Answer:
metals like iron or nickel
Explanation:
Convert 451 milliliters to fluid
ounces. Round your answer to 2
decimal places. **There are 29.57
milliliters in 1 fluid ounce***
Answer:
451 milliliters equals 15.25 fluid ounces
Explanation:
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three.
To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
So: [tex]x=\frac{c*b}{a}[/tex]
The direct rule of three is the rule applied in this case where there is a change of units.
In this case, the rule of three can be applied in the following way: if there are 29.57 milliliters in 1 fluid ounce, in 451 milliliters how many fluid ounces are there?
[tex]fluid ounces=\frac{451 mL*1 fluid ounce}{29.57 mL}[/tex]
fluid ounces= 15.25
451 milliliters equals 15.25 fluid ounces
A repeated back and forth or up and down motion is called a
Answer:
A vibration is a repeated back-and-forth or up-and-down motion.
Explanation:
Waves carry energy through empty space or through a medium without transporting matter.
20- A gram of distilled water at 4° C:
(a) will increase slightly in weight when heated to 6 C
(b) will decrease slightly in weight when heated to 6 C
(C) will increase slightly in volume when heated to 6 C
(d) will decrease slightly in volume when heated to 6 C
(e) will not change in either volume or weight
Answer:
D. will decrease slightly in volume when heated to 6° C
Explanation:
A gram of distilled water at 4° C will increase slightly in volume when heated to 6 C. Hence option C is correct.
What is Water ?Water has the chemical formula H2O, making it an inorganic substance. It is the primary chemical component of the Earth's hydrosphere and the fluids of all known living things (in which it serves as a solvent[1]). It is translucent, flavourless, odourless, and almost colourless. In spite of not supplying food, energy, or organic micronutrients, it is essential for all known forms of life. Its molecules are made up of two hydrogen atoms joined by covalent bonds and have the chemical formula H2O. The angle at which the hydrogen atoms are joined to the oxygen atom is 104.45°.[2] The liquid condition of H2O at normal pressure and temperature is known as "water" as well.
Water occurs because the environment on Earth is pretty near to the triple point of water.
To know more about Water :
https://brainly.com/question/28465561
#SPJ2.
An explanation of the relationships among particular phenomena.
Answer:
Theory
Explanation:
Theory is a term that is used often in academic work or scientific research to explain certain things or conditions established on universal principles or laws.
It is used to describe the "why and how" or the reason behind the occurrence of a situation.
Hence, it is correct to conclude that THEORY is "an explanation of the relationships among particular phenomena."
Answer:
E) Theory
Explanation:
Edge 2020
Brainliest?
An object in FREE-FALL on the MOON would experience which of the following
FORCES?
O a. Weight
O b. Normal
O c. Air Resistance
d. a and c
O e. None of these
Answer:
e. none of these
Explanation:
An object in FREE-FALL on the MOON would experience only acceleration
A cheetah can maintain a maximum constant velocity of 34.2 m/s for 8.70 s. What is
the displacement the cheetah covered at that velocity?
Answer:
297.54mExplanation:
step one:
given data
velocity v=34.2m/s
time t= 8.7s
Step two
Required is the distance the cheetah has covered on the condition
we know that speed= distance/time
make distance subject of formula we have
distance= velocity *time
distance= 34.2*8.7
distance = 297.54m
Therefore the displacement the cheetah covered at that velocity
is 297.54m
A tennis ball moves 18 meters northward, then 22 meters
southward, then 14 meters northward, and finally 28 meters
southward.
Answer:
The distance moved is 82 m.
The displacement is 18 m to the south.
Explanation:
The distance is a measure of the total length traveled along the path, while the displacement only takes into account the length between the starting position (departure) and final position (arrival). That is, distance refers to how much space an object travels during its movement, being the amount moved, while displacement refers to the distance and direction of the final position with respect to the initial position of an object.
So, the distance being the sum of the distances traveled, you get:
18 m + 22 m + 14 m + 28 m= 82 m
The distance moved is 82 m.
You know that the tennis ball moves 18 meters to the north, then 22 meters to the south, then 14 meters to the north, and finally 28 meters to the south. Then the tennis ball moves:
northward: 18 m + 14 m= 32 mto the south: 22 m + 28 m= 50 mCalculating the displacement as the difference between the final position and the initial position, you get:
displacement= 50 m - 32 m= 18 m
The displacement is 18 m to the south.
student measures the weight of a bag of bananas with a spring balance.
Describe what is inside a spring balance and explain how it works.
