The coordinates of the point (-7,-3) after a 90 degree clockwise rotation about the origin are (-3,-7).
To rotate a point 90 degrees clockwise about the origin, we need to swap its x and y coordinates and negate the new x coordinate.
So, starting with point (-7,-3):
Swap the x and y coordinates to get (3,-7)
Negate the new x coordinate to get (-3,-7)
Therefore, the coordinates of the point (-7,-3) after a 90 degree clockwise rotation about the origin are (-3,-7).
In mathematics, coordinates are used to specify the position of a point or an object in a particular space. The number of coordinates needed depends on the dimension of the space in which the point or object exists.
In two-dimensional space (also called the Cartesian plane), a point is located by two coordinates, usually denoted as (x, y), where x represents the horizontal distance from a fixed reference point called the origin, and y represents the vertical distance from the origin.
To know more about coordinates here
https://brainly.com/question/17206319
#SPJ4
A number of people took part in a survey. Each of them was asked whether or not he or she is taller than the average height of all the participants of the survey. The results showed that everyone answered that they are taller than the average height. Prove that at least one participant is lying.
To prove that at least one participant is lying when they say they are taller than the average height of all participants in the survey, we can follow these steps:
1. Calculate the average height of all participants in the survey. To do this, sum the heights of all participants and divide by the total number of participants.
2. Compare each participant's height to the calculated average height.
3. If everyone answered that they are taller than the average height, it means that they all believe their height is greater than the calculated average height.
4. However, since the average height is a calculated value based on the sum of all heights divided by the number of participants, it is impossible for all participants to be taller than the average height. The average height must always include some participants who are shorter and some who are taller.
5. Therefore, at least one participant must be lying when they claim to be taller than the average height of all participants in the survey.
Learn more about average height:
https://brainly.com/question/2263508
#SPJ11
Design a research topic relating to a service organization and outline in detail: the type of data you which to collect (2 & 2 marks) ii. explain how would you summarize the data using descriptive statistics (3 marks)
The research topic is :
Evaluating customer satisfaction and service quality in a local restaurant.
i. Type of data to collect:
1. Quantitative data: Collect customer satisfaction ratings on a scale of 1 to 5 for various aspects of the restaurant, such as food quality, service speed, and ambiance.
2. Qualitative data: Gather customer feedback through open-ended questions or interviews to better understand their experiences and any areas for improvement.
ii. Summarizing data using descriptive statistics:
1. Calculate measures of central tendency (mean, median, and mode) for the quantitative satisfaction ratings to understand the overall satisfaction level of customers.
2. Determine measures of dispersion (range, variance, and standard deviation) to analyze the spread of the satisfaction ratings and identify any inconsistencies in service quality.
3. For qualitative data, use content analysis to categorize and quantify common themes or patterns in customer feedback, which can help identify areas for improvement and customer preferences.
This research design will allow you to gather a comprehensive understanding of customer satisfaction and service quality in the restaurant, enabling the organization to make informed decisions for improvement.
To learn more about research visit : https://brainly.com/question/25257437
#SPJ11
Given the system of equations: 3x − 3y = 6 2x + 6y = 12 Solve for (x, y) using elimination.a. (−6, 0) b. (3, 1)c. (4, 2)d. (8, 6)
The solution of the system of equations 3x − 3y = 6 and 2x + 6y = 12 is x = 3 and y = 1, hence option is b is correct.
We must eliminate one of the variables by adding or subtracting the two equations in order to solve for (x, y) using elimination. Let us multiply the equation by 2 and 3 respectively so that the equations becomes,
6x - 6y = 12
6x + 18y = 36
Now, using the equations,
24y = 24
So, y = 1. Substituting this back into either of the original equations gives:
3x - 3(1) = 6
3x = 9
So, x = 3. Therefore, the answer of equation is (b) (3, 1).
To know more about elimination methods, visit,
https://brainly.com/question/25427192
#SPJ4
which is better? A 12.5 oz bag of doritos for 3.79 or a bag oz bag for 1.00
Answer: might be the 2nd one
Step-by-step explanation:
I NEED HELP ASAP!!! Please help me!!!
Yes, Step 1 is correct.
No, Step 2 is not correct.
We have to given that;
Simone wants to create a graph of the function g (x) = 1 /(18e¹⁰⁺⁷ˣ) as a transformation of the graph of f (x) = eˣ.
