Answer:
The cell interior would experience higher than normal Na+ concentrations and lower than normal K+ concentrations.
Explanation:
The Na/⁺K⁺ pump is an ATPase pump which is responsible for maintaining low Na⁺ and high K⁺ concentrations within the cytoplasm while maintaining high Na⁺ and low K⁺ concentrations in the extracellular fluid.
Since these two ions are moved against their concentration gradient, ATP hydrolysis is required to provide the energy for this process. This is done by moving in two K⁺ ions inside while moving three Na⁺ ions outside the cell for every molecule of ATP hydrolysed to ADP and Pi.
If a competitive non-hydrolyzable analog of ATP is applied on the cytoplasmic side of a plasma membrane that contained a large concentration of the Na/⁺K⁺ pump, it will act by inhibiting the action of the Na/⁺K⁺ pump. This will result in an accumulation of Na⁺ ions inside the cell and lower than normal K⁺ ions concentration.
why it is important to reduce friction in moveable joints
Answer:
Smooth cartilage prevents friction as the bones move against one another. in freely moveable joints, the entire joint is enclosed inside a membrane filled with lubricating synovial fluid, which helps to provide extra cushioning against impact.
Which of the following is an example of a lipid?
phospholipid.
triglyceride
fats and oils.
all of these
Answer:
phospholipid
Explanation:
Phospholipids, triglycerides, fats, and oils are examples of a lipid. Therefore, option D is correct.
What are lipids?Fatty, waxy, or oily molecules are referred to as lipids. They are soluble in organic solvents but insoluble in polar solvents like water. Steroids, phospholipids, oils, and waxes are examples of lipids. They are usually referred to as fats and oils.
Since lipids may be broken down to provide significant amounts of energy, one of their primary biological purposes is the storage of energy. The structural elements of cell membranes and a number of the body's messengers and signaling molecules are also formed by lipids.
Cell membranes, cholesterol, blood cells, and the brain are just a few places where they can be found in the human body.
Learn more about lipids, here:
https://brainly.com/question/3498396
#SPJ6
What does this diagram represent?
Let's suppose you were interested in developing drugs to prevent epigenetic changes that may contribute to cancer. What cellular proteins would be the target of your drugs?
Answer:
Potential targets:
1- DNA methyltransferases
2- Chromatin modifiers such as histone acetyltransferases, histone deacetylases, histone methyltransferases, etc.
3- Components of the RNA interference (RNAi) machinery such as Dicer, Argonaute, etc.
Explanation:
Epigenetics can be defined as the study of any heritable change in the phenotype that does not involve modifications in the DNA sequence. Epigenetic mechanisms can be classified into three major types: 1-DNA methylation, 2-histone modifications (e.g., acetylation, methylation, phosphorylation, etc), and 3-regulatory non-coding RNAs (e.g., miRNAs, lncRNAs, siRNAs, etc) that modulate target gene expression via the RNA interference pathway. There are different types of proteins that are involved in these complex epigenetic mechanisms, and those cited above represent only some examples that can be used as therapeutic targets.
help me please !!!!!!
we find ATP
like glucose and other organic compounds
In science, which of the following best describes the scientific term
theory? *
A) An educated guess
B) An idea with lots of evidence to support it
C) possible idea that needs more evidence to be real science
D) An undisputed law that will not change.
PLEASE ANSWER!!!!!!!
Answer:
here's your answer
Explanation:
b) an idea with lots of evidence to support it .
In science, the word theory refers to a comprehensive explanation of an important feature of nature that is supported by many facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena.
How does Nitrogen get from the atmosphere to the soil?
Answer:
Plants get their nitrogen indirectly from the air via microorganisms in the soil and in certain plant roots.
Answer:
Microorganisms and certain plant roots in the soil
Explanation:
"Plants get the nitrogen that they need from the soil, where it's already been fixed by bacteria and archaea. Bacteria and archaea in the soil and in the roots of some plants have the ability to convert molecular nitrogen from the air (N2) to ammonia (NH3)... Such organisms are called "diazotrophs". From here, various microorganisms convert ammonia to other nitrogen compounds that are easier for plants to use. In this way, plants get their nitrogen indirectly from the air via microorganisms in the soil and in certain plant roots."
I hope this helps...
a. What is the major evolutionary advantage to producing an amnion?
b. What does that mean for embryonic development for the animal phylum as compared to the animal phyla?
WHAT IS THE MAJOR EVOLUTIONARY ADVANTAGE TO PRODUCING AN AMNION?
The main evolutionary advantage of producing an amnion is that the embryos of the amniotic membrane,the amniotes are made available with their own aquatic environment,this in-turn resulted to a lesser dependence on water for it's maturation and development therefore allowing or giving room for the amniotes to branch towards environments that are drier.
