Answer:
Make sure you look at the wording!
Explanation:
if the last word is increased, the answer is increased
if the last word is decreased, the answer is it decreases!
(b) In the USA, drones are not allowed to be flown too high above the ground.
Suggest one possible risk of flying a drone too high above the ground.
Plz complete thank you in advance
The 400-foot altitude limit was put in place for the sake of airspace safety, and there is a risk to country security as well as the privacy of citizens.
What are drones?Unmanned aerial vehicles (UAVs), sometimes known as drones, are used for a variety of jobs, from routine to extremely dangerous. These robotic-looking planes can be seen practically everywhere, from delivering groceries to your home to rescuing avalanche victims.
The 400-foot altitude restriction was ultimately implemented for airspace safety. Given the breadth of the airspace above 400 feet, the likelihood of a drone colliding with a human aircraft is exceedingly remote, but the consequences might be disastrous.
Any aerial vehicle that uses software to fly autonomously or that may be controlled remotely by a pilot is referred to as a drone. Numerous drones come equipped with cameras to gather visual data and propellers to stabilize flying paths. Drone technology has been incorporated into industries like videography, search and rescue, agriculture, and transportation.
When in uncontrolled (Class G) airspace, your drone must be flown 400 feet above the ground or less.
To know more about drones:
https://brainly.com/question/27753670
#SPJ2
The cardinal, central, and secondary traits are all part of __________ categorized traits. A. Gordon Allport’s B. Robert McCrae’s C. Paul Costa’s D. Hans Eysenck’s
Answer:
Gordon Allport’s
Explanation:
edge2o2o
The cardinal, central, and secondary traits are all part of Gordon Allport’s categorized traits. The Correct option is A
Who was Gordon Allport ?
Gordon Willard Allport was born on 11 November 1897 and died 9 October 1967. He was an American psychologist. Allport was first psychologists who studied on personality. he has developed theory of personality. which was one of the greatest finding in the study of personality psychology. He was Appointed as a social science instructor at Harvard University in 1924,
Gordon Allport was a great trait theorist who categorized personality traits into three categories cardinal, central, and secondary.
Hence option A is Correct.
To know more about traits, click :
https://brainly.com/question/1463051
#SPJ3
When particles get close to the surface, they interact with atoms in
the
(Finish the sentence)
plzzzzzzzzzzzzzzzzzzzzzzzzzz help 20 points
Answer:
1.23
Explanation:
[tex]{\underline{\pink{\textsf{\textbf{ Answer : }}}}}[/tex]
➩ 1.23 feet
[tex]{\underline{\purple{\textsf{\textbf{Explanation : }}}}}[/tex]
Given :
Simon cuts a pipe that was 4.92 feet long Then he cuts it into four equal pieces.To find :
What is the length of the each piece.Solution :
As it is told that it's divided into four equal pieces
Therefore,
We must divide it by 4 to get the length of each piece.
So,
[tex] \sf \to \: \frac{4.92}{4} \\ \sf \to \: 1.23 \: feet \: ans.[/tex]
2) What does the specific heat capacity of a material tell you about how easy it is to heat up
that material
Answer:
High specific heat -> takes more energy to raise/lower object's temperature
Low specific heat -> takes less energy to raise/lower object's temperature
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of something per unit of mass.
A high specific heat value for an object means it takes more energy to raise or lower that object's temperature. A low specific heat value for an object means it does not take very much energy to heat or cool that object.
Answer as soon as possible
Answer:
the velocity of the acorn
Explanation:
just do in in real life and see
Answer:
it is probably the velocity of the acorn
A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. How far away is the cliff? The speed of sound in air a ordinary temperature is 343 m/s.
Answer:
480.2 m
Explanation:
The following data were obtained from the question:
Speed of sound (v) = 343 m/s.
Time (t) = 2.8 s
Distance (x) of the cliff =?
