Answer:
Explanation:
Given the equation:
[tex]x^2+3x-7=0[/tex]On observation, the equation cannot be factorized, so we make use of the quadratic formula.
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]Comparing with the form ax²+bx+c=0: a=1, b=3, c=-7
Substitute these values into the formula.
[tex]x=\dfrac{-3\pm\sqrt[]{3^2-4(1)(-7)}}{2\times1}[/tex]We then simplify and solve for x.
[tex]undefined[/tex]
You want to purchase an automobile for 28,711. The dealer offers you 0% financing for 60 months or a 3,972 rebate. You obtain 5.7% financing for 60 months at the local bank. Which option should you choose
Answer:
option 1
Step-by-step explanation:
the dealer one ok.......
What is the domain of the function graphed below?
x<7
x_<7
-2_< X_<3
all real numbers
The given function is defined everywhere except at x = 7 and a higher value than 7 thus x < 7 will be the domain of the function so option (A) is correct.
What is the range and domain of a function?A function's range is the set of all values that the function accepts, and its domain is the set of all values for which the function is defined.
The domain is for the independent variable while the range is for the dependent variable.
As per the given graph of the function,
The value of the function at x = -1 is -2.
In another place, the graph is not breaking before x = 7.
So, at x > 7 the function is not defined.
The domain of the function will be (-∞ ,7).
Hence "The given function is defined everywhere except at x = 7 and a higher value than 7 thus x < 7 will be the domain of the function".
For more details about the range and domain of the function,
brainly.com/question/28135761
#SPJ1
The given question is incomplete, the complete question follows with the graph below;
Segment EF is rotated 90° clockwise around the origin and then translated by (-6, y + 7).
The resulting segment E" F" has coordinates E" (-4, 5), F"(-1,-2).
What are the coordinates of the segment EF?
does anyone know this??
Answer:
E = 2,2 F = 5,-9
Step-by-step explanation:
First, you have to add (6, -7) to both coordinates (that being (-4,5)(-1,-2)
This results in E = 2,-2 and F = -5,-9
Next, you need to rotate both coordinates 90 counterclockwise, resulting in: E being (2,-2) and F being (5,-9)
Hope this helped!
I am not good at word problems this is a project so need extra help
M = $6,400
C = $3,600
CD interest = $180
Money market interest = $256
Here, we want to start by completing the chart
We proceed as follows;
Let us take it line by line
a) The rate for the CD account is 5%
Writing this as decimal is 5/100 = 0.05
b) The time for the CD account is 1 year
Next line;
a) Principal invested in money market is $M
b) The time is also 1 year
Next line;
The interest earned on investment is the sum of both
That will be;
0.05c + 0.04m
So, let us write the equations to solve simultaneously;
[tex]\begin{gathered} c\text{ + m = 10,000} \\ 0.05c\text{ + 0.04m = 436} \\ \text{second equation multiplied through by 100;} \\ 5c\text{ + 4m = 43,600} \\ \text{From i;} \\ c\text{ = 10,000-m} \\ \text{put this into the multiplied equation} \\ 5(10,000-m)\text{ + 4m = 43600} \\ 50,000\text{ - 5m + 4m = 43600} \\ m\text{ = 50,000-43600} \\ m\text{ = 6400} \\ c\text{ = 10,000-6400} \\ c\text{ = 3,600} \end{gathered}[/tex]So, let us fill the last parts;
a) $3,600 + $6,400 = Total $10,000 invested
b) CD interest is 0.05 c = 0.05 (3,600) = $180
Money market interest = 0.04M = 0.04 (6,400) =$256
$180 + $256 = $436 total interest
Solve the quadratic equation by using the quadratic formula. If the solutions are not real, enter NA. 3x2−5x+1=0 Enter the exact answers.
The given quadratic equation is,
[tex]3x^2-5x+1=0[/tex]let us use the formula,
[tex]\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where,
[tex]\begin{gathered} a=3 \\ b=-5 \\ c=1 \end{gathered}[/tex]subistute the values in the formula,
[tex]\begin{gathered} =\frac{-(-5)\pm\sqrt[]{(-5)^2-4\times3\times1}}{2\times3} \\ =\frac{5\pm\sqrt[]{25-12}}{6} \\ =\frac{5\pm\sqrt[]{13}}{6} \\ x=\frac{5+\sqrt[]{13}}{6},x=\frac{5-\sqrt[]{13}}{6} \end{gathered}[/tex]The roots of the quadratic equation are ,
[tex]x=\frac{5+\sqrt[]{13}}{6},x=\frac{5-\sqrt[]{13}}{6}[/tex]Simplify.1,5m^7(-4m^50^2A. -6m^14B. 24m^17C. 24m^14D. 12m^17There is a picture too if you need it.