WHAT FOES THAT MEAN GOR EMBRYONIC DEVELOPMENT OF THE ANIMAL PHYLUM AS COMPARED TO THE ANIMAL PHYLA?
The embryonic development of animal phylum is also known as embryogenesis.
It is the development of the embryo from the point of fertilization of an egg,(the ovum) by a sperm cell ,this makes the fertilized egg a diploid cell otherwise known as a zygote.
This zygote undergoes mitosis,a mitotic division known as cleavage and a differentiation resulting in a multicellular embryo.
This embryonic development of animal phylum comprises of 36 animal phyla.
-
Is salivary amylase a carbohydrate, lipid, nucleic acid or protein?
Answer:
Amylase
Explanation:
(Q005) Humans are unusual because our cultural practices can actually change our environmental circumstances. We can change the environment in which natural selection acts on our traits. Describe how this process has played out in the evolution of adult lactose tolerance. Describe how this process has played out in the maintenance of the sickle-cell trait. Can you hypothesize any similar situations where our future evolution may be influenced by cultural practices we have today?
Answer:
sickle cell disease or sickle cell disease is about the inheritance of metaplastic cells or cells that do not respect normal cell morphology from the mother or father to a child.
This is not associated with cultures, instead lactose tolerance is.
Explanation:
Lactose tolerance is basically an adaptation of the body in those humans who continue to drink milk throughout their lives, once the growth stage is over, milk should be suspended, although some continue to consume it and lactase continues to be encoded and expressed.
Some people for cultural reasons or environmentalist lifestyles do not drink animal milk, but rather vegetable milk.
particles is found in the nucleus of an atom
Answer:
protons and neutrons
Explanation:
Protons and neutrons have a positive and neutral charge, respectively. They are in the nucleus, while the negative electrons orbit the nucleus.
Answer:
Protons, neutrons, electrons
Explanation:
If you're asking about subatomic particles.
Budding is a type of asexual reproduction. Which of the following is an disadvantage for asexual reproduction?
True or false consumption efficiency in Huckleberry patches is high like in a forest ecosystem
Answer:
True
Explanation:
according to the diagram the temperature where clouds form is?
Answer:
higher than the temperature near mountains
Explanation:
Answer: C. lower than the temperature on the ground
Explanation: Because on the chart it shows the temp on the ground is 92° but then the temp where clouds form is 60°. This means that the temp at the ground is higher than the temp at 6000ft.
Which of the three traits considered in this film (bipedality, extensive tool use, and large brains) were present in the 3.2-million-year-old Australopithecus fossil (Lucy)?.
Answer:
The bipedality
Explanation:
One of the things the discovered fossil signified was that human bipedality was more ancient than the large brain size because Lucy actually had a small skull which could indirectly be translated to small brain size.
NOTE: Bipedality can be described to mean the ability of an organism to move about with two legs. Hence, it must have been discovered that Lucy had two legs.
Determine the identity of an atom
Answer:
The number of protons in one atom of an element determines the atoms identity.
Why do you think it is winter in the southern hemisphere while it is summer in the northern hemisphere?
Answer:
yes
Explanation:
just to be nice could you mark this as brainleist please?
Happy Holidays!
Can you think of any structures in the human body that may have once had a job but are no longer necessary?
Answer:
I bealive Vestigial organs or appendix no longer have pourpose.
Explanation:
Help me guys!! (Giving brainliest)
Answer: C
Explanation:
C because the cell membrane is semi permeable which means only certain substances can enter and exit.
35 points please help science biology
Euglena are unicellular organisms classified into the Kingdom Protista, and the Phylum Euglenophyte. All euglena have chloroplasts and can make their own food by photosynthesis. They are not completely autotrophic though, euglena can also absorb food from their environment; euglena usually live in quiet ponds or puddles.
Euglena move by a flagellum (plural ‚ flagella), which is a long whip-like structure that acts like a little motor. The flagellum is located on the anterior (front) end, and twirls in such a way as to pull the cell through the water. It is attached at an inward pocket called the reservoir. Color the reservoir grey and the flagellum black.
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). Chloroplasts within the euglena trap sunlight that is used for photosynthesis, and can be seen as several rod like structures throughout the cell. Color the chloroplasts green. Euglena also have an eyespot at the anterior end that detects light, it can be seen near the reservoir. This helps the euglena find bright areas to gather sunlight to make their food. Color the eyespot red.Euglena can also gain nutrients by absorbing them across their cell membrane, hence they become heterotrophic when light is not available, and they cannot photosynthesize.
The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape, though the pellicle is somewhat flexible and some euglena can be observed scrunching up and moving in an inchworm type fashion. Color the pellicle blue.
In the center of the cell is the nucleus, which contains the cell's DNA and controls the cell's activities. The nucleolus can be seen within the nucleus. Color the nucleus purple, and the nucleolus pink.
The interior of the cell contains a jelly-like fluid substance called cytoplasm. Color the cytoplasm light yellow. Toward the posterior of the cell is a star-like structure: the contractile vacuole. This organelle helps the cell remove excess water, and without it the euglena could take in some much water due to osmosis that the cell would explode. Color the contractile vacuole orange.
1. Does a scientific theory ever become a law? Explain
the difference between scientific theory and law.
Answer:
a theory cannot become a law
Explanation:
the difference between a scientific theory and a scientific law because a theory is an in depth explanation of an observed phenomenon. a law is a statement about an observed phenomenon or an unifying concept (i.e.: newtons law or gravity - no explanation on how it works or what it is just that it exists.)
DNA sequences can act as "tape measures of evolution". Scientists analyzing the human genome sequence were surprised to find that some of the regions of the human genome that are most highly conserved (similar to comparable regions in other species) don't code for proteins. What is a possible explanation for this observation? EVOLUTION CONNECTION sequences can act as "tape measures of evolution". Scientists analyzing the human genome sequence were surprised to find that some of the regions of the human genome that are most highly conserved (similar to comparable regions in other species) don't code for proteins. What is a possible explanation for this observation?
Answer:
Non-coding DNA regions play important roles in regulating transcriptional activity by encoding different types of non-coding RNAs (ncRNAs), acting as scaffold attachment regions, acting as enhancer specific regions, etc.
Explanation:
Historically, it had been believed that non-coding DNA sequences were 'junk DNA' since they don't encode for proteins (beyond the sequences that are transcribed into functional non-coding RNAs, i.e., transfer RNA and ribosomal RNA). However, in the last years, it has been shown that non-coding DNA sequences play critical roles in regulating gene expression and genome function. For example, evolutionary conserved non-coding RNAs (ncRNAs) with regulatory roles on gene expression such as, for example, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been mapped in non-coding DNA sequences, thereby evidencing the functional significance of these regions. In consequence, the conservative nature of certain non-coding DNA sequences evidence that mutations in such regions may have significant deleterious effects, and thereby they could have a negative impact on the fitness of the individual.
Activity
EXplain why a complex food web is better than a simple food chain for the survival of the community.
Answer:
A complex food web is better than the simple food chain because the food web links together the relationships between a producer, consumer, and decomposers. Another reason why a complex food web is better than a simple food chain is that if a particular species is eliminated from a food web, the entire ecosystem has a lower chance of collapsing due to that loss. A food web can more readily react to changes in the environment that impact one or more species.
Hope this helps :)
Answer:
(Answers may vary.)
A complex food web is more important than a simple food chain for the survival of a community. The food web is more important because it is more intricate and adaptive than a food chain. A community houses many species. These species are dependent on each other for energy and food. So, there are multiple relationships of energy transfer involved.
A food chain is linear, which means that each predator has only one source of food. So the predator is vulnerable if the food source is depleted through disease or a change in environmental conditions. Whereas in a food web, each predator has many food sources. A complex food web provides multiple preys to species at a higher trophic level. As a result, a food web illustrates the feeding relationships between many species at different trophic levels in an ecosystem.
Explanation:
Answer for plato
What molecule, when linked
with others, creates a single link
in the DNA chain?
Answer:Figure 4: Double-stranded DNA consists of two polynucleotide chains whose nitrogenous bases are connected by hydrogen bonds.
Explanation::))))))))))))))))))))))
Which type of rock does B represent?
Group of answer choices
What happens during cytokinesis?
GIVING BRANLIEST HELP ME PLEASE!!!
Answer:
B I think, Good luck
Explanation:
Answer:
A: The ability to maintain homeostasis
Explanation:
Hope this helps:)
which of these increases as greenhouse gases pollution increases
a.thickness of freshwater ice sheets
b. ocean salinity
c. ocean surface temp
d.rate of thermohaline circulation
Answer:
The answer is C.The ocean surface temp
Explanation:
I'm not sure of it but Greenhouse gases pollution raise the rate of Global warming so i think the temp one works the most
identify and describe one natural and one man made source of carbon in the carbon cycle?
. How are mineral deposits formed around vents?
Answer:
When hot, metal-laden water spews from vents and mixes with the cold ocean, the metals precipitate. Large piles of sulfide accumulate on the seafloor and are eventually buried by sediments, modified by heat and pressure in the crust, and uplifted. Some are exposed on land when erosion removes the overlying rocks.