What is the area in square feet ( of the rectangle) of 4 3/4 feet and 6 4/5 feet

Answers

Answer 1

Recall the area of a rectangle is determined by the formula

[tex]\begin{gathered} A_{\text{rectangle}}=lw \\ \text{where} \\ l\text{ and }w\text{ are the dimensions of the rectangle} \end{gathered}[/tex]

Given the following

w = 4 3/4 ft

l = 6 4/5 ft

Convert the following given into improper fraction first

[tex]\begin{gathered} w=4\frac{3}{4}\text{ ft}\Longrightarrow w=\frac{19}{4}\text{ ft} \\ l=6\frac{4}{5}\text{ ft }\Longrightarrow l=\frac{34}{5}\text{ ft} \end{gathered}[/tex]

Next, substitute those values to the given formula for solving the area of the rectangle

[tex]\begin{gathered} A=lw \\ A=\frac{34}{5}\text{ ft}\cdot\frac{19}{4}\text{ft} \\ A=\frac{646}{20}\text{ ft}^2 \\ \text{Convert the final answer back into mixed fractions} \\ A=\frac{646}{20}\text{ ft}^2\Longrightarrow A=32\frac{3}{10}\text{ ft}^2 \\ \\ \text{Therefore, the area of the rectangle is} \\ 32\frac{3}{10}\text{ ft}^2 \end{gathered}[/tex]


Related Questions

find the minimum value of the function f(x)=2x2-22x+68 to the nearest hundredth

Answers

Minimum value of the function

[tex]f(x)=2x^2-22x+68[/tex]

To calculate the minimum value we will use the derivative.

[tex]\begin{gathered} f^{\prime}(x)=4x-22 \\ 4x-22=0 \\ 4x=22 \\ x=\frac{22}{4} \\ x=5.5 \end{gathered}[/tex]

The answer would be 5.5


9 to the power of -3 as a fraction or number without exponents (simplified fractions).

Answers

Answer:

1/729

Step-by-step explanation:

A number raised to a negative exponent is the same as 1 divided by the number raised the the exponent

9⁻³

1/9³

1/729

The midpoint of AB is M(4,1). If the coordinates of A are (2,8), what are thecoordinates of B?

Answers

[tex]\begin{gathered} \text{mid point = (}\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\text{)} \\ (4,1)\text{ = (}\frac{2+x_2}{2},\frac{8+y_2}{2}\text{)} \\ \frac{2+x_2}{2}=4 \\ 2+x_2=8 \\ x_2=8-2 \\ x_2=6 \\ \\ \frac{8+y_2}{2}=1 \\ 8+y_2=2 \\ y_2=2-8 \\ y_2=-6 \\ B=(6,-6) \end{gathered}[/tex]

Here is a system of equations.y=-3x+3y=-x-1Graph the system. Then write its solution. Note that you can also answer "No solution" or "Infinitely many solutions.-6

Answers

From the given system, we can observe that the y intercepts of the equations are 3 and -1 respectively.

Also we can find the x intercepts by replacing y for 0 and solving for x:

[tex]\begin{gathered} 0=-3x+3 \\ -3=-3x \\ x=\frac{-3}{-3} \\ x=1 \end{gathered}[/tex][tex]\begin{gathered} 0=-x-1 \\ 1=-x \\ x=-1 \end{gathered}[/tex]

It means that the x intercepts of the lines are 1 and -1 respectively.

Using these points we can graph both lines, this way:

According to this graph, the intersection of these lines is at (2, -3). This represent the solution of the system, therefore, the solution of the system is x=2 and y=-3.

A faraway planet is populated by creatures called Jolos. All Jolos are either green or purple and either one-headed or two-headed. Balan, who lives on this planet, does a survey and finds that her colony of 500 contains 100 green, one-headed Jolos; 125 purple, two-headed Jolos; and 270 one headed-jolos.How many green Jolos are there in Balan's colony?A. 105B. 170C. 205D. 230

Answers

According to the table, there are 270 one-headed in total, and there are 500 Jolos, we just have to subtract to find the total of two-headed Jolos

[tex]500-270=230[/tex]

There are 230 two-headed Jolos.

Now, we subtract the total of two-headed Jolos and the two-headed purple Jolos to find the total green.

[tex]230-125=105[/tex]

There are 105 two-headed green Jolos.

At last, we have to sum the number of one-headed green Jolos and the two-headed green Jolos,

[tex]100+105=205[/tex]Hence, there are 205 green Jolos in total.

Write a cosine function that has a midline of 4, an amplitude of 3 and a period of 8/5

Answers

A cosine function has the form

[tex]y=A\cdot\cos (Bx+C)+D[/tex]

Where A is the amplitude, B is 2pi/T, and C is null in this case because the phase is not being specified, and D is the vertical shift (midline).

Using all the given information, we have

[tex]y=3\cdot\cos (\frac{2\pi}{T}x)+4[/tex]

Then,

[tex]y=3\cdot\cos (\frac{2\pi}{\frac{8}{5}}x)+4=3\cdot\cos (\frac{10\pi}{8}x)+4=3\cdot\cos (\frac{5\pi}{4}x)+4[/tex]

Hence, the function is

[tex]y=3\cos (\frac{5\pi}{4}x)+4[/tex]

Round 7488 to the nearest thousand

Answers

The thousand place value is the 4th digit to the left of the decimal point. This means that the digit is 7.

If the first digit after 7 is greater than or equal to 5, 7 would increase by 1. If it is less than 5, 7 remains the same. Since 4 is less than 5, 7 remains. The rest digits turns to 0. Thus, the answer is

7000

According to the theory of the color yellow + red = orange. If Luisa has x liters of yellow paint and/ 4 liters of red paint. How many liters of orange paint will he get Louise? And if I had 4 liters of yellow paint, could I get exact 5 liters of paint orange?

Answers

Yellow + red = Orange

Yellow paint , x liters

Red paint , 4 liters

a) Because addition applies , adding x liters of Yellow + 4 liters of red and the result is x + 4 liters of orange

b) for second question apply equation

4 • yellow + Red •N = 5

then find N

its possible to obtain 5 liters of paint orange with

2 liters of yellow, 2 liters of red, and adding

0.5 liters of yellow, 0.5 liters of red.

Help on math question precalculus ChoicesVertical shift Period DomainRange Phase shift Amplitude

Answers

All the x-values that satisfy the function - Domain

Translating the sine or cosine curve up or down - Vertical shift

How long a given function takes to repeat itself - Period.

A horizontal shift of a sine or cosine function- Phase shift

All the y-values that satisfy the function- Range

Distance from the horizontal axis or midline to the maximum and minimum points - Amplitude

Consider the function f (x) = x2 – 3x + 10. Find f (6).

Answers

The given function is f(x) = x^2 - 3x + 10

this means that the expression is a function of x

f(6) means replace x with 6

f(6) = (6)^2 - 3(6) + 10

f(6) = 36 - 18 + 10

f(6) = 18 + 10

f(6) = 28

The answer is 28

Write using set-builder notation: -2x + 1 < 27

Answers

Instead of describing the constituents of a set, a set-builder notation describes them. The set-builder notation exists A = {x: x is a natural number less than 27}.

What is meant by set-builder notation?

A set can be represented by its elements or the properties that each of its members must meet can be described using set-builder notation.

Set-builder notation is a mathematical notation for defining a set by enumerating its elements or by specifying the properties that each of its members must satisfy. It is used in set theory and its applications to logic, mathematics, and computer science.

Let the given inequality be 2x+1 < 27

Subtract 1 from both sides, we get

-2x+1-1 < 27-1

Simplifying the above equation, we get

-2 x < 26

Multiply both sides by - 1 (reverse the inequality)

(-2 x)(-1) > 26(-1)

Simplifying the above equation, we get

2x > -26

Divide both sides by 2

[tex]$\frac{2 x}{2} > \frac{-26}{2}[/tex]

x > -13

Therefore, the set-builder notation exists

A = {x: x is a natural number less than 27}.

To learn more about set-builder notation refer to:

https://brainly.com/question/14657951

#SPJ13

I just need to answer the question number one NOT two .I just need a brief explanation with the answer

Answers

The bedroom of the apartment has 4 walls.

2 of them have the following dimensions: 16ft x 8ft.

2 of them have the following dimensions: 10ft x 8ft.

Find the area of each wall and then add them to find the total area:

[tex]\begin{gathered} Aw1=16ft\cdot8ft=128ft^2 \\ Aw2=10ft\cdot8ft=80ft^2 \end{gathered}[/tex][tex]\begin{gathered} TA=2\cdot Aw1+2\cdot Aw2 \\ TA=2\cdot128ft^2+2\cdot80ft^2 \\ TA=256ft^2+160ft^2 \\ TA=416ft^2 \end{gathered}[/tex]

It means that the total area to be covered is 416ft^2.

Now, divide this area by the area that can be covered by one roll of wallpaper to find the number of rolls needed:

[tex]n=\frac{416ft^2}{50ft^2}=8.32[/tex]

It means that 8.32 rolls are needed to cover the bedroom. You will have to buy 9 rolls.

find the distance between the given points. if the answer is not exact, use a calculator and give an approximation to the nearest tenth (-7,-2), (5,3)

Answers

The distance is:

[tex]d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}[/tex]

By replacing x and y

[tex]d=\sqrt[]{(5-(-7))^2+(3-(-2))^2}[/tex]

Then solve

[tex]\begin{gathered} d=\sqrt[]{(5+7)^2+(3+2)^2} \\ d=\sqrt[]{12^2+5^2} \\ d=\sqrt[]{144+25}^{} \\ d=\sqrt[]{169} \\ d=13 \end{gathered}[/tex]

Answer: 13

Determine whether the statement is true or false, and explain why.
If a function is positive at x = a, then its derivative is also positive at x = a.
Choose the correct answer below.
OA. The statement is true because the sign of the rate of change of a function is the same as the sign of its value.
OB. The statement is false because the derivative gives the rate of change of a function. It expresses slope, not
value.
OC. The statement is false because the sign of the rate of change of a function is opposite the sign of its value.
OD. The statement is true because the derivatives of increasing functions are always positive.

Answers

Answer: B. The statement is false because the derivative gives the rate of change of a function. It expresses slope, not value.

5 cm3 cm3 cm5 cm3 cmPrisma5 cmPrism BWhich of the following statements are true about the solids shown above?Check all that apply.A. Prisms A and B have different values for lateral surface area.O B. Prism B has a total surface area of 110 cm?O C. Prism A has a lateral surface area of 60 cm?D D. Prism B has a larger surface area.

Answers

Note that the lateral surface area is the area of the faces of the solid, excluding the cross-sectional faces i.e. faces which are perpendicular to the longitudinal axis.

The lateral surface area of prism A is calculated as,

[tex]\begin{gathered} LSA_A=2(5\times3)+2(5\times3)_{} \\ LSA_A=30+30 \\ LSA_A=60 \end{gathered}[/tex]

Similarly, the lateral surface area of prism A is calculated as,

[tex]\begin{gathered} LSA_B=2(3\times5)+2(5\times5)_{} \\ LSA_B=30+50 \\ LSA_B=80 \end{gathered}[/tex]

Clearly, prisms A and B have different values of lateral surface area.

So option A is the correct statement.

The total surface area is the sum of all the faces of the solid.

Since we have already calculated the LSA i.e. sum of area of 4 faces of the prism, we can add the area of the two remaining cross sectional faces to get the total area.

The total cross section area of prism B is calculated as,

[tex]\begin{gathered} A_B=2(5\times3) \\ A_B=30 \end{gathered}[/tex]

So the total surface area of prism B becomes,

[tex]\begin{gathered} TSA_B=LSA_B+A_B_{} \\ TSA_B=80+30 \\ TSA_B=110 \end{gathered}[/tex]

The total surface area of prism B is 110 sq. cm.

So option B is also correct.

Note that we have already found that the lateral surface area of prism A is 60 sq. cm.

Therefore, option C is also correct.

The total cross section area of prism A is calculated as,

[tex]\begin{gathered} A_A=2(3\times5) \\ A_A=30 \end{gathered}[/tex]

So the total surface area of prism A becomes,

[tex]\begin{gathered} TSA_A=LSA_A+A_A \\ TSA_A=60+30 \\ TSA_A=90 \end{gathered}[/tex]

The total surface area of prism A is 90 sq. cm.

It is oberved that prism B has a larger surface area.

So, option D is also correct.

Hence, we can conclude that all the given statements are correct.

Write a explicit formula for the given recursive formulas for each arithmetic sequence

9,15,21,27 and 7,0,-7,-14

Answers

In arithmetic progression, 9,15,21,27,33,39 is a₅ and    a₆ .

What is arithmetic progression?

A series of numbers is called a "arithmetic progression" (AP) when any two subsequent numbers have a constant difference. It also goes by the name Arithmetic Sequence.

a₁ = 9

a₂ = 15

a₃ = 21

Notice that a₂ - a₁ = 6 and a₃ - a₂ = 6

We can deduce that aₙ₊₁ = aₙ + 6

We can test this on the 4th term : a₄ should equal  21  + 6 = 27

Since this checks out we can say that the sequence is an arithmetic progression with a common difference of 6.

a₅ = 27 + 5 = 33

and

  a₆ = 33 + 6 = 39

7,0,-7,-14

find the common difference by substracting any term in the sequence from the term that comes after it.

 a₂ - a₁  = 0 - 7 = -7

 a₃ - a₂ = -7 - 0 = -7

 a₄ - a₃ = -14 - -7 = -7

the difference of the sequence is constant and equals the difference between two consecutive terms.

  d = -7

Learn more about arithmetic progression

brainly.com/question/11634518

#SPJ13

What are the coordinates of the point on the directed line segment from (−8,−4)(−8,−4) to (−5,8)(−5,8) that partitions the segment into a ratio of 5 to 1?

Answers

[tex]\begin{gathered} u=(-5,8)-(-8,-4)=(3,12) \\ so\text{ the point that split the segment in ratio of 5 to 1 is} \\ (-8,-4)+\frac{5}{6}(3,12)=(-\frac{11}{2},6) \end{gathered}[/tex]

The sum of three numbers is140 . The first number is 8 more than the third. The second number is 4 times the third. What are the numbers? First number: Second number: Third number:

Answers

Answer:

x= 30

y= 88

z= 22

Step-by-step explanation:

x= z+8

y= 4z

x + y + z = 140

we substitute to the third equation (z+8) + (4z) + z= 140 so we obtain 6z+8= 140. Z is then equal to 140-8/6= 22.

Then x= 22+8= 30, y=22(4)= 88

30+88+22= 140

Keeshonbought Packages of pens represented by P there were four pence in each package Keyshawn gave six to his friends which expression shows this situation

Answers

The expression that shows when Keeshon bought Packages of pens represented by P is 24p.

What is an expression?

An expression is used to illustrate the information that's given regarding a data.

Let the pens be represented by p.

In this case, there there were four pend in each package and Keyshawn gave six to his friends. This will be:

= 6(4 × p)

= 6(4p)

= 24p

This shows the expression.

Learn more about expressions on:

brainly.com/question/723406

#SPJ1

Please help me I need this done fast I will give brainliest to whoever answers first

Answers

Consider that a standard quadratic equation is given by,

[tex]y=ax^2+bx+c[/tex]

The curve passes through the point (-5,0),

[tex]\begin{gathered} 0=a(-5)^2+(-5)b+c \\ 0=25a-5b+c \\ c=-25a+5b\ldots\ldots\ldots(1) \end{gathered}[/tex]

The curve passes through the point (3,0),

[tex]\begin{gathered} 0=a(3)^2+(3)b+c \\ 0=9a+3b+c \end{gathered}[/tex]

Substitute value from equation (1),

[tex]\begin{gathered} 0=9a+3b+(-25a+5b) \\ 0=-16a+8b \\ b=2a\ldots\ldots\ldots(2) \end{gathered}[/tex]

The curve passes through the point (4,9),

[tex]\begin{gathered} 9=a(4)^2+(4)b+c \\ 9=16a+4b+c \end{gathered}[/tex]

Substitute tha values from (1) and (2),

[tex]\begin{gathered} 9=16a+4(2a)+(-25a+5(2a)) \\ 9=16a+8a-25a+10a \\ 9=9a \\ a=1 \end{gathered}[/tex]

Substitute in equation (2),

[tex]\begin{gathered} b=2(1) \\ b=2 \end{gathered}[/tex]

Substitute the values in equation (1),

[tex]\begin{gathered} c=-25(1)+5(2) \\ c=-25+10 \\ c=-15 \end{gathered}[/tex]

Substitute the values of a, b, and c, in the standard equation,

[tex]\begin{gathered} y=(1)x^2+(2)x+(-15) \\ y=x^2+2x-15 \end{gathered}[/tex]

This is the equation of the given parabola.

Therefore, option B is the correct choice.

Given that line S and line T are parallel, and line R is a transversal that cuts through lines S and T, which angles are alternate interior anglesZА A

Answers

The alternate interior angles theorem states that, when two parallel lines are cut by a transversal, the resulting alternate inferior angles are congruent.

In this case:

-Given that f(x) = 6(x - 1). Choose the correct statement. A. f-1(12) = 3.5 B. f-1(3) = 1 c. f-16) = 3 D. f-1(9) = 2.5

Answers

Given that function is f(x) = 6(x - 1).

Let y = 6(x - 1). Replace x with y and then solve for y.

[tex]\begin{gathered} x=6(y-1) \\ \Rightarrow x=6y-6 \\ \Rightarrow6y=x+6 \\ \Rightarrow y=\frac{x+6}{6} \end{gathered}[/tex]

Thus, f^-1(x) = (x + 6)/6.

[tex]f^{-1}(12)=\frac{12+6}{6}=3[/tex][tex]f^{-1}(3)=\frac{3+6}{6}=1.5[/tex][tex]f^{-1}(6)=\frac{6+6}{6}=2[/tex][tex]f^{-1}(9)=\frac{9+6}{6}=2.5[/tex]

Thus, option D is correct.

What is the slope of the line with points (3,7) and (3,-2)

Answers

Answer:

slope = 0

Given:

(3, 7)

(3, -2)

The formula for the slope is solved by the following formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

From the given, we know that:

x₁ = 3

x₂ = 3

y₁ = 7

y₂ = -2

Substituting these values to the formula, we will get:

[tex]\begin{gathered} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ m=\frac{-2-7}{3-3} \\ m=\frac{-9}{0} \\ m=0 \end{gathered}[/tex]

Therefore, the slope would be 0.

48. In the parabola, y = 3x ^ 2 + 12x + 11 focus is located at a distance p > 0 from the vertex. Then p=a. 3b. 1/3c. 12d. 1/12e. None of the above

Answers

Given the equation,

[tex]y=3x^2+12x_{}+11[/tex]

We are to solve for the vertex first, in order to solve for the vertex.

[tex]3x^2+12x+11=y[/tex]

factor all through by 3

[tex]\begin{gathered} \frac{3x^2}{3}+\frac{12x}{3}+\frac{11}{3}=y \\ 3(x^2+4x+\frac{11}{3})=y\ldots\ldots.1 \end{gathered}[/tex][tex]x^2+4x=-\frac{11}{3}\text{ complete the square for the inner expression}[/tex][tex]\begin{gathered} x^2+4x+(\frac{4}{2})^2=-\frac{11}{3}+(\frac{4}{2})^2 \\ (x+2)^2=-\frac{11}{3}+4=\frac{1}{3} \\ =(x+2)^2-\frac{1}{3} \end{gathered}[/tex]

Put (x+2)²-1/3 into equation 1

[tex]3((x+2)^2-\frac{1}{3})=y\ldots\ldots2[/tex]

The vertex is at (-2,-1)

Note:

[tex]\begin{gathered} \text{vertex}=(h,k) \\ \text{focus}=(h,k+\frac{1}{4a}) \end{gathered}[/tex]

P is the distance between the focus and the vertex.

[tex]\begin{gathered} (h-h,k+\frac{1}{4a}-k)=(0,\frac{1}{4a}) \\ \end{gathered}[/tex]

where,

[tex]a=3\text{ from equation 2}[/tex]

Therefore,

[tex]\begin{gathered} p=(0,\frac{1}{4\times3})=(0,\frac{1}{12}) \\ p=(0,\frac{1}{12}) \end{gathered}[/tex]

Hence,

[tex]p=\frac{1}{12}[/tex]

The correct answer is 1/12 [option D].

Solve each system of the equation by elimination method. x+3y=-204x+5y=-38

Answers

Given the equation system:

[tex]\begin{gathered} x+3y=-20 \\ 4x+5y=-38 \end{gathered}[/tex]

To solve this system using the elimination method, the first step is to multiply the first equation by 4 so that the leading coefficient is the same, i.e., both equations start with "4x"

[tex]\begin{gathered} 4(x+3y=-20) \\ 4\cdot x+4\cdot3y=4\cdot(-20) \\ 4x+12y=-80 \end{gathered}[/tex]

Then subtract the second equation from the first one

From the resulting expression, you can calculate the value of y

[tex]\begin{gathered} 7y=-42 \\ \frac{7y}{7}=-\frac{42}{7} \\ y=-6 \end{gathered}[/tex]

Next, you have to substitute the value of y in either the first or second equation to find the value of x:

[tex]\begin{gathered} x+3y=-20 \\ x+3\cdot(-6)=-20 \\ x-18=-20 \\ x=-20+18 \\ x=-2 \end{gathered}[/tex]

The solution of the system is (-2,-6)

Blossom's Computer Repair Shop started the year with total assets of $318000 and total liabilities of $211000. During the year, the
business recorded $505000 in computer repair revenues, $311000 in expenses, and Blossom paid dividends of $50200. Stockholders'
equity at the end of the year was

Answers

x = 738374
Ur welcome

Sarina throws a ball up into the air, and it falls on the ground nearby. The ball's height, in feet, is modeled by the function ƒ(x) = –x2 – x + 3, where x represents time in seconds. What's the height of the ball when Sarina throws it?Question 12 options:A) 1 footB) 3 feetC) 4 feetD) 2 feet

Answers

Answer:

3 feet

Explanation:

We are told from the question that the ball's height, in feet, is modeled by the below function;

[tex]f(x)=-x^2-x+3[/tex]

where x = time in seconds

To determine the height of the ball when Sarina throws the ball, all we need to do is solve for the initial height of the ball, i.e, the height when x = 0. So we'll have;

[tex]\begin{gathered} f(0)=-(0)^2-(0)+3 \\ f(0)=3\text{ f}eet \end{gathered}[/tex]

Caitlyn is 160 centimeters tall. How tall is she in feet and inches, rounded to the nearest inch?

Answers

Answer:

5 ft 3 in.

Explanation:

First, recall the standard conversion rates below.

• 1 foot = 30.48 cm

,

• 1 foot = 12 inches

First, convert 160 cm to feet.

[tex]\begin{gathered} \frac{1ft}{30.48\operatorname{cm}}=\frac{x\text{ ft}}{160\text{ cm}} \\ 30.48x=160 \\ x=\frac{160}{30.48} \\ x=5.2493\text{ ft} \\ x=(5+0.2493)\text{ ft} \end{gathered}[/tex]

Next, we convert the decimal part (0.2493 ft) of the result above to inches.

[tex]\begin{gathered} 1ft=12\text{ inches} \\ \frac{1\text{ ft}}{12\text{ inches}}=\frac{0.2493\text{ ft}}{y\text{ inches}} \\ y=0.2493\times12 \\ y=2.9916 \\ y\approx3\text{ inches (to the nearest inch)} \end{gathered}[/tex]

Therefore, 160 centimeters in feet and inches is:

[tex]5\text{ feet 3 inches}[/tex]

Julian is decorating the outside of a box in the shape of a right rectangular prism. Thefigure below shows a net for the box.

Answers

The surface area of the box equals the sum of the surface area of each of its parts.

And the area of each rectangle that form the box is found by multiplying the width by the height of that rectangle.

We have two ractangles with sides 7 ft and 10 ft. So the area of each one is:

7 ft * 10 ft = 7 * 10 * ft * ft = 70 ft²

Since there's two of this rectangle, their areas sum up to

2 * 70 ft² = 140 ft²

Now, we also have two rectangles with sides 7 ft and 14 ft (the second and the fourth rectangles from left to right in the image). So, their areas sum up to:

2 * (7 ft * 14 ft) = 2 * (98 ft²) = 196 ft²

Finally, we also have two rectangles with sides 10 ft and 14 ft. Then, their area together is:

2 * (10 ft * 14 ft) = 2 * (140 ft²) = 280 ft²

Therefore the total surface area of the box is the sum:

140 ft² + 196 ft² + 280 ft² = 616 ft²

At a carry-out pizza restaurant, an order of 3 slices of pizza, 4 breadsticks, and 2 juice drinks costs $12. A second order of 5 slices of pizza, 2 breadsticks, and 3 juice drinks costs $15. If four breadsticks and a juice drink cost $.30 more than a slice of pizza, write a system that represents these statements. p: slices of pizza b: bread sticks d: juice drinks Choose the correct verbal expressions for problems into a system of equations or inequalities.

Answers

p = slices of pizza

b = bread sticks

d = juice drinks

Equation 1

3p + 4b + 2d = 12

Equation 2

5p + 2b + 3d = 15

Equation 3

4b + 1d = 1p + 0.3

That's all

Other Questions
A car going at 80 mph comes to a complete stop in 6 seconds. Calculate the acceleration A ski jumper competing for an Olympic gold metal wants to jumpa horizontal distance of 149 meters. The takeoff point of the skijump is at a height of 38.0 meters. With what horizontal velocitymust he leave the jump in order to travel 149 meters? Which represents the correct sequence from oldest to most recent or current eras on the geologic time scale?. If the volume is 15 and the mass of water is 14.9 what is the density Find the union of E and L.Find the intersection of E and L.Write your answers using set notation (in roster form). URGENT!! ILL GIVEBRAINLIEST!!!!! AND 100 POINTS!!!!! IF P(A)=0.2 P(B)=0.1 and P(AnB)=0.07 what is P(AuB) ?A.0.13 B. 0.23 C. 0.3 D.0.4 which of the following circles have their centers in the second quadrant g externalities are: group of answer choices the result of government failure the difference between social and private costs (benefits) outside costs that producers absorb the effects of government on the private sector Patient Smith was on a diet. He weighed 122.6 kilograms. After one month he weighed 112.8 kilograms. Whatwas his total weight loss in one month? What electrolyte is present in the largest amount in sweat and should be replaced during heavy sweating?. Which of the following is true of points on the line y=5/3 x + 1/2? (1) For every 3 units that increases, y will increase by 5 units. (2) For every 5 units that x increases, y will increase by 2 units. (3) For every 2 units that x increases, y will increase by 1 unit. (4) For every 1 unit that x increases, y will increase by 2 units. Write the expression 16x + 28 as a product using the GCF as one of the factors.Please help. cenario 2: the directors of an annual community concert want to learn the musical preferences of the audience. the directors choose 2 and 6 from a random number generator and place a survey card on every sixth seat beginning with the second seat. all the cards are returned as the audience leaves. they are using Which of the following graphs shows a negative linear relationship with a correlation coefficient, r, close to -0.5?A. Graph AB. Graph BC. Graph CD. Graph D Sean weighs 10 lb more than twice Brads weight. If Brad gains 10 lb, together they will weigh 230 lb. How much does each weight now? which structure in the figure would most likely be used to form muscles and connective tissue suppose potatoes are inferior goods. if the price of potatoes increases, and we are a net seller of potatoes, what happens to our demand for potatoes? Calculate the mass of water of hydration lost and the mass of dehydrated salt remaining (CuSO4(s)). in linear regression analysis the quantity that gives the amount by which the dependent variable changes for a unit change in the independent variable is called the