The expression can be simplified as,
[tex]\begin{gathered} 1.5m^7(-4m^5)^2 \\ =1.5m^7(16m^{10}) \\ =24m^{17} \end{gathered}[/tex]Thus, option (b) is the correct solution.
write the linear equation that passes through the two given points (2,-2) and (0,-1)
Given the points:
(x1, y1) ==> (2, -2)
(x2, y2) ==> (0, -1)
To find the linear equation, use the form:
y = mx + b
where m is the slope.
To find the slope, use the formula below:
[tex]m=\frac{y2-y1}{x2-x1}[/tex]Thus, we have the slope as:
[tex]m=\frac{-1-(-2)}{0-2}=\frac{-1+2}{0-2}=\frac{1}{-2}=-\frac{1}{2}[/tex]Input 2 for x, -2 for y, and -1/2 for b to find b.
[tex]\begin{gathered} -2=-\frac{1}{2}(2)+b \\ \\ -2=-1+b \\ \\ -2+1=b \\ \\ -1=b \end{gathered}[/tex]Therefore, the linear equation is:
[tex]y=-\frac{1}{2}x-1[/tex]ANSWER:
[tex]y=-\frac{1}{2}x-1[/tex]roblems in Construction Mathematics me Frandy Ive the following problems. Show your work. Write your answers in the spaces provided. 1. A triangular frame has sides that measure 15-7, 20'-4 and 26-2". What is the total length of the three sides?
A triangular frame has sides that measure 15-7, 20'-4 and 26-2". What is the total length of the three sides?
Remember that
1 ft =12 inches
Convert all the measure to inches
so
15' 7 "=15(12)+7=187 in
20' 4"=20(12)+4=244 in
26' 2"=26(12)+2=314 in
A ball is thrown from an initial height of 1 meter with an initial upward velocity of 7 m/s. The balls height h (in meters) after t seconds is given by the following. h=1+7t-5t^2Find all values of t for which the balls height is 2 meters.Round the answer(s) to the nearest hundredth
Solution
To find the values of t for which the ball's height is 2 meters
we set h = 2
=> 2 = 1 + 7t - 5t^2
=>5t^2 - 7t + 1 = 0
Using the quadratic formula,
[tex]\begin{gathered} t=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \\ \\ \Rightarrow t=\frac{7\pm\sqrt{\left(-7\right)^2-4\left(5\right)\left(1\right)}}{2\cdot5} \\ \\ \Rightarrow t=1.24s\text{ or }0.16s \end{gathered}[/tex]Therefore, t = 1.23s or 0.16s
the product of 4 and the diference of 9 and 2 find the value of your expression
Answer:
28
Step-by-step explanation:
4(9-2)
4(7)
28
Find the slope of the line that passes through (54, -61) and (8, -56).
Answer:
The slope m of the line that passes through the two given points is;
[tex]m=-\frac{5}{46}[/tex]Explanation:
We want to calculate the slope of the line that passes through the given point;
[tex](54,-61)\text{ and }(8,-56)[/tex]Recall that the slope formula can be written as;
[tex]m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}[/tex]substituting the given points;
[tex]\begin{gathered} (x_1,y_1)=(54,-61) \\ (x_2,y_2)=(8,-56) \end{gathered}[/tex]We have;
[tex]\begin{gathered} m=\frac{-56-(-61)}{8-54}=\frac{5}{-46} \\ m=-\frac{5}{46} \end{gathered}[/tex]Therefore, the slope m of the line that passes through the two given points is;
[tex]m=-\frac{5}{46}[/tex]
7. 4×= 3yy=-4x + 39. y+2=0x+ 2 = 011.x-5y=45x + y = 4Determine if the graphs will show parallel or perpendicular lines, or neither.
Given:
[tex]\begin{gathered} 4x=3y \\ y=-4x+3 \end{gathered}[/tex]Sol:.