The distance of the cliff from the woman can be obtained as follow:
v = 2x /t
343 = 2x /2.8
Cross multiply
2x = 343 × 2.8
2x = 960.4
Divide both side by the coefficient of x i.e 2
x = 960.4/2
x = 480.2 m
Therefore, the cliff is 480.2 m away from the woman.
The distance should be 480.2 m
The calculation is as follows:Since A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. And, there is the velocity of 343 m/s
[tex]v = 2x \div t\\\\343 = 2x \div 2.8\\\\2x = 343 \times 2.8[/tex]
2x = 960.4
x = 480.2 m
Learn more: https://brainly.com/question/1504221?referrer=searchResults
How much work is done by the gravitational force on the block?
Answer:
Work = Mass * Gravity * Height and is measured in Joules. Imagine you find a 2 -Kg book on the floor and lift it 0.75 meters and put it on a table. Remember, that “force” is simply a push or a pull. If you lift 100 kg of mass 1-meter, you will have done 980 Joules of work.
Explanation:
. A car going initially with a velocity 15 m/s accelerates at a rate of 2 m/s2 for 10 seconds. It then accelerates at a rate of -1.5 m/s until stop. Find the car’s maximum speed. Calculate the total distance traveled by the car.
Answer:
The maximum speed of the car is 35 m/s
The total distance traveled by the car is 658.33 m
Explanation:
Given;
initial velocity of the car, u = 15 m/s
acceleration of the car, a = 2 m/s²
time of car motion, t = 10 s
(i)
Initial distance traveled by the car is given by;
d₁ = ut + ¹/₂at²
d₁ = (15 x 10) + ¹/₂(2)(10)²
d₁ = 150 + 100
d₁ = 250 m
The maximum speed of the car during this is given by;
v² = u² + 2ad₁
v² = (15)² + (2 x 2 x 250)
v² = 1225
v = √1225
v = 35 m/s
(ii)
The final distance cover by the car during the deceleration of 1.5 m/s².
Note: the final or maximum speed of the car becomes the initial velocity during deceleration.
v² = u² + 2ad₂
where;
v is the final speed of the car when it stops = 0
0 = u² + 2ad₂
0 = (35²) + (2 x - 1.5 x d₂)
0 = 1225 - 3d₂
3d₂ = 1225
d₂ = 1225 / 3
d₂ = 408.33 m
The total distance traveled by the car is given by;
d = d₁ + d₂
d = 250 m + 408.33 m
d = 658.33 m
Need help ASAP..please help
Answer:
option 3
Explanation:
can i get brainliest
How should the magnetic field lines be drawn for the magnets shown below?
Answer:
Magnetic field lines can be drawn by moving a small compass from point to point around a magnet. At each point, draw a short line in the direction of the compass needle.When opposite poles of two magnets are brought together, the magnetic field lines join together and become denser between the poles.
Explanation:
What is the similarity between relative dating and radioactive dating? I will mark brainlest. I dont know how btw
Answer:
relative dating and radioactive dating are two methods in archeaology to determine the age of fossils and rocks
Explanation:
the act of or study of fossils is important for the determination of the kind of organism it represents how the organism lived and how it was preserved on the Earth’s surface over the past 4600000000 years
A plane mirror is placed to the right of an object. The image formed by the mirror will be a
real image that appears to be on the right of the mirror.
real image that appears to be on the left of the mirror.
virtual image that appears to be on the right of the mirror.
virtual image that appears to be on the left of the mirror.
Hamish is studying what happens when he sends a sound wave through different mediums, and he records his data in a table.
A 2-column table with 4 rows titled Hamish's Waves. The first column labeled Wave has entries 1, 2, 3, 4. The second column labeled Information has entries liquid, solid, gas, liquid.
Which statement could made about the data collected in Hamish’s table?
Wave 1 will move the fastest.
Wave 2 will move the slowest.
Wave 3 will move the slowest.
Wave 4 will move the fastest.
What is common between transverse waves and longitudinal waves?