A spring balance measures the weight of an object by opposing the force of gravity acting with force of an extending spring. May be used to determine mass as well as weight by recalibrating the scale. Some spring balances are available in gram or kilogram markings and are used to measure the mass of an object. Spring balances consist of a cylindrical tube with a spring inside. One end (at the top) is fixed to an adjuster which can be used to calibrate the device. The other end is attached to a hook on which you can hang masses etc.
You serve a tennis ball of mass 60g at a speed of 50
m/s, what is the impulse exerted on the ball? ( ball starts from rest )
Answer:
[tex]J = 3~Kg.m/s[/tex]
Explanation:
Impulse and Momentum
The impulse-momentum theorem states that the change in momentum of an object equals the impulse applied to it.
The equation can be written as follows:
[tex]J =\Delta p = p_2-p_1[/tex]
Where:
J = Impulse
p2 = Final Momentum
p2 = Initial Momentum
The momentum can be calculated as:
p = m.v
Where m is the mass of the object and v is the velocity.
The tennis ball with mass m=60 g = 0.06 Kg was served from rest (v1=0) to v2=50 m/s. The change in momentum is:
[tex]\Delta p = 0.06Kg~50~m/s-0[/tex]
[tex]\Delta p = 3~Kg.m/s[/tex]
Thus the impulse is:
[tex]\marhbf{J = 3~Kg.m/s}[/tex]
Is a parked car potential or kinetic ?
Answer:
Potential energy is the energy that is stored in an object. ... When you park your car at the top of a hill, your car has potential energy because the gravity is pulling your car to move downward; if your car's parking brake fails, your vehicle may roll down the hill because of the force of gravity.
A 4.8-g particle is moving toward a stationary 7.4-g particle at 3.0 m/s. What percentage of the original kinetic energy is convertible to internal energy?
Answer:
60.185 percent of the original kinetic energy is convertible to internal energy.
Explanation:
Let suppose that collision between both particles is entirely inellastic. If there is no external forces exerted on any of the particles, then we can apply the Principle of Linear Momentum Conservation. That is:
[tex]m_{A}\cdot v_{A,o} + m_{B}\cdot v_{B,o} = (m_{A}+m_{B})\cdot v[/tex]
[tex]v = \frac{m_{A}\cdot v_{A,o}+v_{B}\cdot v_{B,o}}{m_{A}+m_{B}}[/tex] (1)
Where:
[tex]m_{A}[/tex] - Mass of the 4.8-g particle, measured in kilograms.
[tex]m_{B}[/tex] - Mass of the 7.4-g particle, measured in kilograms.
[tex]v_{A,o}[/tex] - Initial speed of the 4.8-g particle, measured in meters per second.
[tex]v_{B,o}[/tex] - Initial speed of the 7.4-g particle, measured in meters per second.
[tex]v[/tex] - Final speed of the collided particles, measured in meters per second.
If we know that [tex]m_{A} = 4.8\times 10^{-3}\,kg[/tex], [tex]m_{B} = 7.4\times 10^{-3}\,kg[/tex], [tex]v_{A,o} = 3\,\frac{m}{s}[/tex] and [tex]v_{B,o} = 0\,\frac{m}{s}[/tex], then the final speed of the system is:
[tex]v = \frac{(4.8\times 10^{-3}\,kg)\cdot \left(3\,\frac{m}{s} \right)+(7.4\times 10^{-3}\,kg)\cdot \left(0\,\frac{m}{s} \right)}{4.8\times 10^{-3}\,kg+7.4\times 10^{-3}\,kg}[/tex]
[tex]v = 1.180\,\frac{m}{s}[/tex]
During the collision part of the initial energy is dissipated in the form of heat, which is related to the internal energy ([tex]\Delta U[/tex]), measured in joules. According to the Principle of Energy Conservation, we have the following model:
[tex]\Delta U = K_{A}+K_{B}-K[/tex] (2)
Where:
[tex]K_{A}[/tex], [tex]K_{B}[/tex] - Initial translational kinetic energies of each particle, measured in joules.
[tex]K[/tex] - Final translational kinetic energy of the collided particles, measured in joules.