If the both line are perpendicular then multipilcation of slope is -1 then:
[tex]\begin{gathered} y=mx+c \\ m=\text{slope} \\ \end{gathered}[/tex][tex]\begin{gathered} 3y=4x \\ y=\frac{4}{3}x \\ m_1=\frac{4}{3} \end{gathered}[/tex][tex]\begin{gathered} y=-4x+3 \\ m_2=-4 \end{gathered}[/tex][tex]\begin{gathered} =m_1m_2 \\ =\frac{4}{3}\times-4 \\ m_1m_2\ne-1 \\ \text{That mean its not perpendicular } \end{gathered}[/tex]For parallel line slope are same then its not a parallel line
So line neither perpendicular or parallel.
Not everyone pays the same price for the same model of a car that the figure is the streets a normal distribution for the price paid for the particular model of a new car the meanest $24,000 and a standard deviation is $1000 user 68–95-99.7 Raw to find a percentage of buyers who paid more than $27,000
The Solution:
The correct answer is 0.15%
Given the data in the given question,
We are required to find the percentage of buyers who paid more than $27,000.
The percentage of the total buyers is 100%
The percentage of buyers that paid between $21,000 and $27,000 is given to be 99.7%
This means that the total percentage of buyers who paid less than $21,000 and the buyers who paid more than $27,000 is
[tex]100-99.7=0.3\text{ \%}[/tex]Since the distribution is a normal distribution, it follows that half of 0.3% is the percentage of buyers who paid more than $27,000.
[tex]\frac{0.3}{2}=0.15\text{ \%}[/tex]Thus, the percentage of buyers who paid more than $27,000 is 0.15%
Eliminate the y in the following system of equations. What is the result when you add the two equations? [tex]x + y = 8 \\ 5x - 3y = 24[/tex]A: 6x = 32B: 8x = 32 C: x = 0D: 8x = 48
EXPLANATION
x + y = 8 ----------------------------------------(1)
5x - 3y = 24 ------------------------------------------(2)
If we are to eliminate y in the equations, we first need to multiply through equation (1) by 3.
3x + 3y = 24 ----------------------------------------(3)
Add equation (2) and equation (3).
If we add equation(1) and equation(3) together, -3y will cancel-out 3y.
(5x + 3x) = (24 + 24)
8x = 48
Therefore, the correct option is D. 8x = 48
Differentiate. f(x) = (x3 - 3)2/3 2x f'(x) 3 x 8 х f'(x) 3 | 23-8 2x2 f'(x) 3 S x2 f'(x) 3 8
1) Let's calculate the derivative of f(x) = (x³-8) ^(2/3)
Let's start applying the power rule :
[tex]undefined[/tex]I need help answering this question, if you can thank you very much.
Answer: We have to factor out the polynomial which is:
[tex]x^2+6x-16[/tex]The factorization is as follows:
[tex]\begin{gathered} \text{ Method:} \\ \\ (x+a)(x+b)=x^2+(a+b)x+ab \\ \\ \\ ----------------------- \\ \text{ Solution:} \\ \\ x^2+6x-16 \\ \\ \text{ The unknowns }\rightarrow\begin{cases}ab={-16} \\ a+b={6}\end{cases} \\ \\ \\ \text{ The possible values are:} \\ \\ \\ a=8 \\ b=-2 \\ \\ \\ \text{ Because:} \\ \\ \\ (8)\times(-2)=-16 \\ (8)+(-2)=6 \\ \\ \\ \text{ Therefore the factored form is:} \\ \\ \\ (x+8)(x-2)=x^2+6x-16 \end{gathered}[/tex]16 - 2t = 5t +9 Can you help me solve this?
1=t
add 2t to the second side, so that it is going to be 16=7t+9
now, subtract 9 from the right side: 16-9=7t
7t=7
t=1
Of the twenty-two students in a classroom, ten are transfer students, seven are nursing students, four are AAS students and one student is undecided.If three students are chose randomly, without replacement, find the probability that all three students are nursing students.
Given that:
• There are a total number of 22 students in the classroom.
,• 10 of them are transfer students.
,• 7 are nursing students.
,• 4 are AAS students.
,• 1 student is undecided.
,• Three students are chosen randomly.
Since you need to find the probability that all three students that are chosen randomly are nursing students, you need to set up that this is:
[tex]P(A)[/tex]Where Event A is that one of the students is a nursing student.
