What do the sections between the lines on a phase diagramirepresent?
A. The ranges where temperature and pressure are constant in a
substance
OB. The regions in which temperature and pressure change a
substance's phase
OC. The areas in which the kinetic energy of a substance is constant
OD. The conditions in which a substance exists in a certain phase
← PREVIOUS

Answers

Answer 1

Answer:

The answer is D. The sections between the lines on a phase diagram represent the conditions in which a substance exists in a certain phase. For example, the area between the solid and liquid lines represents the conditions in which a substance can exist as either a solid or a liquid. The exact conditions under which a substance will change phase depend on the substance itself.


Related Questions

For the equilibrium reaction given below, indicate the effect on the position of equilibrium if a catalyst is added to the reaction mixture. 2H, (9) + 02 (9)= 27,0 (9)+ heat O it will shift to make more reactant it will shift to make more product it will increase the pressure of the system there is no effect on the position of equilibrium Question 31 (1 point) The correct nuclide symbol for a calcium atom that has 24 neutrons is Oca 2oCa Question 32 (1 point) Question 33 (1 point) Whether or not a reaction is spontaneous is determined by O the size of the container the sign of AH the sign of as the sign of AG Question 34 (1 point) Question 36 (1 point) Which of the following formulas is written correctly? o CGH12O6 O Ch1206 C6H1206 CH1206 Question 37 (1 point)

Answers

Adding a catalyst to a reaction mixture does not have any effect on the position of equilibrium. A catalyst is a substance that increases the rate of a reaction by providing an alternate pathway with lower activation energy.

Adding a catalyst to a reaction mixture does not have any effect on the position of equilibrium. A catalyst is a substance that increases the rate of a reaction by providing an alternate pathway with lower activation energy. It speeds up both the forward and backward reactions equally, allowing the system to reach equilibrium faster, but it does not change the position of equilibrium. The equilibrium constant (Kc) remains the same before and after the addition of a catalyst. Therefore, the concentrations of the reactants and products at equilibrium do not change. In summary, a catalyst is a substance that speeds up a reaction, but it does not affect the position of equilibrium.

To know more about catalyst visit: https://brainly.com/question/24430084

#SPJ11

based on their positions in the periodic table, predict which atom of the following pair will have the smaller first ionization energy: A.It is not possible to determine without more information.
B. a negative ΔH and a positive ΔS
C. a positive ΔH and a negative ΔS
D. a negative ΔH and a negative ΔS

Answers

The first ionization energy is the energy required to remove the outermost electron from an atom in its gaseous state. It generally decreases as you move down a group (column) in the periodic table and increases as you move across a period (row) from left to right.

Based on their positions in the periodic table, the atom with the smaller first ionization energy will be the one with the lower atomic number and smaller radius. This is because the electrons in the outermost shell of the smaller atom are held more tightly to the nucleus due to the stronger attraction, making it more difficult to remove an electron and hence requiring higher ionization energy. Therefore, without more information, it is likely that the atom with the lower atomic number will have the smaller first ionization energy.

Learn more about ionization energy   here ;

https://brainly.com/question/28385102

#SPJ11

which of the following correctly describe the fahrenheit and celsius temperature scales? (select all that apply.) multiple select question. A) The Celsius and Fahrenheit scales have the same zero point. B) Absolute zero is OK or -273.15°C. C) Both the Kelvin and Celsius scales have the same size degree unit. D) All temperatures in the Kelvin scale (other than 0 K) are positive. E) A degree Celsius is the same size as a degree Fahrenheit.

Answers

B, C, and D correctly describe the Fahrenheit and Celsius temperature scales. B) Absolute zero is 0K or -273.15°C. C) Both the Kelvin and Celsius scales have the same size degree unit. D) All temperatures in the Kelvin scale (other than 0 K) are positive. The other options are incorrect: A) The Celsius and Fahrenheit scales do not have the same zero point, and E) A degree Celsius is not the same size as a degree Fahrenheit.

The correct options that describe the Fahrenheit and Celsius temperature scales are:
A) The Celsius and Fahrenheit scales do not have the same zero point.
B) Absolute zero is -273.15°C.
C) Both the Kelvin and Celsius scales have the same size degree unit.
D) All temperatures in the Kelvin scale (other than 0 K) are positive.
E) A degree Celsius is not the same size as a degree Fahrenheit.
To summarize, the Celsius and Fahrenheit scales differ in their zero points, absolute zero is -273.15°C, the Kelvin and Celsius scales have the same size degree unit, all temperatures in the Kelvin scale (other than 0 K) are positive, and a degree Celsius is not the same size as a degree Fahrenheit.

To know more about Fahrenheit visit:

https://brainly.com/question/30719934

#SPJ11

why oxalic acid prevents catalytic degradation of ascorbic acid by catalytic ferric acid

Answers

Oxalic acid prevents the catalytic degradation of ascorbic acid by catalytic ferric acid due to its ability to form a complex with ferric ions, thereby inhibiting their catalytic activity. This complex formation prevents the ferric ions from participating in the oxidation reaction of ascorbic acid.

Catalytic degradation of ascorbic acid refers to the process where ascorbic acid (vitamin C) undergoes oxidation in the presence of a catalyst, such as ferric ions (Fe³⁺), resulting in the degradation of ascorbic acid and the formation of degradation products. However, oxalic acid can prevent this catalytic degradation by forming a complex with ferric ions.

Oxalic acid contains carboxylic acid groups, which can readily bind to metal ions like ferric ions. When oxalic acid is present in the reaction mixture, it can complex with the ferric ions, forming a stable complex. This complex formation prevents the ferric ions from being available as catalysts for the oxidation reaction of ascorbic acid.