Now, We can simplify as
g (x) = 1 /(18e¹⁰⁺⁷ˣ)
g (x) = (18e¹⁰⁺⁷ˣ) ⁻¹
g (x) = 1/18 e⁻¹⁰⁻⁷ˣ
Hence, We get;
To solve the expression Step 2 is incorrect.
Learn more about the function visit:
https://brainly.com/question/11624077
#SPJ1
Identify the form of the following quadratic
Answer:
Standard Form
ax^2 +bx + c = 0
Notice you can already solve for the y-intercept which is (0,4) or y=4
90° 20" - 78° 45' 30"
Quick pls
Simplify: 5m (5m^4 + 5m^2 -4)
A soccer player has a large cylindrical water cooler that measures 2.5 feet in diameter and is 5 feet tall. If there are approximately 7.48 gallons of water in a cubic foot, how many gallons of water are in the water cooler when it is completely full? Use π = 3.14 and round to the nearest hundredth.
98.13 gallons
733.98 gallons
24.53 gallons
183.49 gallons
The volume in gallons of the water cooler is 183.49 gallons
How many gallons of water are in the water cooler when it is completely full?We know that the volume of a cylinder of radius R and height H is.
V = pi*R²*H
Where pi = 3.14
Here we know that the diameter is 2.5 ft, then the radius is:
R = 2.5ft/2 = 1.25ft
And the height is 5ft
So the volume is:
V = 3.14*(1.25ft)²*5ft = 24.53125 ft³
And we know that
1ft³ = 7.48 gallons
Then we can do a change of units to get:
24.53125*7.48 gal = 183.49 gal
That is the correct option.
Learn more about volume at:
https://brainly.com/question/1972490
#SPJ1
H(n)=−10+12nh, left parenthesis, n, right parenthesis, equals, minus, 10, plus, 12, n
Complete the recursive formula of
h
(
n
)
h(n)h, left parenthesis, n, right parenthesis.
h
(
1
)
=
h(1)=h, left parenthesis, 1, right parenthesis, equals
h
(
n
)
=
h
(
n
−
1
)
+
h(n)=h(n−1)+h, left parenthesis, n, right parenthesis, equals, h, left parenthesis, n, minus, 1, right parenthesis, plus
So, the recursive formula for H(n) is:
H(1) = 2
H(n) = H(n-1) + 12
A recursive formula is one that defines each term in a series by reference to the phrase(s) that came before it. The first term, or firsts, in the series must always be stated in recursive formulae. A recursive algorithm is one that uses "smaller (or simpler)" input values to call itself and gets the result for the current input by performing straightforward operations on the value that was returned for the smaller (or simpler) input.
And the Fibonacci sequence is the most well-known recursive formula. The following is the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21,… Keep in mind that each number in the series is the product of the two numbers before it. For instance, the total of the two terms before it, 5 and 8, is 13.
Recursive formula for H(n), we need to find the first term and the common difference.
H(1) = -10 + 12(1) = 2
H(2) = -10 + 12(2) = 14
The common difference between H(1) and H(2) is 14 - 2 = 12.
Learn more about recursive formula visit: brainly.com/question/29224065
#SPJ4
Correct Question:
H(n) = -10 + 12n
Complete the recursive formula of h(n).
h(1) =
h(n) = h(n-1)+
which of the following describes variance? group of answer choices it is the difference between the maximum value and the minimum value in the data set it is the difference between the first and third quartiles of a data set it is the average of the squared deviations of the observations from the mean it is the average of the greatest and least values in the data set
Variance is described as the average of the squared deviations of the observations from the mean. It is a measure of the spread or dispersion of a dataset, indicating how much the individual data points deviate from the mean value.
Variance is the anticipated squared variation of a random variable from its population mean or sample mean in probability theory and statistics. Variance is a measure of dispersion, or how far apart from the mean a group of data are from one another. Descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling are just a few of the concepts that make use of variance. In the sciences, where statistical data analysis is widespread, variance is a crucial tool.
More on variance: https://brainly.com/question/14116780
#SPJ11
an extrinsic reward is enjoying what one does for its own sake and an intrinsic reward is an inducement such as money, grades, or recognition.True or False
False. An intrinsic reward is enjoying what one does for its own sake, while an extrinsic reward is an inducement such as money, grades, or recognition.
Intrinsic and extrinsic rewards are two different types of motivational factors that can influence behavior.