Therefore, the probability that three of the chosen students are nursing students can be set up as:
[tex]\begin{gathered} P=P(A)\cdot P(A)\cdot P(A)=P(A)^3 \\ \\ P=P(A)^3 \end{gathered}[/tex]Knowing that the total number of students is 22 and 7 of them are nursing students, you know that:
[tex]P(A)=\frac{7}{22}[/tex]Therefore:
[tex]P=(\frac{7}{22})^3[/tex][tex]P=0.0322[/tex]Hence, the answer is:
[tex]P=0.0322[/tex]Right Triangle ABC is pictured below.Which equation gives the correct value for BC?Option 1: sin(32) = BC/8.2Option 2: cos(32) = BC/10.6Option 3: tan(58) = 8.2/BCOption 4: sin(58) = BC/10.6
Given the image, we are asked which equation gives the correct value for BC?
Explanation
From the image;
[tex]\begin{gathered} A+B+C=180 \\ 32+B+90=180 \\ B=180-90-32 \\ B=58^0 \end{gathered}[/tex]Therefore,
[tex]tan58^0=\frac{opposite}{Adjacent}=\frac{8.2}{BC}[/tex]Answer: Option three
The number of cities in a region over time is represented by the function
For this question, in order to find T(x), we need to multiply the two given functions.
[tex]T(x)=(C\cdot P)(x)[/tex][tex]T(x)=C(x)\cdot P(x)[/tex][tex]=(2.9)(1.05)^x\cdot(1.05)^{3x+5}[/tex][tex]=(2.9)(1.05)^{x+3x+5}[/tex][tex]T(x)=2.9(1.05)^{4x+5}[/tex]Therefore, the answer must be option A.
3 Drag each equation to the correct location on the table. Determine the number of solutions to each equation. Then place each equation in the box that corresponds to its number of solutions. 35 = 2+ +1 2 – 1 = 45 + 3 31 – 2 35 + 1 2x + 3 = 35 – 1 1 2x + 1 = 21 No Solutions 1 Solution 2 Solutions Reset Next All rights reserved. i NE
Then, it has just 1 solution, and it should be placed in the second column.
[tex]\begin{gathered} 2^x-1=4^x+3. \\ \text{This has no solution} \end{gathered}[/tex][tex]\begin{gathered} 3x-2=3^x+1 \\ \text{This has no solution.} \end{gathered}[/tex]Next;
[tex]\begin{gathered} \frac{1}{2}x+3=3^x-1 \\ \text{This has no solution. It should be in the first column} \end{gathered}[/tex][tex]\begin{gathered} 2x+1=2^x \\ \text{Let x=0,} \\ 2(0)+1=2^0=1 \end{gathered}[/tex]This has one solution, and it should be placed in the second column.
which function has an inverse that is also a function horizontal line test
If the graph of a function y = f(x) is such that no horizontal line intersects the graph at more than one point, then f has an inverse function.
A. The absolute value function f(x) = | x | is intersected twice by any horizontal line at y > 0. Thus this function does not have an inverse
B. The quadratic function f(x) = x^2 has a graph called parabola. If we plot any horizontal line at y>0, that line will intersect the function twice. This function has no inverse function
1. A train moves at a constant speed and travels 6 miles in 4 minutes. What is its speed in miles per minute? d/t = r time distance t d 4 mins. 6 miles
Answer: 1.5 miles / minute
Given that:
Distance travelled = 6
Time = 4 minutes
Speed = Distance / time
Speed = 6 / 4
1.5 mile / minute
The top of the hill rises 243 feet above checkpoint 2, which is -162. What is the altitude of the top of the hill?
The altitude of the top of the hill or the difference in elevation point is 406 feet.
Difference in Elevation PointThe vertical distance between two points is called the difference in elevation. The process of measuring differences in elevation is called levelling , and is a basic operation in topographical surveys.
To determine the difference in elevation between two points, determine the elevation at each point and then calculate the difference.
Point A = 243 feetPoint B = -162 feetThe difference in elevation between the two points is
Point A - Point B = 243 - (-162) = 243 + 162 = 406
The difference in the elevation point is 406 feet.
Learn more on difference in elevation point here;
https://brainly.com/question/28292925
#SPJ1
Which of the following shapes is the cross-section for a cylinder?A. SquareB. TriangleC. CircleD. Pentagon
Solution:
Concept:
The vertical cross-section of a cylinder is a rectangle, and the horizontal cross-section is a circle.