By sequestering the ferric ions, oxalic acid effectively inhibits their catalytic activity, thereby preventing the degradation of ascorbic acid. This protective effect of oxalic acid is attributed to its ability to chelate with the ferric ions, forming a stable complex that reduces their reactivity towards ascorbic acid.

Learn more about oxidation reaction here:

https://brainly.com/question/19528268

#SPJ11

what volume of 0.160 mli2s solution is required to completely react with 255 ml of 0.165 mco(no3)2 ? express your answer in milliliters to three significant figures.

Answers

The balanced chemical equation for the reaction between mli2s and co(no3)2 is:
2mli2s + co(no3)2 → 2licl + cos + 2no2 + h2o

From the equation, we can see that two moles of mli2s react with one mole of co(no3)2. Therefore, we need to use the mole ratio to find out how much mli2s is required to react with 255 ml of 0.165 mco(no3)2.
Moles of co(no3)2 = (0.165 mol/L) x (0.255 L) = 0.042075 mol
According to the mole ratio, we need twice as many moles of mli2s to react with the given amount of co(no3)2. Therefore, the required moles of mli2s are:
Moles of mli2s = 2 x Moles of co(no3)2 = 2 x 0.042075 mol = 0.08415 mol
Now we can use the molarity and volume of the mli2s solution to find out how much volume is required to obtain 0.08415 moles of mli2s.
Molarity of mli2s = 0.160 mol/L
Volume of mli2s = Moles of mli2s / Molarity of mli2s = 0.08415 mol / 0.160 mol/L = 0.5259 L
Finally, we need to convert the volume to milliliters and round off the answer to three significant figures:
Volume of mli2s = 0.5259 L x 1000 mL/L ≈ 526 mL ≈ 526 ml
Therefore, the volume of 0.160 mli2s solution required to completely react with 255 ml of 0.165 mco(no3)2 is approximately 526 ml.
To solve this problem, we can use the concept of stoichiometry. The balanced chemical equation for the reaction between I2 and Co(NO3)2 is:
2Co(NO3)2 + 3I2 → 2CoI3 + 6NO3^-
From the balanced equation, we see that 2 moles of Co(NO3)2 react with 3 moles of I2. Now, we can use the given concentrations and volumes to find the moles of each reactant:
moles of Co(NO3)2 = (0.165 M)(0.255 L) = 0.042075 mol
Using the stoichiometry from the balanced equation:
moles of I2 required = (0.042075 mol Co(NO3)2) * (3 mol I2 / 2 mol Co(NO3)2) = 0.0631125 mol I2
Now, we can use the concentration of the I2 solution to find the volume needed:
volume of I2 solution = (0.0631125 mol I2) / (0.160 M) = 0.394453125 L Converting this to milliliters and expressing the answer in three significant figures:
volume of I2 solution = 394 mL

To know more about chemical visit:

https://brainly.com/question/29240183

#SPJ11

Ammonia is produced by reacting nitrogen gas and hydrogen gas.
N_2(g) + 3H_2(g) ⇌ 2NH_3(g) + 92kJ
For each of the following changes at equilibrium, indicate whether the equilibrium shifts toward product or reactants or does not shift:
a) Removing N_2(g)
b) Lowering temperatur c) Adding NH_3(g)
d) Adding H_3(g)
e) Increasing the volume of the container.

Answers

If one of the reactants is removed, the equilibrium will shift in the direction that produces more of that reactant to compensate.

a) Removing N₂(g):

According to Le Chatelier's principle, In this case, removing N₂(g) will cause the equilibrium to shift towards the reactants. The reaction will try to produce more N₂(g) to restore the balance.

b) Lowering temperature:

Lowering the temperature of an exothermic reaction. In this case, the equilibrium will shift towards the reactants (N₂(g) and H₂(g)) to absorb more heat and increase the temperature.

c) Adding NH₃(g):

In this case, the equilibrium will shift towards the reactants, N₂(g) and H₂(g), to produce more NH₃(g) and restore the balance.

d) Adding H₂(g):

Adding more H₂(g) will cause the equilibrium to shift towards the products, NH₃(g), to consume the excess H₂(g) and restore equilibrium.

e) Increasing the volume of the container:

In this case, since there are fewer moles of gas on the reactant side, the equilibrium will shift towards the reactants, N₂(g) and H₂(g), to reduce the pressure and restore equilibrium.

To learn more about equilibrium click here https://brainly.com/question/29359391

#SPJ11

how many grams of honh3no3 would you use to create 250 ml of an aqueous solution with ph=4.20? mass of honh3no3

Answers

0.00398 g of HONH₃NO₃ is needed to create a 250 mL aqueous solution with a pH of 4.20 to determine the molar concentration (molarity) of HONH₃NO₃ in the solution.

Since pH is a measure of the concentration of H+ ions in a solution, we can use the pH value to calculate the concentration of H+ ions. In this case, a pH of 4.20 indicates a concentration of 10^(-4.20) moles/L of H+ ions. Next, we need to consider the dissociation of HONH₃NO₃ in water:

HONH₃NO₃ ⇌ H+ + ONH₃NO₃-

Based on the balanced equation, the concentration of HONH₃NO₃ is equal to the concentration of H+ ions. Now, we can calculate the moles of HONH₃NO₃ needed:

Moles of HONH₃NO₃ = Concentration of H+ ions * Volume of solution (in liters)

= 10^(-4.20) mol/L * 0.250 L

= 0.0000631 mol

Finally, to determine the mass of HONH₃NO₃, we need to multiply the moles by their molar mass. The molar mass of HONH₃NO₃ can be calculated by summing the atomic masses of the elements in its chemical formula. Assuming the molar mass of HONH₃NO₃ is 63.04 g/mol (hypothetical value) Mass of HONH₃NO₃ = Moles of HONH₃NO₃ * Molar mass = 0.0000631 mol * 63.04 g/mol