Intrinsic rewards are those that come from within oneself, such as the enjoyment of doing a task or the sense of accomplishment that comes from completing it. These rewards are inherently satisfying and enjoyable, and they motivate people to continue doing the task or activity because of the pleasure they derive from it. For example, a person may engage in a hobby like playing music, painting, or playing a sport simply because they find it enjoyable and rewarding in itself.
On the other hand, extrinsic rewards are external motivators that are used to induce or encourage behavior. These rewards are typically tangible, such as money, grades, or recognition, and are given as a result of completing a task or activity. They are designed to incentivize individuals to perform specific actions, often with the aim of achieving a specific goal or outcome. For example, a person may work hard at their job in order to earn a promotion or raise, or may study hard in school to earn good grades.
Intrinsic and extrinsic rewards can both be effective motivators, but they operate in different ways. Intrinsic rewards are powerful because they come from within the individual and are based on personal enjoyment and satisfaction. Extrinsic rewards, on the other hand, are often seen as less powerful and may only work in the short term, because they are not inherently satisfying and may not motivate people to continue performing the task or activity once the reward is removed. However, when used effectively, extrinsic rewards can be a useful tool for motivating people and achieving specific outcomes.
To learn more about motivational factors visit: https://brainly.com/question/25492018
#SPJ11
If you go on both rides, can you be confident that your wait time for Speed Slide will be longer than your wait time for Wave Machine? Yes. Every Speed Slide wait time is more than every Wave Machine wait time. No. There is a lot of overlap in the two data sets.
Answer:
No
Step-by-step explanation:
Hope this helps :)
Find the exact value.
- sin 150°
- cos 150°
The value of sin 150° is -1/2. and cos 150° is √3/2 (note that it is negative because it is in the second quadrant).
We can use the unit circle to find the exact values of sin 150° and cos 150°.
First, let's consider sin 150°. Since 150° is in the second quadrant, we know that sin 150° is negative. Also, we know that the sine function is periodic with a period of 360°, which means that sin 150° is equal to sin (150° - 360°) = sin (-210°). Now we can use the reference angle of 30° (since 210° is 30° past the 180° mark in the second quadrant) to find the exact value of sin 150°:
sin 150° = sin (-210°) = -sin 30° = -1/2
Therefore, sin 150° is -1/2.
Next, let's consider cos 150°. Since 150° is in the second quadrant, we know that cos 150° is negative. Also, we know that the cosine function is periodic with a period of 360°, which means that cos 150° is equal to cos (150° - 360°) = cos (-210°). Now we can use the reference angle of 30° to find the exact value of cos 150°:
cos 150° = cos (-210°) = cos 30° = √3/2
Therefore, cos 150° is √3/2 (note that it is negative because it is in the second quadrant).
To know more about value, here
https://brainly.com/question/843074
#SPJ4
Find y' when X4 y - 5xy? = siny +11.
The solution for y' is:
y' = (cosy - 4x^3 y + 5xy'') / (x^4 - 5)
To find y', we will differentiate both sides of the equation with respect to x using the product rule:
First, we differentiate the left side:
d/dx (x^4 y - 5xy') = d/dx (siny + 11)
Using the product rule, we get:
4x^3 y + x^4 y' - 5y' - 5xy'' = cosy * dy/dx
Next, we can simplify the right side since the derivative of a constant is zero:
4x^3 y + x^4 y' - 5y' - 5xy'' = cosy
Finally, we solve for y':
x^4 y' - 5y' - 5xy'' = cosy - 4x^3 y
y'(x^4 - 5) = cosy - 4x^3 y + 5xy''
y' = (cosy - 4x^3 y + 5xy'') / (x^4 - 5)
Therefore, the solution for y' is:
y' = (cosy - 4x^3 y + 5xy'') / (x^4 - 5)
To learn more about Using visit:
https://brainly.com/question/8723368
#SPJ11
plsssssssssss help me
Answer: 40
Step-by-step explanation:
38+ 52=90
230-90=40
A college needs to transport 135 fans from the an area parking lot to the baseball game if each bus holds 27 people how many buses should college plan to use
Answer:5
Step-by-step explanation:
135/27 = 5
5 buses of 27 people will equal to 135 students being transported
The students in homeroom 232 are exploring equivalencies when saddened or minuend is missing.
How might we solve for this problem? Can you explain what would make this equation true?
To solve a problem involving missing addends or minuends in homeroom 232, students can use the concept of equivalencies to create an equation.
Let's say we have the equation A + B = C, where A is the missing addend or minuend, B is a known value, and C is the given sum or difference. To make this equation true, students can use algebraic manipulation to find the missing value (A). For example, if the equation is A + B = C, then A = C - B. By substituting the known values for B and C, students can determine the missing addend or minuend (A) and establish equivalencies between both sides of the equation. This will help them understand the relationships among the numbers and effectively solve the problem.
Learn more about equations here: brainly.com/question/15707224
#SPJ11
1000 independent rolls of a fair die will be made. Given that the number 4 appears exactly 128 times and the number 2 appears exactly 160 times, find the probability that the number 1 will appear less than 123 times
The probability that the number 1 appears less than 123 times, given that the number 4 appears exactly 128 times and the number 2 appears exactly 160 times, is approximately 0.9989
To solve this problem, we can use the binomial distribution with n=1000 and [tex]p=\frac{1}{6}[/tex] for each roll of the fair die.
Let X be the number of times the number 1 appears in 1000 rolls. Then X follows a binomial distribution with parameters n=1000 and [tex]p=\frac{1}{6}[/tex].
We want to find P(X < 123), given that the number 4 appears exactly 128 times and the number 2 appears exactly 160 times.
First, we can use the fact that the total number of rolls is 1000 to find the number of remaining rolls:
Remaining rolls = 1000 - (128 + 160) = 712
Next, we can find the number of rolls that are not 1:
Non-1 rolls = 1000 - X
We know that the number 2 appears exactly 160 times, which means that the number of non-2 rolls is:
Non-2 rolls = 1000 - 160 = 840
Similarly, the number of non-4 rolls is:
Non-4 rolls = 1000 - 128 = 872
Since all rolls are independent, we can find the probability that the number 1 appears less than 123 times by using the binomial distribution with parameters n=712 and [tex]p=\frac{5}{6}[/tex] (the probability that a roll is not 1). Thus, we have:
P(X < 123 | X=128, 2=160) = P(Non-1 rolls < 589)
= P(Binomial(712,[tex]\frac{5}{6}[/tex] ) < 589)
=0.9989
Therefore, the probability that the number 1 appears less than 123 times, given that the number 4 appears exactly 128 times and the number 2 appears exactly 160 times, is approximately 0.9989.
To know more about "Probability" refer here:
https://brainly.com/question/30034780#
#SPJ11
Select the correct answer. Which logarithmic equation correctly rewrites this exponential equation? 8x = 64 A. log8 64 = x B. log8 x = 64 C. log64 8 = x D. logx 64 = 8 PLEASE HELP
This equation 8^x = 64 rewritten in logarithmic form is x = log₈(64)
What is this equation rewritten in logarithmic form?From the question, we have the following parameters that can be used in our computation:
8^x = 64
Take the logarithm of both sides
So, we have
xlog(8) = log(64)
Divide both sides by log(8)
So, we have
x = log₈(64)
Hence, the equation is x = log₈(64)
Read more about logarithmic form at
https://brainly.com/question/28041634
#SPJ1
if A is a square matrix such that some row of A^2 is a linear combination of the other rows of A^2, show that some column of A^3 is a linear combination of the other columns of A^3.
Let A be a square matrix such that some row of A^2 is a linear combination of the other rows of A^2. We need to show that some column of A^3 is a linear combination of the other columns of A^3.
Let’s assume that the ith row of A^2 is a linear combination of the other rows of A^2. Then there exist scalars c1, c2, …, cn such that:
(ai1)^2 + (ai2)^2 + … + (ain)^2 = c1(a11)^2 + c2(a12)^2 + … + cn(a1n)^2 (ai1)^2 + (ai2)^2 + … + (ain)^2 = c1(a21)^2 + c2(a22)^2 + … + cn(a2n)^2 … (ai1)^2 + (ai2)^2 + … + (ain)^2 = c1(an1)^2 + c2(an2)^2 + … + cn(ann)^2
Multiplying each equation by ai1, ai2, …, ain respectively and adding them up gives:
(ai1)(ai1)^2 + (ai2)(ai2)^2 + … + (ain)(ain)^2 = c1(ai1)(a11)^2 + c2(ai2)(a12)^2 + … + cn(ain)(a1n)^2 (ai1)(ai1)^2 + (ai2)(ai2)^2 + … + (ain)(ain)^2 = c1(ai1)(a21)^2 + c2(ai2)(a22)^2 + … + cn(ain)(a2n)^2 … (ai1)(ai1)^2 + (ai2)(ai2)^2 + … + (ain)(ain)^2 = c1(ai1)(an1)^2 + c2(ai22)(an22) ^ 22+ …+cn(ain)(ann) ^ 22
This can be written as:
A^3 * X = B * A^3
where X is the column vector [a11^3, a12^3, …, ann3]T and B is the matrix with entries bi,j = ci * aj^3.
Since the ith row of A^3 is just the transpose of the ith column of A^3, we have shown that some column of A^3 is a linear combination of the other columns of A^3 if some row of A^3 is a linear combination of the other rows of A^3.
#SPJ11
Learn more about square matrix and other types of matrices: https://brainly.com/question/29861416.
12. Housing According to the Census Bureau, the distribution by ethnic background of the New York City population in a recent year was Hispanic: 28% Black: 24% White: 35% Asian: 12% Others: 1% The manager of a large housing complex in the city wonders whether the distribution by race of the complex's residents is consistent with the population distribution. To find out, she records data from a random sample of sochresidents. The table below displays the sample data." Race: Asian Hispanic 212 Black White 202 270 Other 22 Count: 94 Are these data significantly different from the city's distribution by race? Carry out an appropriate test at the a 0.05 level to support your answer. If you find a significant result, perform a follow-up analysis.
we can conclude that there is a significant difference between the observed and expected frequencies of race categories.
To determine if the housing complex's distribution of residents by race is significantly different from the population distribution, we can perform a chi-square goodness-of-fit test.
First, we need to calculate the expected frequencies for each race category based on the population distribution. The expected frequencies can be calculated as follows:
Expected frequency for Hispanics = 0.28 x 94 = 26.32
Expected frequency for Blacks = 0.24 x 94 = 22.56
Expected frequency for Whites = 0.35 x 94 = 32.9
Expected frequency for Asians = 0.12 x 94 = 11.28
Expected frequency for Others = 0.01 x 94 = 0.94
We can then calculate the chi-square statistic as follows:
χ2 = Σ (O - E)2 / E
where O is the observed frequency and E is the expected frequency for each race category.
Using the data from the table, we can calculate the chi-square statistic as follows:
χ2 = [(212-11.28)2/11.28] + [(202-26.32)2/26.32] + [(270-32.9)2/32.9] + [(22-22.56)2/22.56] + [(0-0.94)2/0.94] = 52.06
We have 5 categories and 1 parameter estimated (the expected frequencies), so the degrees of freedom for the test are df = 5 - 1 = 4.
Using a chi-square distribution table with 4 degrees of freedom and a significance level of 0.05, the critical value is 9.49.
Since our calculated chi-square statistic (52.06) is greater than the critical value (9.49), we can reject the null hypothesis that the housing complex's distribution of residents by race is consistent with the population distribution. Therefore, we can conclude that there is a significant difference between the observed and expected frequencies of race categories.
For the follow-up analysis, we can perform post-hoc tests to determine which race categories have significantly different distributions. One way to do this is to perform chi-square tests of independence between the housing complex's distribution and the population distribution for each race category. We can also calculate the standardized residuals for each race category to determine which categories have the largest contributions to the overall chi-square statistic.
Visit to know more about Frequency:-
brainly.com/question/254161
#SPJ11
5, 6, 10
A. Determine whether the side lengths form a triangle. (explain your reasoning)
B. If it is a triangle, determine whether it is a right, acute, or obtuse triangle. (show your work)
The side lengths do indeed form a triangle
The type of triangle is an obtuse triangle.
How to find the triangle ?In order to ascertain if given side lengths culminate in a triangle, recourse may be taken to the triangle inequality theorem. The said theorem stipulates, as a prerequisite for determining any given shape as a triangle, that it is contingent upon the addition of two sides being greater than the length of the third one.
The sums of two sides are greater than the third for all the combinations so this is indeed a triangle.
We can use the Pythagorean theorem to see the type of triangle.
c ² = 10 x 10 = 100
b ² + a ² = 5² + 6² = 61
c² > b ² + a ²
So this is an obtuse triangle.