From the explanation above,
The final answer is CIRCLE
OPTION C is the right answer
y= 3(x-3)^2-12E) Find two more points on The Graph. You can choose what x-values to use. Write your points as coordinates x y
Given:
[tex]y=3(x-3)^2-12[/tex]The quadractic equation above is written in vertex form:
[tex]y=a(x-h)^2+k[/tex]Where:
(h, k) is the coordinate of the vertex of the parabola
We have
a = 3
h = 3
k = -12
Let's find the following:
A.) Identify the coefficients, a, h, and k
Comparing the equation with the vertex form, we have:
a = 3
h = 3
k = -12
B.) Identify whether the graph opens up or opens down.
If a is greater than zero, then the graph opens up
If a is less than zero, then the graph opens downwards
Here, a = 3
Since a is greater than zero, the graph opens up.
The graph of the equation opens up
C.) Find the vertex.
The coordinates of the vertex is = (h, k)
Given:
h = 3
k = -12
Therefore, the vertex is: (3, -12)
D.) Find the axis of symmetry.
The axis of symmetry is the line that passes through the vertex and the focus.
To find the axis of symmetry we have:
x = h
where h = 3
Thus, the axis of symmetry is:
x = 3
E.) Let's find two more points.
Point 1 ==> (x, y)
Let's take x = 1
Substitute 1 for x and solve for y:
[tex]\begin{gathered} y=3\mleft(x-3\mright)^2-12 \\ \\ y=3(1-3)^2-12 \\ \\ y=3(-2)^2-12 \\ \\ y=3(4)-12 \\ \\ y=12-12 \\ \\ y=0 \end{gathered}[/tex]When x is 1, y is 0.
Therefore, we have the point:
(x, y) ==> (1, 0)
Point 2:
Let's take x = 2
Substitute 2 for x and solve for y:
[tex]\begin{gathered} y=3\mleft(x-3\mright)^2-12 \\ \\ y=3(2-3)^2-12 \\ \\ y=3(-1)^2-12 \\ \\ y=3(1)-12 \\ \\ y=3-12 \\ \\ y=-9 \end{gathered}[/tex]When x is 2, y is -9.
Therefore, we have the points:
(x, y) ==> (2, -9)
ANSWER:
A.) a = 3
h = 3
k = -12
B.) The graph opens up
C.) (3, -12)
D.) x= 3
E.) (1, 0), (2, -9)
What kind of transformation converts the graph of f(x)=(5x+6)^2 into the graph of g(x)=-(5x+6)^2
In order to get from
[tex]f(x)=(5x+6)^2[/tex]To
[tex]f(x)=-(5x+6)^2[/tex]You have to reflect across the x-axis.
Remember that the x-axis is the line with equation
[tex]y=0[/tex]Answer: Option A
Please help me i have been struggling for two days
we have the equation
[tex]\log _5(x+1)-\log _2(x-2)=1[/tex]using a graphing tool
see the attached figure
The solution is x=2.90write a linear equation to: slope=2 and goes through point (4, 11)
When you have to write a linear equation and you have the slope (m) and a point (4, 11) you:
1. Use the standard form of a linear equation:
[tex]y=mx+b[/tex]You know the value of:
m= 2
y= 11
x= 4
You make a substitution:
[tex]11=(2)(4)+b[/tex]You can find then the value of b:
[tex]11=8+b[/tex][tex]b=11-8=3[/tex]Then you have now the data to form the final linear equation:
[tex]y=2x+3[/tex]In certain deep parts of oceans, the pressure of sea water, P, in pounds per square foot, at a depth of dfeet below the surface, is given by the following equation:4dP = 14 +11If a scientific team uses special equipment to measures the pressure under water and finds it to be 318pounds per square foot, at what depth is the team making their measurements?Answer: The team is measuring atfeet below the surface.
1) Given this equation for Pressure, we need to plug into p the pressure of 318 lbs/ft² to get the depth according to the model described by this equation.
2) So, we can write out:
[tex]\begin{gathered} P=14+\frac{4d}{11} \\ 318=14+\frac{4d}{11} \\ 11\times318=11\times(14+\frac{4d}{11}) \\ 3498=154+4d \\ 3498-154=4d \\ 3344=4d \\ 4d=3344 \\ \frac{4d}{4}=\frac{3344}{4} \\ d=836ft \end{gathered}[/tex]Note that we multiplied both sides by 11 to get rid of the fraction.
Thus this is the depth below the surface that generates such pressure