= 0.00398 g

To know more about molarity

https://brainly.com/question/30404105

#SPJ11

Regarding the relationship between equilibrium constants and standard cell potential, which of the following equations is accurate? Select the correct answer below
a. E˚cell = nF/RTln k
b. Delta G = - nF/Ecell
c. E˚cell = (RT/ Nf) ln K
d. E˚cell = 1.0 V/n log K

Answers

Your answer: The accurate equation regarding the relationship between equilibrium constants and standard cell potential is:
c. E˚cell = (RT/nF) ln K

The accurate equation for the relationship between equilibrium constants and standard cell potential is option C: E˚cell = (RT/ Nf) ln K. This equation is derived from the Nernst equation, which relates the standard cell potential (E˚cell) to the equilibrium constant (K) at a specific temperature. The equation shows that the cell potential depends on the temperature, the number of electrons transferred (n), the Faraday constant (F), and the gas constant (R). It also indicates that the standard cell potential is directly proportional to the natural logarithm of the equilibrium constant. Therefore, the accurate equation for the relationship between equilibrium constants and standard cell potential is C.
To know more about equilibrium constants visit:

https://brainly.com/question/29809185

#SPJ11

You are a marathon runner and need extra energy for tomorrow’s race. How would
eating pasta (and pie) help your body produce the energy it needs? Be sure to describe
what will happen when you are running the race (and breathing hard)

Answers

Eating pasta and pie will help your body produce the energy it needs because when you eat pasta, your body breaks it down into glucose, a type of sugar that serves as the primary source of energy for your body's cells and then stored in your liver and muscles in the form of glycogen.

When you run the race and start breathing hard, your body will begin to use the glycogen in your muscles for energy. The glycogen is broken down into glucose and released into your bloodstream, where it can be transported to your cells and used as fuel to keep you going.

Eating pie will provide a quick source of energy in the form of simple carbohydrates. These are quickly broken down and absorbed by your body, providing a rapid source of energy. However, it is important to note that simple carbohydrates do not provide sustained energy and can cause your blood sugar levels to spike and then crash, which can leave you feeling tired and sluggish. It is therefore recommended to pair simple carbohydrates with complex carbohydrates (like pasta) to provide sustained energy throughout the race.

Learn more about energy: https://brainly.com/question/30472889

#SPJ11

Glycogen phosphorylase a can be inhibited at an allosteric site by:
A) AMP.
B) calcium.
C) GDP.
D) glucagon.
E) glucose.

Answers

Glycogen phosphorylase a is an enzyme that plays a crucial role in the regulation of glycogenolysis, the breakdown of glycogen into glucose. This enzyme can be inhibited at an allosteric site by various factors, including AMP, calcium, GDP, glucagon, and glucose.

Allosteric inhibition occurs when a molecule binds to a site on the enzyme that is separate from the active site and changes the enzyme's shape, ultimately inhibiting its activity. In the case of glycogen phosphorylase a, binding of AMP or calcium to the allosteric site can activate the enzyme, whereas binding of GDP or glucose can inhibit the enzyme. Glucagon, a hormone released by the pancreas in response to low blood glucose levels, can also inhibit glycogen phosphorylase a, among other actions, by activating a signaling pathway that ultimately leads to the phosphorylation and inactivation of the enzyme. We can conclude that glycogen phosphorylase a is a key enzyme in the regulation of glycogenolysis, and its activity is tightly controlled by various factors, including allosteric inhibitors.

To know more about phosphorylase visit:

https://brainly.com/question/31991451

#SPJ11

A chemist makes 340. mL of potassium dichromate (K2Cr2O7) working solution by adding distilled water to 40.0 mL of a 0.479 M stock solution of potassium dichromate in water.
Calculate the concentration of the chemist's working solution. Be sure your answer has the correct number of significant digits.

Answers

The concentration of the chemist's working solution is 0.0564 M.

The first step in solving this problem is to use the dilution formula, which is M1V1 = M2V2, where M is the molarity and V is the volume. In this case, the chemist started with a 0.479 M stock solution of potassium dichromate and added distilled water to make a working solution. The volume of the stock solution was 40.0 mL and the final volume of the working solution was 340.0 mL.
Using the dilution formula, we can solve for the molarity of the working solution:
M1V1 = M2V2
(0.479 M)(40.0 mL) = M2(340.0 mL)
M2 = (0.479 M)(40.0 mL) / 340.0 mL
M2 = 0.0564 M
This answer has the correct number of significant digits, as the given values (0.479 M, 40.0 mL, and 340.0 mL) all have three significant digits. It is important to use distilled water in this calculation to ensure that the final concentration is accurate and not affected by impurities in the water.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

which of the following conditions is/are met at the equivalence point of the titration of a monoprotic weak acid with a strong base? 1. the moles of base added from the buret equals the initial moles of weak acid. 2. the volume of base added from the buret must equal the volume of acid titrated. 3. the ph of the solution is greater than 7.00.

Answers

At the equivalence point of a titration, the number of moles of acid present in the solution equals the number of moles of base added from the buret.

At the equivalence point of a titration, the number of moles of acid present in the solution equals the number of moles of base added from the buret. Therefore, the first condition is met at the equivalence point of the titration of a monoprotic weak acid with a strong base. The second condition is not necessarily met, as the volume of base added may be less than or greater than the volume of acid titrated depending on the strength of the acid and base used. The third condition is generally not met at the equivalence point of the titration of a monoprotic weak acid with a strong base, as the resulting solution will typically have a pH greater than 7.00 due to the formation of the conjugate base of the weak acid. The pH at the equivalence point of a titration depends on the strength of the acid and base being used.

To know more about titration visit: https://brainly.com/question/31870069

#SPJ11

Calculate E°cell for the following reaction and indicate whether the overall reaction shown is spontaneous or nonspontaneous.
4Al(s) + 3O2(g) + 12H+(aq) ® 4Al3+(aq) + 6H2O(l)

Answers

The positive value of E°cell indicates that the overall reaction is spontaneous.

To calculate E°cell for the given reaction, we can use the standard reduction potentials of the half-reactions involved. The half-reactions are:

Al(s) → Al3+(aq) + 3e- (oxidation half-reaction)

O2(g) + 4H+(aq) + 4e- → 2H2O(l) (reduction half-reaction)

The standard reduction potentials for these half-reactions are:

Al3+(aq) + 3e- → Al(s) E°red = -1.66 V

O2(g) + 4H+(aq) + 4e- → 2H2O(l) E°red = 1.23 V

To calculate E°cell, we subtract the reduction potential of the oxidation half-reaction from the reduction potential of the reduction half-reaction:

E°cell = E°red (reduction) - E°red (oxidation)

E°cell = 1.23 V - (-1.66 V)

E°cell = 1.23 V + 1.66 V

E°cell = 2.89 V

Know more about oxidation half-reaction here:

https://brainly.com/question/13977994

#SPJ11

Consider the water-shift gas reaction:H2O + CO --> H2 + CO2A closed reaction vessel maintained at 3000 degrees Celcius is filled with 0. 475 M H2 and 0. 490 M CO2. At equilibrium, their respective concentrations are 0. 410 and 0. 425 M. PART A:The following ratio represents[H2][CO2] / [H2O][CO]CHOOSE ONE OR MORE:A. The law of mass action, B. The mass action expression, C. The equilibrium constant expression, D. The equilibrium constant. None of these

Answers

The following ratio represents [H₂][CO₂] / [H₂O][CO] at equilibrium, their respective concentrations are 0. 410 and 0. 425 M is the equilibrium constant expression (Option C).

The given water-shift gas reaction is:

H₂O + CO --> H₂ + CO₂

The equilibrium constant expression is given by:

Kc = [H₂][CO₂] / [H₂O][CO]

We are given:

H₂ = 0.475 MCO₂ = 0.490 MH₂O = 0.410 MCO = 0.425 M

Substitute these values in the above equation, we get:

Kc = (0.475 x 0.425) / (0.410 x 0.490)

Kc = 0.495 / 0.2005

Kc = 2.470

Therefore, the following ratio represents the equilibrium constant expression. Hence, option (C) is the correct choice.

Learn more about equilibrium constant expression: https://brainly.com/question/32445000

#SPJ11

Ethylamine (C2H5NH2) is a weak Bonsted-Lowry base. If it has an initial molarity of 0.024 M and a Kb of 5.6 x 10-4, calculate its pH at equilibrium. C2H5NH2 ↔ C2H5NH3 + OH-

Answers

Ethylamine (C₂H₅NH₂) is a weak Bonsted-Lowry base. If it has an initial molarity of 0.024 M and a Kb of 5.6 x 10⁻⁴, pH at equilibrium is 12.08.

The pH at equilibrium for ethylamine can be calculated using the Kb value and the initial molarity of the solution. By using the equation for the equilibrium constant expression and the relationship between OH- concentration and pOH, the pOH and pH values can be determined.

The equilibrium reaction for ethylamine (C₂H₅NH₂) in water can be represented as follows:

C₂H₅NH₂ ↔ C₂H₅NH³⁺ + OH-

The equilibrium constant expression for this reaction is given by:

[tex]\frac{Kw}{Kb} = \frac{[OH-] [C_{2} H_{5} NH_{3+} ]}{[C_{2} H_{5} NH_{2} ]}[/tex]

Since ethylamine is a weak base, we can assume that the concentration of OH- at equilibrium is equal to the concentration of C₂H₅NH³⁺. Thus, the equilibrium constant expression simplifies to:

[tex]\frac{Kw}{Kb} = [OH-]^2/[C_{2} H_{5} NH_{2} ][/tex]

Given that the Kb value is 5.6 x 10⁻⁴ and the initial molarity of ethylamine is 0.024 M, we can substitute these values into the equilibrium constant expression to solve for [OH-]. Once we have [OH-], we can calculate pOH using the formula pOH = -log[OH-]. Finally, we can obtain the pH at equilibrium by subtracting the pOH from 14 (pH + pOH = 14).

pH + pOH = 14

pOH = -log[OH-] = -log(1.19 x 10⁻²) = 1.92

pH = 14 - 1.92 = 12.08

Note that in this explanation, the autoionization constant of water (Kw) is assumed to be 1.0 x 10⁻¹⁴ at 25°C.

Learn more about Ethylamine here

https://brainly.com/question/31775160

#SPJ11

Water (H20) reacts with hydrazine (N2H4) to produce ammonia (NH3) and hydrogen peroxide (H2O2). The final state of a reaction depicted in the following submicroscopic representation. Which of the following options is the most likely composition of the initial state? Final State :NH3 :H,02 :N HA :H20 på 3 N2H4 molecules, 4 H2O molecules, 1 H202 molecule 2 N2H4 molecules, 4 H2O molecules, 2 NH3 molecules 3 N2H4 molecules, 5 H2O molecules O2 N2H4 molecules, 4 H2O molecules

Answers

Based on the final state of the reaction, we know that water (H2O) and hydrazine (N2H4) react to produce ammonia (NH3) and hydrogen peroxide (H2O2).


Based on the final state of the reaction, we know that water (H2O) and hydrazine (N2H4) react to produce ammonia (NH3) and hydrogen peroxide (H2O2). The final state shows 1 H2O2 molecule, NH3 molecules, and H2O molecules. To determine the most likely composition of the initial state, we need to balance the chemical equation. The balanced equation is:
N2H4 + 2H2O -> 2NH3 + H2O2
This equation tells us that 1 molecule of N2H4 reacts with 2 molecules of H2O to produce 2 molecules of NH3 and 1 molecule of H2O2. Therefore, the most likely composition of the initial state is 1 N2H4 molecule and 2 H2O molecules. When these molecules react, they will form 2 NH3 molecules and 1 H2O2 molecule, as shown in the final state. It's important to note that this is a balanced equation, meaning that the number of atoms of each element is equal on both sides of the equation. In this reaction, we can see that the reactants and products contain nitrogen, hydrogen, oxygen, and water molecules, and ammonia is produced as a result of the reaction between water and hydrazine. Ammonia is a compound that consists of nitrogen and hydrogen molecules, while hydrogen peroxide is a compound that consists of hydrogen and oxygen molecules.

To know more about ammonia visit: https://brainly.com/question/29519032

#SPJ11

What are the units of k in the following rate law? Rate = k[X]2[Y]
A. 1/M2s2
B. 1/M2s
C. M2s2
D. 1/M3s
E. M2/s

Answers

Explanation:

To determine the units of the rate constant (k) in the given rate law, let's analyze the rate law equation: Rate = k[X]^2[Y].

The rate has units of M/s (molarity per second) because it represents the change in concentration of the reactants or products per unit time.

The concentration of reactant X is squared ([X]^2), which means its units will be squared as well. Therefore, the units of [X]^2 will be (M)^2.

The concentration of reactant Y is not squared, so its units remain unchanged and are represented as M.

Combining the units of rate, [X]^2, and [Y], we get:

Rate = k[X]^2[Y] = (M/s) = k * (M^2) * M

To equate the units on both sides of the equation, the units of k must be:

k = (M/s) / (M^2 * M) = 1/(M * s * M) = 1/(M^2 * s)

Therefore, the units of k in the given rate law are 1/M^2s, which corresponds to option B.

The units of k are "1/s" or "per second." Therefore, the correct answer is option E: M^2/s.

The units of the rate constant (k) in a rate law can be determined by examining the units of the rate and the concentrations of the reactants. In the given rate law, "Rate = k[X]^2[Y]", the rate is expressed in units of concentration per unit time (e.g., M/s).

Analyzing the rate law equation, we can determine the units of k as follows:

Rate = k[X]^2[Y]

(M/s) = k(M^2)(M)

By canceling out the units of concentration (M) on both sides of the equation, we are left with:

1/s = k(M)

Know more about units of the rate constant here:

https://brainly.com/question/30763360

#SPJ11

Which of the following explains how one of the postulates in John Dalton's atomic theory was later subjected to change?
Choice 1
Various scientists found that all atoms of a particular element are identical
Choice 2
Some scientists found that atoms combine in simple whole number ratios to form compounds.
Choice 3
Various scientists found that atoms consist of subatomic particles with varying mass and charge.
Choice 4
Some scientists found that bonds between atoms are broken, rearranged, or reformed during reactions.

Answers

answer

The answer is **Choice 3**.

steps

Various scientists found that atoms consist of subatomic particles with varying mass and charge. This led to the discovery of protons, neutrons, and electrons which are the subatomic particles that make up atoms. John Dalton's atomic theory was later modified to include these subatomic particles.

HLP 20 POINTS!!!! If you have 10,000 grams of a substance that decays with a half-life of 14 days, then how much will you have after 70 days?
Show your work and round your answer to the nearest whole number.

Answers

Answer:

313

Explanation:

70÷14=5 which means

10000÷2÷2÷2÷2÷2=312.5gram

The amount of the substance that will remain after 70 days, given that you initially have 10000 grams of the substance is 312.5 grams

How do i determine the amount remaining after 70 days?

First, we must obtain the number of half lives that has elapsed after 70 days. This is shown below:

Half-life (t½) = 14 daysTime (t) = 70 daysNumber of half-lives (n) =?

n = t / t½

n = 70 / 14

n = 5

Now, we shall determine the amount remaining after 70 days. Details below:

Initial amount (N₀) = 10000 gramsNumber of half-lives (n) = 5Amount remaining (N) = ?

N = N₀ / 2ⁿ

N = 10000 / 2⁵

N = 10000 / 32

N = 312.5 grams

Thus the amount remaining after 70 days is 312.5 grams

Learn more about amount remaining:

https://brainly.com/question/28440920

#SPJ1

A rock is thrown horizontallyfrom the top of a cliff 88m high with a horizontal speed of 25m/s

Answers

The time of flight of the rock if a rock is thrown horizontally from the top of a cliff 88 m high with a horizontal speed of 25 m/s is 6 seconds.

To determine the time of flight of the rock, we are given:

Initial velocity of the rock, u = 25 m/sVertical displacement, s = -88 mAcceleration due to gravity, g = 9.8 m/s²

We can find the time of flight of the rock by using the following formula: `

s = ut + 1/2 gt²`

Where,

s = vertical displacementu = initial velocityt = timeg = acceleration due to gravity

Substituting the values in the formula, we get:

-88 = (0) t + 1/2 (9.8) t²

We know that the quadratic equation can be written in the form of at² + bt + c = 0, where a = 4.9, b = 0 and c = -88. By using the quadratic formula (-b ± t √(b² - 4ac))/2a, we get the time of flight as follows:

t = (-b ± √(b² - 4ac))/2a

Here,

t = (-0 ± √(0² - 4(4.9)(-88)))/2(4.9)

t = √1768.4)/9.8

t = 6 s (approx)

Therefore, the time of flight of the rock is 6 seconds.

Your question is incomplete but most probably your question was

"A rock is thrown horizontally from the top of a cliff 88 m high with a horizontal speed of 25 m/s. What is the time of flight of the rock?"

Learn more about time: https://brainly.com/question/30616801

#SPJ11

Which of the following is recommended in moving something​ heavy?
A.
Pushing
B.
Reaching
C.
Leaning
D.
Pulling

Answers

When moving something heavy, the recommended method is to either push or pull the object. When moving something heavy, the most effective methods are pushing or pulling the object.

Pushing involves exerting force on the object in a forward direction, using your body weight and leg muscles for leverage. This method is suitable when you have enough space in front of the object and can maintain a stable posture while pushing.

On the other hand, pulling involves applying force in a backward direction, typically using a handle or a rope attached to the object. This method is useful when you need to move the object over a longer distance or when there are obstacles in the way. It allows you to utilize your upper body strength to generate force and overcome the resistance of the heavy object.

Reaching and leaning are not recommended techniques for moving something heavy as they may result in strain or injury. Reaching out to move a heavy object can put excessive stress on your back and arms, increasing the risk of muscle strain. Leaning against a heavy object without proper support or stability can lead to imbalance or loss of control, posing a safety hazard.

To learn more about pushing refer:

https://brainly.com/question/30643629

#SPJ11

in which of the following sequences of fixed-charge ions are all of the ionic charges correct? group of answer choices li , s2−, ba2 s2−, na , zn f−, n3−, fr2− o2−, n3−, cl2−

Answers

Among the given sequences of fixed-charge ions, the sequence with all correct ionic charges is "[tex]Li^{+}[/tex], [tex]S^{-2}[/tex],[tex]Ba^{2+}[/tex]."

In the sequence "Li+,[tex]S^{-2}[/tex], [tex]Ba2+[/tex]," the ionic charges are correctly represented.[tex]Li^{+2}[/tex] represents a lithium ion with a charge of +1, S2- represents a sulfide ion with a charge of -2, and Ba2+ represents a barium ion with a charge of +2. In the sequence "[tex]S^{-2}[/tex], Na, Zn," the ionic charges are not all correct. While [tex]S^{-2}[/tex] represents a sulfide ion with a charge of -2, Na represents a sodium ion with a charge of +1, and Zn represents a zinc ion with a charge of +2. However, the charge of Na should be +1, not 0, as indicated in the sequence.

In the sequence "F-, [tex]N^{-3}[/tex]-,[tex]Fr^{-2}[/tex]," the ionic charges are not all correct. [tex]F^{-}[/tex]represents a fluoride ion with a charge of -1, [tex]N^{-3}[/tex] represents a nitride ion with a charge of -3, and[tex]Fr^{-2}[/tex]is incorrect as there is no[tex]Fr^{-2}[/tex] ion. Francium (Fr) is an alkali metal that typically forms a +1 ion. In the sequence "[tex]O^{-2}[/tex], [tex]N^{-3}[/tex], [tex]Cl^{-2}[/tex]," the ionic charges are not all correct. [tex]O^{-2}[/tex] represents an oxide ion with a charge of -2, [tex]N^{-3}[/tex]represents a nitride ion with a charge of -3, and Cl2- is incorrect as there is no Cl2- ion. Chlorine (Cl) typically forms a -1 ion. Therefore, only in the sequence "[tex]Li^{+}[/tex][tex]S^{-2}[/tex], [tex]Ba^{+2}[/tex]" are all the ionic charges correctly represented.

Learn more about ion here: https://brainly.com/question/31355326

#SPJ11

Draw one of the oxygen-containing cations formed in the mass spectrometer by alpha cleavage of the following compound. CH3CH2CH2CHO

Answers

The oxygen-containing cation formed in the mass spectrometer by alpha cleavage of CH3CH2CH2CHO is CH3CH2CH2O+. This cation has an oxygen atom bonded to a carbon atom and is positively charged due to the loss of an electron.

To answer your question, let's first define what a mass spectrometer is. A mass spectrometer is a scientific instrument used to measure the mass-to-charge ratio of ions. It works by ionizing a sample and then separating the resulting ions based on their mass-to-charge ratio.
Now, let's talk about alpha cleavage. Alpha cleavage is a type of fragmentation reaction that occurs when a bond adjacent to a carbonyl group (C=O) is broken. In the case of CH3CH2CH2CHO, the alpha cleavage would result in the formation of a cation with the formula CH3CH2CH2O+.
This cation is an oxygen-containing cation, as it has an oxygen atom bonded to a carbon atom, which is then bonded to three hydrogen atoms. The positive charge on the cation indicates that it has lost an electron in the ionization process.
To know more about spectrometer visit:

https://brainly.com/question/30085361

#SPJ11

a 3.50 gram sample of zinc metal reacts with hydrochloric acid to produce zinc chloride and hydrogen gas. how many moles of zinc chloride and how many moles of hydrogen gas are produced

Answers

To solve this problem, we need to use the balanced chemical equation for the reaction. The equation is:
Zn + 2HCl → ZnCl2 + H2

From the equation, we can see that 1 mole of zinc produces 1 mole of zinc chloride and 1 mole of hydrogen gas. So, to find the number of moles of zinc chloride and hydrogen gas produced, we need to first calculate the number of moles of zinc in the sample.
The molar mass of zinc is 65.38 g/mol. So, the number of moles of zinc in the sample is:
3.50 g ÷ 65.38 g/mol = 0.0535 mol
Therefore, the number of moles of zinc chloride and hydrogen gas produced is also 0.0535 mol each.
To answer your question, we'll first find the moles of zinc (Zn) using its molar mass, which is 65.38 g/mol:
Moles of Zn = (3.50 g) / (65.38 g/mol) = 0.0535 mol
The balanced equation for the reaction is:

Zn + 2HCl → ZnCl₂ + H₂
From the equation, we can see that 1 mole of Zn reacts with 1 mole of ZnCl₂ and 1 mole of H₂. Since we have 0.0535 mol of Zn:
Moles of ZnCl₂ produced = 0.0535 mol
Moles of H₂ produced = 0.0535 mol
So, 0.0535 moles of zinc chloride and 0.0535 moles of hydrogen gas are produced in the reaction.

To know more about balanced visit:

https://brainly.com/question/28699225

#SPJ11

suppose that 4.02 g of a silver salt ( agx ) is dissolved in 585.0 ml of water. a current of 3.31 a , applied for 875 s , is required to plate out all of the silver in solution. what is the mass percentage of silver in the salt?

Answers

Using Faraday's Law, we can find that the amount of silver is (3.31 A)(875 s)/(96,485 C/mol) = 0.0266 mol.

The first step is to calculate the amount of silver in the solution. Using Faraday's Law, we can find that the amount of silver is (3.31 A)(875 s)/(96,485 C/mol) = 0.0266 mol. Since the molar mass of Ag is 107.87 g/mol, the mass of silver is (0.0266 mol)(107.87 g/mol) = 2.87 g. Therefore, the mass percentage of silver in the salt is (2.87 g / 4.02 g) x 100% = 71.4%. To find the mass percentage of silver in the salt (AgX), we can follow these steps:
1. Calculate moles of silver (Ag): Use the given current (3.31 A) and time (875 s) to find moles of Ag using Faraday's Law. Moles of Ag = (3.31 A * 875 s) / (96,485 C/mol).
2. Determine molar mass of AgX: Divide the given mass of silver salt (4.02 g) by the moles of Ag calculated in step 1.
3. Calculate mass percentage: Divide the molar mass of Ag (107.87 g/mol) by the molar mass of AgX obtained in step 2, then multiply by 100.
By following these steps, you can find the mass percentage of silver in the silver salt.

To know more about Faraday's Law visit:

https://brainly.com/question/1640558

#SPJ11

how many grams of Fe2O3 are formed when 16.7 g of Fe reacts with completely with oxygen

Answers

28.3 g of Fe2O3 are formed

hope this helps !

TRUE / FALSE. 25.0 mL of 0.212 M NaOH is neutralized by 13.6 mL of an HCl solution. The molarity of the HCl solution is (show work) A) 0.212 M. B) 0.115 M. C) 0.500 M. D) 0.390 M. E) 0.137 M. 13) An aqueous solution with [OH-] = 1.0 x 10-12 has a pH of 12.0.

Answers

To determine the molarity of the HCl solution used to neutralize the NaOH, we need to use the concept of stoichiometry and the balanced chemical equation for the neutralization reaction between NaOH and HCl.

The balanced chemical equation for the neutralization reaction is:

NaOH + HCl → NaCl + H2O

The stoichiometric ratio between NaOH and HCl is 1:1. This means that one mole of NaOH reacts with one mole of HCl.

Calculate the number of moles of NaOH used:

Moles of NaOH = Volume of NaOH solution (in litres) × Molarity of NaOH solution

Moles of NaOH = (25.0 mL ÷ 1000 mL/L) × 0.212 M

Moles of NaOH = 0.0053 moles

Since the stoichiometric ratio is 1:1, the number of moles of HCl used is also 0.0053 moles.

Calculate the molarity of the HCl solution:

Molarity of HCl solution = Moles of HCl ÷ Volume of HCl solution (in litres)

Molarity of HCl solution = 0.0053 moles ÷ (13.6 mL ÷ 1000 mL/L)

Molarity of HCl solution = 0.3897 M (rounded to 3 decimal places)

Therefore, the molarity of the HCl solution is approximately 0.390 M.

The statement is false. An aqueous solution with [OH-] = 1.0 x 10-12 has a pOH of 12.0, not a pH of 12.0. The pH and pOH are related by the equation: pH + pOH = 14. So, if the pOH is 12.0, then the pH would be 2.0, not 12.0.

Learn more about Molarity here ;

https://brainly.com/question/2817451

#SPJ11

A blimp moving west with a force of 30 n encounters a 20 n headwind blowing east.the buoyant force experienced by the blimp is 500 n,and the force of gravity acting on it is 450 n.what are the net horizontal and vertical forces acting on the blimp?

Answers

Answer:

The net horizontal force acting on the blimp is the difference between the force of the blimp moving west and the headwind blowing east. Since both forces are in opposite directions, we subtract them: 30 N - 20 N = 10 N. So the net horizontal force acting on the blimp is 10 N towards the west.

The net vertical force acting on the blimp is the difference between the buoyant force and the force of gravity. Since both forces are in opposite directions, we subtract them: 500 N - 450 N = 50 N. So the net vertical force acting on the blimp is 50 N upwards.

In which aqueous system is PbI2 least soluble?

a. H2O

b. 0. 5MHI

c. 0. 2MHI

d. 1. 0 M HNO3

e. 0. 8MKI

Answers

The least soluble PbI[tex]_{2}[/tex] would be in the aqueous system with the lowest concentration of iodide ions. Therefore, the correct answer is option D: 1.0 M HNO[tex]_{3}[/tex].

The solubility of a compound depends on the interaction between its ions in solution. In the case of PbI[tex]_{2}[/tex], it dissociates into lead (Pb[tex]_{2}[/tex]+) and iodide (I-) ions. The solubility of PbI[tex]_{2}[/tex] decreases with increasing concentration of the common ion, I-.

Among the given options, option D with 1.0 M HNO[tex]_{3}[/tex] contains nitrate ions (NO[tex]_{3}[/tex]-), which do not contribute to the formation of iodide ions. Therefore, it has the lowest concentration of iodide ions and would result in the least solubility of PbI[tex]_{2}[/tex].

Option D is the correct answer as it corresponds to the system with the lowest concentration of iodide ions, resulting in the least solubility of  PbI[tex]_{2}[/tex].

You can learn more about aqueous system at

https://brainly.com/question/19587902

#SPJ11

normally, rates of diffusion vary inversely with molecular weights; so smaller molecules diffuse faster than do larger ones. in cells, however, calcium ion diffuses more slowly than does camp. propose a possible explanation.

Answers

Calcium ions and cyclic AMP (cAMP) are both small molecules, yet calcium ions diffuse more slowly than cAMP.

Calcium ions and cyclic AMP (cAMP) are both small molecules, yet calcium ions diffuse more slowly than cAMP. This can be explained by the fact that calcium ions are positively charged and thus interact more strongly with negatively charged molecules in the cell, such as phospholipids and proteins. These interactions can slow down the diffusion of calcium ions compared to neutral molecules like cAMP.
Additionally, calcium ions are often sequestered within specialized compartments in the cell, such as the endoplasmic reticulum and mitochondria. These compartments can restrict the movement of calcium ions and limit their diffusion.
Furthermore, the concentration gradient of calcium ions in cells is tightly regulated and maintained by various transporters and channels. This can also affect the rate of diffusion of calcium ions, as the concentration gradient can act as a barrier to diffusion.
Overall, while the size of a molecule does play a role in its rate of diffusion, other factors such as charge, interactions with cellular components, and concentration gradients can also significantly impact diffusion rates.

To know more about diffusion visit: https://brainly.com/question/14852229

#SPJ11

Other Questions
Let F(e, y. a) stan(y)i +ln(+1)j-3ak. Use the Divergence Theorem to find the thox of across the part of the paraboloida+y+z=2 that bes above the plane 2-1 and is oriented upwards JI, ds -3pi/2und whihc correspinds to the the compositon of the ion typcially formed by florine Calculate the pH of a 0.005 M NaOH (PLS) 2. Evaluate the indefinite integral by answering the following parts. Savet * + 1 dx (a) Using u = a Vx+ 1, what is du? (b) What is the new integral in terms of u only? (c) Evaluate the new integral. sider the shaded region R which lies between y=5-r and y=x-1. R J Using the cylinder/shell method, set up the integral that represents the volume of the solid formed by revolving the region R about th For the following exercises, write the equation of an ellipse in standard form, and identify the end points of the major and minor axes as well as the foci. 24+249=14x 2+ 49y 2=1 Type your question hereDetermine the electron geometry, molecular geometry and polarity of N2O (N central).Determine the electron geometry, molecular geometry and polarity of N2O (N central).eg=trigonal planar, mg=bent, polareg=tetrahedral, mg=bent, polareg= linear, mg=linear, polareg=tetrahedral, mg=linear, nonpolareg=linear, mg=linear, nonpolar What is the process standard deviation for a sample of size 5 and r bar = 1. 08? select one: a. 0. 216 b. 2. 114 c. 0. 464 d. 0. 864 Explain how beginning the story with the dialogue between Rainsford and Whitney contributes to both the author's characterization of Rainsford and the story's mood. Cite evidence from the story in your response. The final answer is 25e^(7/5) I can't figure out how to get toit5. Find the sum of the convergent series. 5n+2 a 2. =0 n=0 !7 If f(x) - 4 sin(x"), then f'(2) - (3 points) *** Reminder: If F(x)=f(g(x)), both f(x) and g(x) are deferrentiable, then F'(x)=f(g(x))*g'(x). In the "Add Work" space, state the two functions in the cha mythological subject matter was revived as a popular subject matter during: group of answer choices the baroque period the middle ages the renaissance the impressionist period. Flora's Gifts reported the following current-month data for its only product. The company uses a periodic inventory system, and its ending inventory consists of 100 units-70 units from the January 6 purchase and 30 units from the January 25 purchase. $ Beginning inventory January 1 January 6 $5.00 = 1,200.00 Purchase 240 units 410 units 640 units $4.60 $4.30 January 17 Purchase Purchase 1,886.00 2,752.00 168.00 January 25 42 units $4.00 $ Totals 1,332 units 6,006.00 (a-d) Determine the cost assigned to ending inventory and to cost of goods sold for the following. (e) Which method yields the lowest net income? Complete this question by entering your answers in the tabs below. Req A to D Req E Determine the cost assigned to ending inventory and to cost of goods sold for the following. (Do not round intermediate calculations and round your answers to nearest whole dollar.) Ending Inventory Cost of Goods Sold (a) Specific identification (b) Weighted average (c) FIFO (d) LIFO - ces January 11 Beginning inventory 240 units January 6 Purchase Purchase Purchase January 17 $5.00 $4.60 $4.30 $4.00 410 units 640 units 42 units 1,200.00 -1,886.00 -2,752.00 - 168.00 January 25 $ Totals 1,332 units 6,006.00 (a-d) Determine the cost assigned to ending inventory and to cost of goods sold for the following. (e) Which method yields the lowest net income? Complete this question by entering your answers in the tabs below. Reg A to D Req Which method yields the lowest net income? Which method yields the lowest net income? Rest > < Req A to D what would be the correct answer: 18x/ 18x = 2/ 18 Can you give me a few examples of foreshadowing in The Tuck Everlasting? 6. fo | = 5 and D = 8. The angle formed by C and D is 35, and the angle formed by A and is 40. The magnitude of E is twice as magnitude of A. Determine B What is B . in terms of A, D and E? D E 8 According to this cartoon by Philip Dorf, what is one characteristic of mercantilism from the perspective of the mother country? when describing the role of the pancreas to a client with a pancreatic dysfunction, the nurse would identify which substance as being acted on by pancreatic lipase? FILL IN THE BLANKS : ___________is used to guide the windows installer in the installation, maintenance, and removal of programs on the windows operating system. If a stock consistently goes down (up) by 1.36% when the market portfolio goes down (up) by 1.12%, then its beta equals: