 degrees

How to determine the value

To determine the value, we have that the six different trigonometric identities in mathematics are expressed as;

secantcosecantsinecosinetangentcotangent

From the information given, we have that;

The angle is labelled θ

The opposite side is 31 in

The hypotenuse side is 48in

Now, using the sine identity, we get;

sin θ = 31/48

divide the values, we have;

sin θ = 0. 6458

Take the inverse of the value

θ = 40. 2 degrees

Learn more about trigonometric identities at: https://brainly.com/question/7331447

#SPJ1

From a boat on the lake, the angle of elevation to the top of the cliff is 25. 24. If the base of the cliff is 1183 feet from the boat, how high is the cliff

Answers

If the base of the cliff is 1183 feet from the boat, the height of the cliff is approximately 550.5 feet.

Let's denote the height of the cliff as h feet.

Given that the angle of elevation to the top of the cliff is 25.24° and the base of the cliff is 1183 feet from the boat, we can use the tangent function:

tangent(angle) = opposite/adjacent

In this case, the opposite side is the height of the cliff (h), and the adjacent side is the distance from the boat to the base of the cliff (1183).

Using the tangent function, we have:

tangent(25.24°) = h/1183

Rearranging the equation to solve for h, we have:

h = 1183 * tangent(25.24°)

Calculating this expression, we find:

h ≈ 1183 * 0.4655

h ≈ 550.5005

Learn more about height here:

https://brainly.com/question/27243378

#SPJ11

f(x) = x + 5y = 20
Assume that y is a function of x.

Answers

Step-by-step explanation:

Then re-arranging

f(x)  =  y = - 1/5x + 4       <=====this is the equation of a line  slope = -1/5 and           y axis intercept = 4

The equation is a linear equation in two variables, x and y, and can be rewritten in slope-intercept form as y = (-1/5)x + 4. Therefore, y is a function of x, where the slope of the line is -1/5 and the y-intercept is 4.

A projectile is shot upward from the surface of Earth with an initial velocity of 134 meters per second. Use the position function below for free-falling objects. What is its velocity after 5 seconds? After 15 seconds? (

Answers

A projectile shot upward from the surface of the Earth with an initial velocity of 134 meters per second can be modeled using the position function for free-falling objects. To find its velocity after 5 seconds and after 15 seconds, we can differentiate the position function with respect to time to obtain the velocity function. By substituting the respective time values into the velocity function, we can calculate the velocities.

The position function for a free-falling object can be expressed as s(t) = ut - (1/2)gt², where s(t) represents the position at time t, u is the initial velocity, g is the acceleration due to gravity (approximately 9.8 m/s²), and t is the time.

To find the velocity function, we differentiate the position function with respect to time:

v(t) = u - gt.

Given an initial velocity of 134 m/s, we can substitute u = 134 and g = 9.8 into the velocity function:

v(t) = 134 - 9.8t.

To find the velocity after 5 seconds, we substitute t = 5 into the velocity function:

v(5) = 134 - 9.8(5) = 134 - 49 = 85 m/s.

Similarly, to find the velocity after 15 seconds, we substitute t = 15 into the velocity function:

v(15) = 134 - 9.8(15) = 134 - 147 = -13 m/s.

Therefore, the velocity of the projectile after 5 seconds is 85 m/s, and after 15 seconds is -13 m/s. The negative sign indicates that the object is moving downward.

To learn more about acceleration  : brainly.com/question/12550364

#SPJ11

I
need help completing this. Show work please thank you
Find the average value of the function f (x) = x³ - 2x on the interval [-2, 2]. O√2 2 O O 0

Answers

The average value of the function f(x) = x³ - 2x on the interval [-2, 2] is 0.

What is the average value of the function on the given interval?

To find the average value of the function f(x) = x³ - 2x on the interval [-2, 2], we need to calculate the definite integral of the function over the interval and divide it by the length of the interval.

The average value of f(x) over the interval [a, b] is given by the formula:

Avg = (1 / (b - a)) * ∫[a to b] f(x) dx

In this case, a = -2 and b = 2. Let's calculate the integral first:

∫[-2 to 2] (x³ - 2x) dx

Integrating term by term, we get:

= [x⁴/4 - x²] evaluated from -2 to 2

= [(2⁴/4 - 2²) - ((-2)⁴/4 - (-2)²)]

= [(16/4 - 4) - (16/4 - 4)]

= (4 - 4) - (4 - 4)

= 0

Now, we can calculate the average value:

Avg = (1 / (2 - (-2))) * ∫[-2 to 2] (x³ - 2x) dx

   = (1 / 4) * 0

   = 0

Learn more on average value of a function here;

https://brainly.com/question/30460573

#SPJ4

47 6) (7 pts) Utilize the limit comparison test to determine whether the series En=137_2 converges or diverges.

Answers

To determine whether the series Σn=1 to ∞ 137_n converges or diverges, we can utilize the limit comparison test.

The limit comparison test states that if we have two series, Σa_n and Σb_n, where a_n and b_n are positive terms, and the limit of the ratio a_n/b_n as n approaches infinity is a finite positive number, then both series either converge or diverge. In this case, we can compare the given series Σn=1 to ∞ 137_n to a known series that we can easily determine the convergence of. Let's choose the series Σn=1 to ∞ 1/n, which is the harmonic series. Taking the limit of the ratio between the terms of the two series, we have: lim (n→∞) (137_n / (1/n))M. Simplifying the expression, we get: lim (n→∞) (137_n * n)

Since the value of 137_n is fixed at 137 for all n, the limit becomes: lim (n→∞) (137 * n)

As n approaches infinity, the limit of 137 * n also approaches infinity. Therefore, the limit of the ratio of the terms of the series Σn=1 to ∞ 137_n and Σn=1 to ∞ 1/n is infinity. According to the limit comparison test, since the limit is infinite, the series Σn=1 to ∞ 137_n diverges.

Learn more about limit comparison test here:

https://brainly.com/question/30401939

#SPJ11

Other Questions
Question 3 Two ropes are pulling a box of weight 70 Newtons by exerting the following forces: Fq= and F2= Newtons, then: 1-The net force acting on this box is= < 2- The magnitude of the net force is (Round your answer to 2 decimal places and do not type the unit) Draw and find the volume of the solid generated by revolving the area bounded by the given curves about the given axis.$y=4-x^2$ and $y=0$ about $x=3$ The average weight of a can of tomato juice produced at Heinz's Seattle factory is 101.0ml. The standard deviation of the weight of acan of tomato juice is 1.86ml. Calculate the percentage of cans of tomato juice must have a weight within 2.3 standard deviation from101.0ml. 2. When the derivative of function f is given as f'(x)= [(x - 2)3(x2 4)]/16 and g(x)= f (x2-1), what is g'(2) (A) O (B) 5/16 (C) 5/4 (D) 2. (E) 5/8 which event marked the end of the old monarchy? when did this event occur? 24. For the function f(x) = x2 - 4x+6, find the local extrema. Then, classify the local extrema. = a u.s. firm buys bonds issued by a technology center in india. this purchase is an example of u.s. a. foreign direct investment. by itself it is an increase in u.s. holdings of foreign bonds and increases u.s. net capital outflow. b. foreign portfolio investment. by itself it is an increase in u.s. holdings of foreign bonds and decreases u.s. net capital outflow. c. foreign direct investment. by itself it is an increase in u.s. holdings of foreign bonds and decreases u.s. net capital outflow. d. foreign portfolio investment. by itself it is an increase in u.s. holdings of foreign bonds and increases u.s. net capital outflow. in the great gatsby, how has the morality of the characters been exhibited so far in the novel? Is it positive or negative? heat flow occurs between two bodies in thermal contact when they differ in what property? Find the area enclosed by the given parametric curve and the y-axis.x = sin^2(t) , y = cos(t) es Now that you have reviewed financial accounting, here's a chance to quickly see how well you remember the essentials of your previous accounting classes. Using the account titles in the Lesson 1 Assignment Spreadsheet.create these financial statements for EXAMPLE COMPANY for the year ended December 31, XXXX: Income statement. statement of retained earnings, and balance sheet. Please prepare your answers in a spreadsheet that you create, using proper spreadsheet techniques. You don't need to add numbers. Account Title 2 3 Account Payable 4 Account Receivable 5 Accumulated Depreciation - Buliding 6 Accumulated Depreciation - Office Equipment 7 Accumulated Depreciation - Store Fixtures 8 Administration Salaries Expense 9 Advertising expense 10 Allowance for Doubtful Accounts 11 Beginning Retained Earnings 12 Building 13 Cash 14 Common Stock 15 Cost of Good Sold 16 Credit Card Revenues 17 Depreciation Expense - Building 18 Depreciation Expense - Office Equipment 19 Depreciation Expense - Store Equpment 20 Dividends on Common Shares 21 Employer Taxes payable 22 Freight expense 23 Gains on Sales of Equipment 24 Insurance expense 25 Interest Expense 26 Interest Payable 12 Financial Statement 26 Interest Payable 27 Inventory 28 Land 29 Mortgage Payable 30 Notes Payable 31 Notes Receivable 32 Office equipment 33 Office supplies 34 Office Supplies Expense 35 Paid in Excess of Par 36 Patents 37 Petty Cash 38 Prepaid Insurance 39 Rent expense 40 Rent revenue 41 Salaries Payable 42 Sales 43 Sales Commissions 44 Sales discounts 45 Sales returns 46 Sales Tax payable 47 Store fixtures 48 Supplies 49 Supplies Expense 50 Unearned revenue 51 Unfunded Pension Due 52 Utilities Expense Calculate the area of the composite figure (a) Dewi has 460 to buy Chinese yuan.Calculate.the maximum number of CYN Dewi can buy, andhow much, to the nearest penny, this will cost him. determine the fixed cost components using the high-low method. total fixed costs $enter the fixed cost components using the high-low method a dj is preparing a playlist of songs. how many different ways can the dj arrange the first songs on the playlist? what ingredients are used for the production of portland cement Multiply out 5x(3x-2)= 1. Mr. Conners surveys all the students in his Geometry class and identifies these probabilities. The probability that a student has gone to United Kingdom is 0.28. The probability that a student has gone to Japan is 0.52. The probability that a student has gone to both United Kingdom and Japan is 0.14. What is the probability that a student in Mr. Conners class has been to United Kingdom or Japan?a. 0.66 b. 0.79 c. 0.62 d. 0.65 Determine whether the equation is exact. If it is exact, find the solution. If it is not, enter NS.(y/x+9x)dx+(ln(x)2)dy=0, x>0Enclose arguments of functions in parentheses. For example, sin(2x).____________________=c, where c is a constant of integration. suni owns land (adjusted basis of $90,000; fair market value of $125,000) that she uses in her business. she exchanges it for another parcel of land (worth $100,000) and stock (worth $25,000). question content area a. determine suni's realized and recognized gain or loss on the exchange. suni's realized is $fill in the blank fb11cffeb07d051 2 and recognized is $fill in the blank fb11cffeb07d051 4 . question content area b. determine suni's basis in the new land. the basis of the new land is $fill in the blank 0b0bf3fe2fac030 1 . question content area c. determine suni's basis in the stock she received. the basis in the stock she received is $fill in the blank 64406f0b7fbbfca 1 . Steam Workshop Downloader