By applying the definition of translational kinetic energy, we expand and simplify the equation above:
[tex]\Delta U = \frac{1}{2}\cdot m_{A}\cdot v_{A,o}^{2}+\frac{1}{2}\cdot m_{B}\cdot v_{B,o}^{2} -\frac{1}{2}\cdot (m_{A}+m_{B})\cdot v^{2}[/tex] (3)
If we get that [tex]m_{A} = 4.8\times 10^{-3}\,kg[/tex], [tex]m_{B} = 7.4\times 10^{-3}\,kg[/tex], [tex]v_{A,o} = 3\,\frac{m}{s}[/tex], [tex]v_{B,o} = 0\,\frac{m}{s}[/tex] and [tex]v = 1.180\,\frac{m}{s}[/tex], the internal energy associated with the system is:
[tex]\Delta U = \frac{1}{2}\cdot (4.8\times 10^{-3}\,kg)\cdot \left(3\,\frac{m}{s} \right)^{2}+ \frac{1}{2}\cdot (7.4\times 10^{-3}\,kg)\cdot \left(0\,\frac{m}{s} \right)^{2}-\frac{1}{2}\cdot (4.8\times 10^{-3}\,kg+7.4\times 10^{-3}\,kg)\cdot \left(1.180\,\frac{m}{s} \right)^{2}[/tex]
[tex]\Delta U = 0.013\,J[/tex]
And the initial energy of both particles is:
[tex]E_{o} = \frac{1}{2}\cdot (4.8\times 10^{-3}\,kg)\cdot \left(3\,\frac{m}{s}\right)^{2}+\frac{1}{2}\cdot (7.4\times 10^{-3}\,kg)\cdot \left(0\,\frac{m}{s} \right)^{2}[/tex]
[tex]E_{o} = 0.0216\,J[/tex]
Lastly, the percentage of the original kinetic energy that is convertible to internal energy is: ([tex]\Delta U = 0.013\,J[/tex], [tex]E_{o} = 0.0216\,J[/tex])
[tex]\%e = \frac{\Delta U}{E_{o}}\times 100\,\%[/tex] (4)
[tex]\%e = \frac{0.013\,J}{0.0216\,J}\times 100\,\%[/tex]
[tex]\%e = 60.185\,\%[/tex]
60.185 percent of the original kinetic energy is convertible to internal energy.
A freshly caught catfish is placed on a spring scale, and it oscillates up and down with a period of 0.19 s. If the spring constant of the scale is 2330 N/m, what is the mass of the catfish?
Answer:
The mass of the catfish is 2.13 kg
Explanation:
Period of oscillation, T = 0.19 s
spring constant, k = 2330 N/m
The period of oscillation of the spring is given by;
[tex]T = 2\pi \sqrt{\frac{m}{k} }\\\\\frac{T}{2\pi} = \sqrt{\frac{m}{k} }\\\\\frac{T^2}{4\pi^2} = \frac{m}{k}\\\\m = \frac{kT^2}{4\pi^2}[/tex]
where;
m is mass of the catfish
substitute the given values and solve for m;
[tex]m = \frac{kT^2}{4\pi^2} \\\\m = \frac{(2330)(0.19)^2}{4\pi^2} \\\\m = 2.13 \ kg[/tex]
Therefore, the mass of the catfish is 2.13 kg
Aluminum wire with a diameter of 0.8650 mm is wound onto a spool. The wire is insulated, but you have access to both ends. The resistivity of aluminum at 20.0 °C is 2.65 x 10^-8 Ω-m. You measure the resistance of the wire at that temperature, and it is 2.48 Ω. What is the length of the wire?
a. 8.10 x 10^4 m
b. 22.0 m
c. 5.68 m
d. 0.111 m
e. 55.0 m
Answer:
e. 55.0 m
Explanation:
Given;
diameter of the aluminum wire, d = 0.865 mm
radius of the wire, r = d/2 = 0.4325 mm = 0.4325 x 10⁻³ m
resistivity of the wire, ρ = 2.65 x 10⁻⁸ Ω-m
resistance of the wire, R = 2.48 Ω
The resistance of a wire is given by;
[tex]R = \frac{\rho \ L}{A} \\\\[/tex]
where;
L is length of the wire
A is area of the wire = πr² = π(0.4325 x 10⁻³ )² = 5.877 x 10⁻⁷ m²
Substitute the givens and solve for L,
[tex]L = \frac{RA}{\rho} \\\\L = \frac{(2.48)(5.877*10^{-7})}{2.65*10^{-8}}\\\\L = 55.0 \ m[/tex]
Therefore, the length of the wire is 55.0 m
Jared walks 120 m east, 150 m south, and then 40 m west. Find the total
distance traveled by Jared
Answer:
310 m
Explanation:
120+150+40=310
A large pizza is cut into 8 even slices. A person orders 4 large pizzas from a restaurant. How many total slices of pizza did the person order?
Answer:
32 slicesExplanation:
Step one:
given data
we are told that 1 large pizza can be cut into 8 even slices
Required
we want to find how many slices are there in 4 large pizzas
Step two:
so if 1 pizza has 8 slices
4 pizza will have x
cross multiply we have
x= 8*4
x=32 slices
A baseball is thrown across the field. The ____________is measured from where the ball is thrown to where landed was 75 feet.
motion
direction
distance
reference point
Answer:
distance i think
Explanation:
200. Un automóvil se desplaza
hacia la izquierda con
velocidad constante v,
en el momento en que se
deja caer un saco de lastre
desde un globo en reposo.
El vector que representa
la velocidad del saco vista
desde el automóvil en ese
instante en que se suelta es
Lisa throws a stone horizontally from the roof edge of a 50 meter high dormitory. It hits the ground at a point 60 m from the building. Find the time of flight.
Answer:
Explanation:
Time of flight is the time of takes to hit the ground
Given
Height H = 50m
Acceleration due to gravity g = 9.8m/s³
Using the equation of motion;
S = ut+1/2gt²
u = 0m/s
Substitute and get time t
50 = 0(t)+1/2(9.8)t²
50 = 4.9t²
t² = 50/4.9
t² = 10.204
t = √10.204
t = 3.19secs
Hence the time of flight is 3.19secs
which of the following elements is the most reactive? Chlorine Bromine Fluorine Helium
Answer:
Fluorine is the most reactive
Explanation:
Among the halogens, fluorine, chlorine, bromine, and iodine, fluorine is the most reactive one. It forms compounds with all other elements except the noble gases helium (He), neon (Ne) and argon (Ar), whereas stable compounds with krypton (Kr) and xenon (Xe) are formed.
What is the current in the wire now?
Answer:
220v
Explanation:
Sorry, the question is incomplete
Answer:
on the potential difference applied and on the resistance of the wire.
Explanation:
Ohms law state that the current through a conductor between two points is directly proportional to the potential difference across the two points. Imtroducing the comstant of proportionality, the resistance, one arrives at the usual athematical equation that describes this relationship: I = V/R.
Consider a person standing in an elevator that is moving at a constant velocity down. The upward normal force N exerted by the elevator floor on the person is Select one: a. smaller than the downward force of gravity on the person. b. identical to the downward force of gravity on the person. c. larger than the downward force of gravity on the person.
Answer:
b. identical to the downward force of gravity on the person.
Explanation:
For an object in an elevator,
F = mg - ma (g > a)
But since the velocity is uniform, a = 0.
Then,
F = mg - 0
F = mg
This is the actual weight of the object.
The object does not feel weightless, so that its actual weight can be measured during the downward motion of the elevator with uniform velocity.
Thus, the upward normal force, N, exerted by the elevator floor on the person is identical to the downward force of gravity on the person.
A spinning ice skater will slow down if she extends her arms away from her body. Which of the following statements explain this phenomenon
A) circular motion is always uniform
B) A centripetal force always points outward
C) Angular momentum is always conserved
D) Centripetal acceleration cannot change
Marking brainliest
Answer:
B, which is why ice skaters often keep their arms close to their body when doing spins and jumps to minimize resistance.
A ball is thrown vertically upward with an initial velocity of 23 m/s. What are its position and velocity after 2 s?
Answer:
The position of the ball after 2 s is 26.4 mThe velocity of the ball after 2 s is 3.4 m/sExplanation:
Given;
initial velocity of the ball, u = 23 m/s
time of motion, t = 2 s
The position of the ball after 2 s is given by;
h = ut - ¹/₂gt²
h = (23 x 2) - ¹/₂ x 9.8 x 2²
h = 46 - 19.6
h = 26.4 m
The velocity of the ball after 2 s is given by;
v² = u² + 2(-g)h
v² = u² - 2gh
v² = 23² - (2 x 9.8 x 26.4)
v² = 529 - 517.44
v² = 11.56
v = √11.56
v = 3.4 m/s
Two blocks with different masses are dropped, hitting the ground with the same velocity. Which of the following is true?
They have same change in velocity but different changes in kinetic energy
The lighter object started at a smaller height.
The heavier object started at a smaller height
They started at the same height
They have same change in kinetic energy but different changes in velocity
Answer: • They have same change in velocity but different changes in kinetic energy
•They started at the same height.
Explanation:
First and foremost, we need to note that both balls have thesame acceleration due to gravity and due to this, even though they've different masses, they'll fall at same speed.