Both include an amplitude, crest, and rarefactions
Both move faster at higher temperatures
Both move slower through densely packed molecules
Both include a wavelength from compression to compression
An angle of refraction is the angle between the refracted ray and the
incident ray.
normal.
medium.
boundary.
Answer:
A plane mirror is placed to the right of an object. The image formed by the mirror will be a virtual image that appears to be on the left of the mirror.
Explanation:
When a potential difference of 10 V is placed across a certain solid cylindrical resistor, the current through it is 2 A. If the diameter of this resistor is now tripled, the current will be:______.A) 18 A.
B) 2/3 A.
C) 3 A.
D) 2/9 A.
E) 2 A.
Answer:
sorry I wish I could it help you
What is magnet made of
Answer:
metals like iron or nickel
Explanation:
A block slides down an inclined plane from rest. Initially the block is at 4.5m above the ground. Find the speed of the block when it is 1.5m above the ground. 1) 7.7m/s 2) 9.4m/s 3) 5.4m/s 4) 3.2m/s
Since, no external force is acting , so the system is in equilibrium .
Initial total energy = Final total energy
[tex]mg(4.5) = mg(1.5) + \dfrac{mv^2}{2}\\\\\dfrac{v^2}{2}=3\times g \\\\v^2=3\times 9.8\times 2\\\\v = \sqrt{58.8}\ m/s\\\\v = 7.67 \ m/s[/tex] ( Here , g = acceleration due to gravity = 9.8 m/s² )
Therefore, option 1) is correct.
Hence, this is the required solution.
A racecar accelerates from rest at 6.5 m/s2 for 4.1 s. How fast will it be going at the end of that time?
Answer:
The final velocity of the car is 26.65 m/s.
Explanation:
Given;
acceleration of the racecar, a = 6.5 m/s²
initial velocity of the car, u = 0
time of motion, t = 4.1 s
The final velocity of the car is given by;
v = u + at
where;
v is the final velocity of the car
suvstitute the givens
v = 0 + (6.5)(4.1)
v = 26.65 m/s.
Therefore, the final velocity of the car is 26.65 m/s.
In the winter sport of curling, players give a 20 kg stone a push across a sheet of ice. The Slone moves approximately 40 m before coming to rest. The final position of the stone, in principle, onlyndepends on the initial speed at which it is launched and the force of friction between the ice and the stone, but team members can use brooms to sweep the ice in front of the stone to adjust its speed and trajectory a bit; they must do this without touching the stone. Judicious sweeping can lengthen the travel of the stone by 3 m.1. A curler pushes a stone to a speed of 3.0 m/s over a time of 2.0 s. Ignoring the force of friction, how much force must the curler apply to the stone to bring it op to speed?A. 3.0 NB. 15 NC. 30 N
D. 150 N2The sweepers in a curling competition adjust the trajectory of the slope byA. Decreasing the coefficient of friction between the stone and the ice.
B. Increasing the coefficient of friction between the stone and the ice.C. Changing friction from kinetic to static.D. Changing friction from static to kinetic.3. Suppose the stone is launched with a speed of 3 m/s and travel s 40 m before coming to rest. What is the approximate magnitude of the friction force on the stone?A. 0 NB. 2 NC. 20 ND. 200 N4. Suppose the stone's mass is increased to 40 kg, but it is launched at the same 3 m/s. Which one of the following is true?A. The stone would now travel a longer distance before coming to rest.B. The stone would now travel a shorter distance before coming to rest.C. The coefficient of friction would now be greater.D. The force of friction would now be greater.
Answer:82. Since you have a distance and a force, then the easiest principle to use is energy, i.e. work.
The work done by friction is F * d. This work cancels out the kinetic energy of the stone (1/2)mv^2
Fd = (1/2)mv^2
F = (1/2)mv^2/d.
Plug in m = 20 kg, v = 3 m/sec, d = 40 m.