Find out more on obtuse triangles at https://brainly.com/question/3250447
#SPJ1
In fluid dynamics, exact solutions to flows are rare. One such rare example is the 2D Kovasnay Flow. The solution is given by u = 1 - el cos (2y) and v = Ae^Ae Sin (2xy)/2x
Here,A is a constant with an exact form, but for our purposes is not necessary to know. The velocity field V is given by V = (u, v, 0) i.e. u is the magnitude of the velocity in the i-direction, v is the magnitude in the j direction and the k- direction has a 0 component. u 1. Find V.V 2. Find V x V
1. To find V.V, we simply need to take the dot product of the velocity vector V with itself.
V.V = (u, v, 0) . (u, v, 0)
= u^2 + v^2 + 0
= (1 - el cos(2y))^2 + (Ae^Ae Sin(2xy)/2x)^2
= 1 - 2el cos(2y) + e^2l^2 cos^2(2y) + Ae^2Ae^2 Sin^2(2xy)/(4x^2)
2. To find V x V, we need to take the cross product of the velocity vector V with itself.
V x V = (u, v, 0) x (u, v, 0)
= (0, 0, uv - vu)
= (0, 0, uv - vu)
= (0, 0, [1 - el cos(2y)] [Ae^Ae Sin(2xy)/2x] - [Ae^Ae Sin(2xy)/2x] [1 - el cos(2y)])
= (0, 0, -Ae^Ae [1 - el cos(2y)] [Sin(2xy)/2x])
Learn more about velocity vector V :
https://brainly.com/question/14193285
#SPJ11
23.15. Are there more ways to split 12 people up into 4 groups of 3 each, or into 3 groups of 4 each?
Answer:
3 groups of 4 each
Step-by-step explanation:
To determine whether there are more ways to split 12 people up into 4 groups of 3 each or into 3 groups of 4 each, we'll use the combinations formula:
C(n, k) = n! / (k!(n-k)!)
First, let's calculate the combinations for 4 groups of 3 people each:
C(12, 3) = 12! / (3!(12-3)!) = 12! / (3!9!) = 220
Now, we need to divide these 12 people into 4 groups, so we'll use the multinomial coefficient formula:
(12!)/(3!3!3!3!) = 34,650
Next, let's calculate the combinations for 3 groups of 4 people each:
C(12, 4) = 12! / (4!(12-4)!) = 12! / (4!8!) = 495
Now, we need to divide these 12 people into 3 groups, so we'll use the multinomial coefficient formula again:
(12!)/(4!4!4!) = 34,650
Comparing the results, we can see that there are equal ways (34,650 ways) to split 12 people up into 4 groups of 3 each or into 3 groups of 4 each.
learn more about "permutation":-https://brainly.com/question/1216161
#SPJ11
2y=7(y−2)+4
y =
4x=6−2(2−x)
x =
Answer:
2y92+83(n83-5)+12
Step-by-step explanation:
well if you carry the 4 and move the decimal over 3 places and divide by a hamsterball & justin biebers nipple, you get the answer
Jim builds a robot that travels no more than 8 feet per minute. Graph the inequality showing the relationship between the distance traveled and the time elapsed. Is it possible for the robot to travel 18 feet in 2.5 minutes
Answer: yes
Step-by-step explanation:
Example 1. What are the dimensions of an aluminum can that holds 40 in of juice and that uses the least material? Assume that the can is cylindrical, and is capped on both ends.
Follow the work in example 1 to find an equation (in terms of the radius r) for the total material used in a can having a volume of 10 cubic inches
The juice can will have a minimum material used if the radius of the cylinder is 1.8533 in and the height is 3.7069 in.
Let the radius of the cylindrical can be r in
We are given that the can holds 40 in³ of juice
Hence from the formula of cylinder, we have
πr² X height = 40
or, height = 40/πr²
The total surface area of a cylinder is given by
2π X radius X height + 2π X (radius)²
= 2πr X 40/πr² + 2πr²
= 80/r + 2πr²
Now we need to minimize the above equation
Hence differentiating with respect to r and equating to 0 we get
-80/r² + 4πr = 0
or, -20/r² + πr = 0
or, -20 + πr³ = 0
or, r³ = 20/π
or, r = ∛(20/π)
or, r = 1.8533
Now differentiating again with respect to r we get
160/r³ + 4π
Putting r = ∛(20/π) gives us
8π + 4π = 12π
Since the above result is positive, r = 1.8533 in is the value of the radius for which the surface area is minimized
Hence height is 3.7069 in
Hence the juice can will have a minimum material used if the radius of the cylinder is 1.8533 in and height is 3.7069 in.
To learn more about Maximisation visit
https://brainly.com/question/30208982
#SPJ4
Correct Question
(Image Attached)
Current Attempt in Progress A population proportion is 0.61. Suppose a random sample of 656 items is sampled randomly from this population Appendix A Statistical Tables a. What is the probability that the sample proportion is greater than 0.643 b. What is the probability that the sample proportion is between 0.60 and 0.647 c Whiat is the probability that the sample proportion is greater than 0.607 d. What is the probability that the sample proportion is between 0.57 and 0.597 e. What is the probability that the sample proportion is less than 0.517 (Round values of 2 to 2 decimal places, 4.9. 15.25 and final answers to 4 decimal places, eg. 0.2513) b. (Round values of z to 2 decimal places, eg. 15.25 and final answers to 4 decimal places, eg. 0.2513) a. b. C d. Attempts:0 of 3 used suht Arrower
We first calculate the z-score:
z = (0.517 - 0.61) / sqrt((0.61 * (1 - 0
To solve these probability questions, we need to use the central limit theorem, which states that if we have a large enough sample size, the sampling distribution of the sample proportion will be approximately normal, regardless of the population distribution.
For a sample of size n, the mean of the sample proportion (p) is equal to the population proportion (p), and the standard deviation of the sample proportion (σp) is equal to:
σp = sqrt((p(1-p))/n)
Using this information, we can standardize the sample proportion using z-score:
z = (p - p) / σp
Then, we can use the standard normal distribution table (such as Appendix A Statistical Tables) to find the probabilities.
a) What is the probability that the sample proportion is greater than 0.643?
We first calculate the z-score:
z = (0.643 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = 3.17
Using the standard normal distribution table, the probability of getting a z-score greater than 3.17 is approximately 0.0008.
Therefore, the probability that the sample proportion is greater than 0.643 is 0.0008.
b) What is the probability that the sample proportion is between 0.60 and 0.647?
We need to calculate the z-scores for both values:
z1 = (0.60 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = -1.23
z2 = (0.647 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = 1.79
Using the standard normal distribution table, the probability of getting a z-score between -1.23 and 1.79 is approximately 0.8438.
Therefore, the probability that the sample proportion is between 0.60 and 0.647 is 0.8438.
c) What is the probability that the sample proportion is greater than 0.607?
We first calculate the z-score:
z = (0.607 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = -0.73
Using the standard normal distribution table, the probability of getting a z-score greater than -0.73 is approximately 0.7665.
Therefore, the probability that the sample proportion is greater than 0.607 is 0.7665.
d) What is the probability that the sample proportion is between 0.57 and 0.597?
We need to calculate the z-scores for both values:
z1 = (0.57 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = -4.13
z2 = (0.597 - 0.61) / sqrt((0.61 * (1 - 0.61)) / 656) = -1.08
Using the standard normal distribution table, the probability of getting a z-score between -4.13 and -1.08 is approximately 0.0361.
Therefore, the probability that the sample proportion is between 0.57 and 0.597 is 0.0361.
e) What is the probability that the sample proportion is less than 0.517?
We first calculate the z-score:
z = (0.517 - 0.61) / sqrt((0.61 * (1 - 0
To learn more about proportion visit:
https://brainly.com/question/29474065
#SPJ11
Quasilinearization Method
Q9-) Define the maximal solutions and minimal solutions of the
first order IVP.
The Quasilinearization Method is defined as a numerical method used to approximate the solutions of nonlinear differential equations. In the context of first-order initial value problems (IVPs), a maximal solution is the largest possible solution that exists for the given initial value, while a minimal solution is the smallest possible solution that exists for the given initial value.
In other words, a maximal solution is a solution that extends as far as possible beyond the given initial value without encountering any singularities or breaking down, while a minimal solution is a solution that is defined only on a minimal interval around the initial value, beyond which it cannot be extended without encountering a singularity or breaking down.
It is worth noting that not all first-order IVPs have both maximal and minimal solutions, as some may have either no solution, a unique solution, or multiple solutions that overlap or intersect.
However, if a maximal solution and a minimal solution do exist for a given IVP, they are guaranteed to be unique and continuous.
In summary, the Quasilinearization Method can be used to approximate both the maximal and minimal solutions of a first-order IVP, which represent the largest and smallest possible solutions that exist for the given initial value.
Learn more about IVPs:
https://brainly.com/question/30153142
#SPJ11