Also, since kinetic energy that's, the energy relating to motion of a mass, us dependent on mass and speed, their kinetic energy will be different.
Therefore, based in the explanation, the correct options are:
• They have same change in velocity but different changes in kinetic energy
•They started at the same height.
The x and y coordinates of a particle at any time t are x = 5t - 3t2 and y = 5t respectively, where x and y are in meter and t in second. The speed of the particle at t = 1 second is
Answer:
[tex]v=\sqrt{26}~m/s[/tex]
Explanation:
Parametric Equation of the Velocity
Given the position of the particle at any time t as
[tex]r(t) = (x(t),y(t))[/tex]
The instantaneous velocity is the first derivative of the position:
[tex]v(t)=(v_x(t),v_y(t))=(x'(t),y'(t))[/tex]
The speed can be calculated as the magnitude of the velocity:
[tex]v=\sqrt{v_x^2+v_y^2}[/tex]
We are given the coordinates of the position of a particle as:
[tex]x=5t-3t^2[/tex]
[tex]y=5t[/tex]
The coordinates of the velocity are:
[tex]v_x(t)=(5t-3t^2)'=5-6t[/tex]
[tex]v_y(t)=(5t)'=5[/tex]
Evaluating at t=1 s:
[tex]v_x(1)=5-6(1)=-1[/tex]
[tex]v_y(1)=5[/tex]
The velocity is:
[tex]v=\sqrt{(-1)^2+5^2}[/tex]
[tex]v=\sqrt{1+25}[/tex]
[tex]\mathbf{v=\sqrt{26}~m/s}[/tex]
A circular conducting loop with a radius of 1.00 m and a small gap filled with a 10.0 Ω resistor is oriented in the xy-plane. If a magnetic field of 2.0 T, making an angle of 30º with the z-axis, increases to 11.0 T, in 2.5 s, what is the magnitude of the current that will be caused to flow in the conductor?
Answer:
ill get back to this question once i find the answer to it
2. Which bicyclist was traveling the fastest at the end of the race?
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, to determine the bicyclist that traveled the fastest at the end of the race, the speed of the bicyclists at the end of the race will determine this (not the bicyclist that came first nor there overall speed). The speed of the bicyclist at the end of the race can be determined by using the formula below
s = d ÷ t
Where s is the speed of each bicyclist at the end of the race
d is the specific distance covered by the bicyclist at the end of the race
t is the time taken for the bicyclist to complete that distance
It should be noted that to get an accurate result, the distance covered at the end of the race must be the same for all the bicyclists.
A projectile is shot straight up from the earth's surface at a speed of 11,000 km/hr. How high does it go? ________km?
Taken from "Physics for Scientists and Engineers by Randall D. Knight 2nd Edition. Chapter 13 #34. There is an answer in the database already, but I do not understand it.
Answer:
476.35 km
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 11000 km/hr
Final velocity (v) = 0 km/hr (at maximum height)
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) = ?
Next, we shall convert 9.8 m/s² to km/hr². This is illustrated below:
1 m/s² = 12960 km/hr²
Therefore,
9.8 m/s² = 9.8 m/s² × 12960 km/hr² / 1 m/s²
9.8 m/s² = 127008 km/hr²
Thus, 9.8 m/s² is equivalent to 127008 km/h²
Finally, we shall determine the maximum height reached by the projectile.
This is illustrated below:
Initial velocity (u) = 11000 km/hr
Final velocity (v) = 0 km/hr (at maximum height)
Acceleration due to gravity (g) = 127008 km/hr²
Maximum height (h) = ?
v² = u² – 2gh (since the projectile is going against gravity)
0² = 11000² – (2 × 127008 × h)
0 = 121×10⁶ – 254016h
Collect like terms
0 – 121×10⁶ = – 254016h
– 121×10⁶ = – 254016h
Divide both side by – 254016
h = – 121×10⁶ / – 254016
h = 476.35 km
Thus, the maximum height reached by the projectile is 476.35 km
A projector lens projects an image from a 6.35 cm wide LCD screen onto a
screen 3.25 m wide. If the focal length of the projector lens is 13.8 cm, the screen
must be how far from the projector
Answer:
For any given projector, the width of the image (W) relative to the throw distance (D) is know as the throw ratio D/W or distance over width. So for example, the most common projector throw ratio is 2.0. This means that for each foot of image width, the projector needs to be 2 feet away or D/W = 2/1 = 2.0.
Please answer my question
Answer:
Answer is (b) Mercury, venus and Mars.
Explanation:
i think b is correct!!
;-) :-) :-) :-)