83. With more mass, the kinetic energy is higher now. The work needed is higher. W = F * d and F is the same.
Explanation:Hope I helped :)
A radio wave transmits 38.5 W/m2 of power per unit area. A flat surface of area A is perpendicular to the direction of propagation of the wave. Assuming the surface is a perfect absorber, calculate the radiation pressure on it.
Answer:
[tex]P=2.57\times 10^{-7}\ N/m^2[/tex]
Explanation:
Given that,
A radio wave transmits 38.5 W/m² of power per unit area.
A flat surface of area A is perpendicular to the direction of propagation of the wave.
We need to find the radiation pressure on it. It is given by the formula as follows :
[tex]P=\dfrac{2I}{c}[/tex]
Where
c is speed of light
Putting all the values, we get :
[tex]P=\dfrac{2\times 38.5}{3\times 10^8}\\\\=2.57\times 10^{-7}\ N/m^2[/tex]
So, the radiation pressure is [tex]2.57\times 10^{-7}\ N/m^2[/tex].
True or False when an object speeds up it gains momentum
Answer: True
Explanation:
A household refrigerator consumes electrical energy at the rate of 200 W. lf electricity costs 5 k per kWh, calculate the cost of operating the appliance for 30 days
Answer:
= 720000 [k]
Explanation:
The cost is equal to 5 [$/kW-h], kilowatt per hour, this value should be multiplied by the power, and then by the time.
[tex]5[\frac{k}{kw*h}]*200[w]*30[day]*24[\frac{h}{day} ][/tex]
= 720000 [k]
5.
An 80 newton force and a 45 newton force act on an object
as shown below.
80 N
30°
4S N
Which of the following vectors would bets represent an
equilibrant when added to this system?
(1) 24 N to the left (3) 24 N to the right
(2) 114 N to the right (4) 45 N to the left
Tirant Showroiculations
Answer:
the answer is a time your welcome
Answer:
(1)
Explanation:
A 715 kg car stopped at an intersection is rear-ended by a 1490 kg truck moving with a speed of 12.5 m/s. If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of both vehicles after the collision.
Answer:
The final velocity of the car is 16.893 m/s
The final velocity of the truck is 4.393 m/s
Explanation:
Given;
mass of the car, m₁ = 715 kg
mass of the truck, m₂ = 1490 kg
initial velocity of the car, u₁ = 0
initial velocity of the truck, u₂ = 12.5 m/s
let the final velocity of the car, = v₁
let the final velocity of the truck, = v₂
Apply the principle of conservation of linear momentum for elastic collision;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(715 x 0) + (1490 x 12.5) = 715v₁ + 1490v₂
18625 = 715v₁ + 1490v₂ -----equation (1)
Apply one-directional velocity formula;
u₁ + v₁ = u₂ + v₂
0 + v₁ = 12.5 + v₂
v₁ = 12.5 + v₂
Substitute v₁ into equation (1)
18625 = 715(12.5 + v₂) + 1490v₂
18625 =8937.5 + 715v₂ + 1490v₂
18625 - 8937.5 = 715v₂ + 1490v₂
9687.5 = 2205v₂
v₂ = 9687.5 / 2205
v₂ = 4.393 m/s
solve for v₁
v₁ = 12.5 + v₂
v₁ = 12.5 + 4.393
v₁ = 16.893 m/s
If the particles were moving with a speed much less than c, the magnitude of the momentum of the second particle would be twice that of the first. However, what is the ratio of the magnitudes of momentum for these relativistic particles?
Answer:
p₂ / p₁ = 2 (v₁ / v₂)
Explanation:
The moment is a very useful concept, since it is one of the quantities that is conserved during shocks and explosions, for which it had to be redefined to be consistent with special relativity,
p = m v / √[1+ (v/c)² ]
for the case of speeds much lower than the speed of light this expression is close to
p = m v
In this exercise they indicate that the moment of the second particle is twice the moment of the first, when their velocities are small
p₂ = 2 p₁
p₂/p₁ = 2
in consecuense
m v₂ = 2 m v₁
v₂ = 2 v₁
consider particles of equal mass.
By the time their speeds increase they enter the relativistic regime
p₂ = mv₂ /√(1 + v₂² /c²)
p₁ = m v₁ /√(1 + v₁² / c²)
let's look for the relationship between these two moments
p₂ / p₁ = mv₂ / mv₁ [√ (1+ v₁² / c²) /√ (1 + v₂² / c²)
from the initial statement
p₂ / p₁ = 2 √(c² + v₁²) / (c² + v₂²)
we take c from the root
p₂ / p₁ = 2 √ [(1+ v₁²) / (1 + v₂²)]
this is the exact result, to have an approximate shape suppose that the velocities are much greater than 1
p₂ / p₁ = 2 √ [v₁² / v₂²] = 2 √ [(v₁ / v₂)²]
p₂ / p₁ = 2 (v₁ / v₂)
we see the value of the moment depends on the speed of the particles
Acceleration is sometimes expressed in multiples of g, where g = 9.8 m/s^2 is the magnitude of the acceleration due to the earth's gravity. In a test crash, a car's velocity goes from 26 m/s to 0 m/s in 0.15 s. How many g's would be experienced by a driver under the same conditions?
Answer:
Acceleration = 18g
Explanation:
Given the following data;
Initial velocity, u = 26m/s
Final velocity, v = 0
Time = 0.15 secs
To find the acceleration;
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.
Mathematically, acceleration is given by the equation;
[tex]Acceleration (a) = \frac{final \; velocity - initial \; velocity}{time}[/tex]
Substituting into the equation, we have;
[tex]a = \frac{0 - 26}{0.15}[/tex]
[tex]a = \frac{26}{0.15}[/tex]
Acceleration = 173.33m/s2
To express it in magnitude of g;
Acceleration = 173.33/9.8
Acceleration = 17.7 ≈ 18g
Acceleration = 18g
In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the bullet is 10 g. If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man?
Answer:
Explanation:
m1v1=m2v2
m1=70 kg
m2=10 g=0.01 kg
v2=500 m/s
m1v1=m2v2
v1=m2v2/m1
v1=0.01*500/70
v1=0.07
What would happen if there is more male hyenas than female hyenas in a population?
Choices:
Male hyenas will compete to mate with the females.
Some male hyenas will die.
Male hyenas for wait for more females to join the population.
Answer:
Option 1
Explanation:
I always see animals do that
A car’s brakes decelerate it at a rate of -2.40 m/s2. If the car is originally travelling at 13 m/s and comes to a stop, then how far, in meters, will the car travel during that time?
Answer:
Approximately [tex]35.2\; \rm m[/tex].
Explanation:
Given:
Initial velocity: [tex]u = 13\; \rm m \cdot s^{-1}[/tex].
Acceleration: [tex]a = -2.40\; \rm m \cdot s^{-2}[/tex] (negative because the car is slowing down.)
Implied:
Final velocity: [tex]v = 0\; \rm m \cdot s^{-1}[/tex] (because the car would come to a stop.)
Required:
Displacement, [tex]x[/tex].
Not required:
Time taken, [tex]t[/tex].
Because the time taken for this car to come to a full stop is not required, apply the SUVAT equation that does not involve time:
[tex]\begin{aligned} x &= \frac{v^2 - u^2}{2\, a} \\ &= \frac{{\left(0\; \rm m \cdot s^{-1}\right)}^2 - {\left(13\; \rm m \cdot s^{-1}\right)}^2}{2\times \left(-2.40\; \rm m\cdot s^{-2}\right)} \approx 35.2\; \rm m \end{aligned}[/tex].
In other words, this car would travel approximately [tex]35.2\; \rm m[/tex] before coming to a stop.
How many significant figures are in 0.0067?
Answer:
2
Explanation:
there are 2 significant figures in there
Power is the rate at which work is done true or false
Answer:
false
Explanation: