The volume can be measured by the displacement method and by the use of dimensions.
What is volume?The term volume has to do with the space that is occupied by a substance. Thus we know that a solid has a definite volume and a definite shape while a liquid has a definite volume but does not have a definite shape. On the other hand, the gases does not have a definite shape or a definite volume.
In this case, we are staying with the volume of a solid object because this is what have been implied by the question that we have before us here.
There are two ways that we can use to obtain the volume of an object and these two methods are;
1) By calculation: In this method, the dimensions of the object is measured and the volume of the object can be obtained from the dimensions of the object.
2) By displacement method: This involves a situation, in which a give volume of water is measured and then the object is added and the volume of the water that is displaced is measured and then taken as the volume of the object.
Learn more about volume:https://brainly.com/question/1578538
#SPJ1
A 0.016773-m^3 tank contains 1kg of refrigerant-134a at 110C. Determine the pressure of the refrigerant using (a) the ideal-gas equation, (b) the generalized compressibility chart, and (c) the refrigerant tables.
Answers:(a)1.861MPa,(b)1.583MPa,(c)1.6MPa
The pressure of the refrigerant using the ideal-gas equation is 1.861 MPa, the generalized compressibility chart is 1.583 MPa and the refrigerant tables is 1.6 MPa.
What is ideal gas equation?Ideal gas equation is defined as the state equation for a fictitious perfect gas. Although it has significant drawbacks, it is a decent approximation of the behavior of many gases under various conditions.
Ideal gas equation is expressed as
PV = nRT
By using Ideal gas equation
P x 0.016773 = 1 x 81.49 x 483
P = 1.861 MPa
By using generalized compressibility chart
For r134a
Temperature = 374.2 K
Pressure = 4.06 MPa
vR = V / R x Tc / Pc
= 0.016773 / 81.49 x ( 374.2 / 4.06 x 10⁶ )
= 2.2332
Tr = T/Tc = 383 / 374.2 = 1.024
Therefore from the chart Z = 0.85
So, P = Z mRT / V
P = 0.85 x 1 x 81.49 x 383 / 0.016773
= 1.582 MPa
By using refrigerant tables
T = 110 C and v = 0.0167763
So, P = 1.6 MPa
Thus, the pressure of the refrigerant using the ideal-gas equation is 1.861 MPa, the generalized compressibility chart is 1.583 MPa and the refrigerant tables is 1.6 MPa.
To learn more about ideal-gas equation, refer to the link below:
https://brainly.com/question/28837405
#SPJ1
Suppose 2.68 g of barium acetate is dissolved in 300. mL of a 45.0 m Maqueous solution of ammonium sulfate.
Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the barium
acetate is dissolved in it.
Round your answer to 3 significant digits.
Explanation
Final Molarity of acetate ion is 0.0394 M. The number of moles of solute per liter of solution is referred to as molarity.
What is Molarity?The amount of a substance in a given volume of solution is measured in molarity (M). Molarity is defined as the number of moles of a solute in one liter of solution. A solution's molarity is also known as its molar concentration.
Therefore,
We first assume that the reaction completes and that the volume of the reaction remains constant.
The balanced stoichiometric equation is as follows:
Ba(CH₃COO)₂ + (NH₄)₂SO₄ → BaSO₄ + 2NH₄(CH₃COO)
First, we must determine which reactant is in excess and which has been completely consumed by the reaction. To do so, we count the number of moles of each reactant at the beginning of the reaction.
For Ba(CH₃COO)₂
The number of moles = (Mass)/(Molar Mass)
Barium acetate mass = 2.68 g
Barium acetate molar mass = 255.43 g/mol
The number of moles = (2.68/255.43) = 0.0104 moles.
For (NH₄)₂SO₄,
Number of moles = (Concentration in mol/L) × (Volume in L)
Concentration of Ammonium surface in mol/L = 45 M
Volume in L = (300/1000) = 0.3 L
Number of moles = 45 × 0.3 = 13.5 moles
From the stoichiometric balance of the reaction,
1 mole of Ba(CH₃COO)₂ responds with 1 mole of (NH₄)₂SO₄
As a result, it is clear that Ba(CH₃COO)₂ is the limiting reagent; the chemical specie that is depleted during the reaction and determines the number of other reactants and products formed.
1 mole of Ba(CH₃COO)₂ provide 2 moles of NH₄(CH₃COO)
0.0591 moles of Ba(CH₃COO)₂ will give 2 × 0.0591 moles of NH₄(CH₃COO); 0.1182 moles of NH₄(CH₃COO).
The molarity of NH₄(CH₃COO) exist then provide as (number of moles) ÷ (Vol in L)
The number of moles = 0.1182 moles
L volume of the solution = 0.3 L
Molarity of NH₄(CH₃COO) = (0.01182/0.3)
= 0.0394 M
Note that 1 mole of NH₄(CH₃COO) contains 1 mole of acetate ion,
Hence, 0.0394 M of NH₄(CH₃COO) also contains 0.0394 M of acetate ion.
To learn more about Molarity, refer to:
https://brainly.com/question/26873446
#SPJ13
The empirical formula for a compound that contains 6.34 grams carbon and 1.06 grams hydrogen is
Answer:
[tex]CH_2[/tex]Explanation:
Here, we want to get an empirical formula
We start by dividing each of the masses by the corresponding atomic masses
The atomic mass of carbon is 12 amu
The atomic mass of hydrogen is 1 amu
We start the division as follows:
[tex]\begin{gathered} C\text{ = }\frac{6.34}{12}\text{ = 0.5283333} \\ \\ H\text{ = }\frac{1.06}{1}\text{ = 1.06} \end{gathered}[/tex]Now, we divide the results by the smaller of the two:
[tex]\begin{gathered} C\text{ = }\frac{0.528333}{0.529333}\text{ = 1} \\ \\ H\text{ = }\frac{1.06}{0.528333}\text{ = 2} \end{gathered}[/tex]Thus, we have the empirical formula as:
[tex]CH_2[/tex]How many joules of heat are needed to raise the temperature of 100 g of iron from 23°C to 33°C, if the specific heat of iron is 0.45 J/g°C
Joules of heat are needed to raise the temperature of 100 g of iron from 23°C to 33°C, if the specific heat of iron is 0.45 J/g°C is 450 J.
Given that :
The specific heat capacity expression is given as :
Q = m cΔT
Q = heat energy
m = mass = 100 g
c = specific heat = 0.45 J/g °C
ΔT = change in temperature = 33 °C - 23 °C = 10 °C
substituting the values in the formula:
Q = m cΔT
Q = 100 g × 0.45 J/g °C × 10 °C
Q = 450 J
Thus, Joules of heat are needed to raise the temperature of 100 g of iron from 23°C to 33°C, if the specific heat of iron is 0.45 J/g°C is 450 J.
To learn more about specific heat here
https://brainly.com/question/11297584
#SPJ1
How many groups are attached to a center atom with trigonal planar geometry? 3 groups 1 group 5 groups 4 groups
Answer:
The number of groups attached to a center atom with trigonal planar geometry is 3 groups.
4. Collaborate with a partner, make a brochure that highlights an example of a
technology that you have seen in which density is important.
The common use of density in ships and submarines is to predict whether or not a thing will float. Objects that have densities lower than those of water will sink if their densities are lower than water's.
What does density mean ?A product's density is a measure of how heavy it is relation to its size. If added to water, an object will float if its density is less than that of the water, while it will sink if its higher density. The density of a material is a distinguishing quality that is independent of the substance's volume.
Why is density important in chemistry?Because density is an intense property, it remains constant regardless of how much of a substance is present. Because it enables us to predict which compounds will float and which will sink in a liquid, density is a crucial notion.
To know more about Density visit:
https://brainly.com/question/15164682
#SPJ13
What other things can you think of that might be preserved?
Answer:
Bones, teeth, shells, and other hard body parts can be fairly easily preserved as fossils. However, they might become broken, worn, or even dissolved before they are buried by sediment. The soft bodies of organisms, on the other hand, are relatively hard to preserve.
Which state of matter is being described below?It cannot be squashed easily, will not spread out & is high densityA. GasB. SolidC. LiquidD. Plasma
There are 3 main states of matter: gas, solid, and liquid.
The solid is characterized by its rigid structure, its high density (it means that's there's a lot of mass per unit of volume). Also, it doesn't take the container's shape as a liquid does.
Then, the description corresponds to the solid state (option B).
Which quantum state (n,ℓ,mℓ) is NOT possible? and why
2,0,0
3,1,-1
3,0,1
3,2,2
16,14,15
The quantum numbers that are not possible are 16,14,15.
What are quantum numbers?The quantum numbers are used to address the position of the electron in an atom. They are the set of numbers that show the most probable position of the electron in an atom. There are four sets of quantum numbers that describe the position of an electron and they are;
1) Principal quantum number
2) Orbital quantum number
3) Magnetic quantum number
4) Spin quantum number.
The set of quantum numbers 16,14,15 is not possible because ml must have values of -l to +l as we know.
Learn more about quantum numbers :https://brainly.com/question/16979660
#SPJ1
how many moles of electrons are needed to produce 53.5 mol of Zn(s)
The moles of electrons are needed to produce 53.5 mole of Zn is 107 moles.
What are electrons?Electrons are defined as a subatomic particle having a negative charge that makes up the nucleus of an atom together with protons and neutrons.
The electron has an intrinsic angular momentum of a half-integer number and has a mass that is around 1/1836th that of the proton. The quantum state of any two electrons cannot be identical.
The chemical reaction for solid zinc is
Zn²⁺ + 2e⁻ = Zn (s)
When one mole of zinc ions receive two moles of electrons, one mole of zinc is created.
Electrons equal two moles to form one mole of solid zinc.
The electrons needed to create the 53.5 mole of zinc will provide 2 53.5 = 107 mol.
Thus, the moles of electrons are needed to produce 53.5 mole of Zn is 107 moles.
To learn more about electrons, refer to the link below:
https://brainly.com/question/1255220
#SPJ1
At a pressure of 1.00atm the solubility of nitrogen in water is 23.5mg gas/100g water. Indicate whether each of the following changes would increase or decrease the solubility of nitrogen in water
Solubility of a substance changes as the pressure changes. If the pressure is high, solubility increases. When pressure is low, solubility decreases.
At 1 atm the solubility of Nitrogen in water is 23.5 mg gas/110g water.
The solution is submerged 40 m under water. Solubility increase.
The solution is carried to the top of a mountain. Solubility decrease.
The solution is placed in a chamber where the pressure is 0.50 atm. Solubility decrease.
The solution is brought into outer space. Solubility decrease.
The solution is canned at a pressure of 2.04 atm. Solubility increase.
dry cleaners use tetrachloroethylene (C2CL4) to dissolve oil and grease because C2CL4 is
Answer: Tetrachloroethylene is an nonpolar molecule.
an avocado can be a simple model of the structure of a cell.
which cell structure is represented by the avocado's skin.
The body of avocado fruit can be compared with the cell structure. The skin of the avocado is relatable with the cell membrane. Thus option B is correct.
What is cell?Cell is the basic unit of life. Cells connect together to forms tissues and tissues forms organs and a group organs forms an organ system. These different organ systems buildup the whole body.
Cell contains the core called nucleus. Inside the nucleus genetic material DNA, ribosomes, Golgi apparatus, lysosomes etc are located. The function of cell membrane is to protect the cell from damages as the skin do for our body.
In plants unlike animals, their cell is protected by a cell wall apart from cell membrane and various other differences are there in the cell structure of plant cells.
The fluid filled portion of cell is called cytoplasm. The inner content of the avocado fruit is comparable with the cytoplasm and its seed can be considered as the model for nucleus.
Therefore, the avocado's skin represents the cell membrane. Hence, option B is correct.
To find more about cell structure, refer the link below:
https://brainly.com/question/19825820
#SPJ1
An experiment begins
with 87.5g of
potassium and 13.2g of
chlorine. What is the
experiment mass of
the product?
The experiment mass of the product is 28.1g
What is mass ?
Mass is a physical body's total amount of matter. It also serves as a gauge for the body's inertia, or resistance to acceleration (change in velocity) in the presence of a net force. The strength of an object's gravitational pull to other bodies is also influenced by its mass.
The kilogramme is the primary mass unit in the SI (kg). Although weight is frequently measured using a spring scale rather than a balancing scale and compared directly with known masses, mass is not the same as weight in physics.
2K + Cl2 =====> 2KCl
70g Cl2 produces 2(39+35.5) = 149 g KCl
13.2g Cl2 produces 28.1g KCl
the experiment mass of the product is 28.1g
To know more about mass from the given link
https://brainly.com/question/26230081
#SPJ13
2. 5.4 grams of carbon dioxide gas is confined to a 20.0 L container at atemperature of 32.5°C. What pressure does the gas exert? (15 kPa)
To calculate this, we will need to assume the gas behaves as an ideal gas.
So, we can use the Ideal Gas Law:
[tex]PV=nRT[/tex]Where P is the pressure, V is the volume, n is the number of moles, is the absolut temperature and R is the gas law constant.
Since we have carbon dioxide, CO₂, we need to calculate its molar mass to convert the mass to number of moles:
[tex]\begin{gathered} M_{CO_2}=(1\cdot M_C+2\cdot M_O) \\ M_{CO_2}=(1\cdot12.0107+2\cdot15.9994)g\/mol \\ M_{CO_2}=44.0095g\/mol \end{gathered}[/tex]So, the number of moles is:
[tex]\begin{gathered} M_{CO_2}=\frac{m}{n} \\ n=\frac{m}{M_{CO_{2}}}=\frac{5.4g}{44.0095g\/mol}=0.1227\ldots mol\approx0.12mol \end{gathered}[/tex]Also, we need to convert the temperature to absolute temperature, so we can convert it to K by adding 273.15 to the degree celcius temperature:
[tex]T=32.5\degree C=(32.5+273.15)K=305.65K[/tex]Now, we need to use the constant R that has the unit we want. We have K for temperature, mol for number of moles and L for volume. Is we want the pressure in kPa, we need to use the R constant with units L*kPa/(K*mol), which have the value:
[tex]R\approx8.31446\frac{L\cdot kPa}{K\cdot mol}[/tex]So, solving the equation for P and substituting the values, we have:
[tex]\begin{gathered} PV=nRT \\ P=\frac{nRT}{V} \\ P=\frac{0.12mol\cdot8.31446L\cdot kPa\cdot K^{-1}mol^{-1}\cdot305.65K}{20.0L} \\ P=\frac{0.12\cdot8.31446\cdot305.65}{20.0}kPa \\ P=15.247\ldots kPa\approx15kPa \end{gathered}[/tex]So, the pressure is approximately 15 kPa.
how do i calculate the molar mass of 5 and 65. K2Cr2O76. C12H22O11
To calculate the molar mass of a compound, we need to find at the periodic table the atomic mass of each element that belongs to the compound and then we multiply for the quantity of atoms of it.
So, for:
5. K2Cr2O7:
K = 39 g/mol
Cr = 52 g/mol
O = 16 g/mol
(2x39) + (2x52) + (7x16) = 78 + 104 + 112 = 294 g/mol
Molar mass of K2Cr2O7 = 294 g/mol
6. C12H22O11
C = 12 g/mol
H = 1 g/mol
O = 16 g/mol
(12x12) + (22x1) + (11x16) = 144 + 22 + 176 = 342 g/mol
Molar mass of C12H22O11 = 342 g/mol
Ionic compound formulas must be ______ to the smallest whole number ratio
Explanation:
As an example, Let's writte some ionic compounds:
JWhat did Rutherford’s model of the atom include that Thomson’s model did not have?
a nucleus
energy levels
electron clouds
smaller particles
Answer:
Rutherford's model of the atom included the nucleus, something lacking in Thomson's model. Rutherford's inclusion of the nucleus came about after his discovery of the nucleus of the atom in 1911. He was testing J.J. Thomson's Plum Pudding model by directing a beam of alpha particles toward a thin sheet of gold foil.
Pls Mark As Brainliest
3) Water is a polar solvent; gasoline is a non-polar solvent. Which compounds are
more likely to dissolve in water? Check all that apply.
CCI4
NaCI
CH4
Oil
According to given statement NaCI compounds are more likely to dissolve in water.
What is polar solvent with example?Polar solvents, which do have "positive" and "negative" charges at different points throughout their structures, can dissolve other polar compounds. Acetone, methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), isopropanol, and ethanol are some other polar solvents. A few of these solvents is water.
Why water is a polar solvent?Due to the uneven distribution of its electron density, water is a polar molecule. This demonstrates that water is indeed a polar molecule because hydrogen and oxygen have different electronegativities. The fact that water can dissolve more chemicals compared to any other liquid makes it known as the "universal solvent."
To know more about Polar solvent visit:
https://brainly.com/question/15185907
#SPJ13
C2H4 + 3O2 ——> 2CO2 + H2OWhat volume of oxygen at STP is needed to react with 5.75 mol of C2H4 (Show all work and data charts)
Explanation:
C₂H₄ + 3 O₂ ——> 2 CO₂ + H₂O
According to the coefficients of the equation 1 mol of C₂H₄ will react with 3 moles of O₂. Then, the molar ratio between C₂H₄ and O₂ is 1 to 3. We can use that relationship to find the number of moles of oxygen that are needed to react with 5.75 moles of C₂H₄.
1 mol of C₂H₄ = 3 moles of O₂
moles of O₂ = 5.75 moles of C₂H₄ * 3 moles of O₂/(1 mol of C₂H₄)
moles of O₂ = 17.25 moles
One mol of a gas at STP always occupies 22.4 L. We can use that relationship to find the volume of oxygen.
1 mol of O₂ = 22.4 L
volume = 17.25 moles of O₂ * 22.4 L/(1 mol of O₂)
volume = 386.4 L
Answer: 386.4 L at STP is needed to react.
Which of the following describes a physical property?Corrosiveness of sodiumToxcity of cadmiumWater when heated forms steamFlammability of hydrogen
Physical properties are the ones that describe the behavior of the substances when exposed to different physical changes.
In this case, the one that describes a physical change is water when heated forms steams. In this case water changes its state of matter but it is still the same substance, there is not chemical change, just physical.
The correct answer is Water when heated forms steams.
How many mols of Cl₂ are needed to make 0.6 mols of NaCl according to the
following reaction?
2Na + Cl₂ --> 2NaCl
Virginia has 11 people in the House and 2 in the Senate. How many electoral votes does it have? ________________ Where is this addressed?
The total number of electoral votes does Virginia have is 13. This addressed in congressional apportionment.
When people cast their vote, means they actually voting for the group of people called electors. Senator and representatives are equal to the number of voters in each state . According to the question , Virginia has 11 people in the house and 2 senate means 11 + 2 = 13 . the total number of electoral votes are 13. These votes are assigned by united states electoral college. In the constitution the congressional apportionment is addressed.
Thus, Virginia has 11 people in the House and 2 in the Senate. The total number of electoral votes does Virginia have is 13. This addressed in congressional apportionment.
To learn more about Electoral votes here
https://brainly.com/question/28648659
#SPJ1
The polarity of the covalent bond between two given atoms is determined/estimated byGroup of answer choicesOctet RuleElectronegativity differencesNumber of bonds between the atomsSolubility
1) Covalent bond polarity.
To determine the polarity, we use a property called electronegativity. This is a tendency to attract shared electrons in a chemical bond. If the difference in electronegativity is greater than 1.7, the bond is polar. If the difference is less than 1.7, the bond is nonpolar.
Volume of syringes reading read as 4cc when the weight (pressure) was 600g. Determine the pressure used (weight) when the volume is 2.5 cc?
Answer:
[tex]960\text{ g}[/tex]Explanation:
Here, we want to calculate the pressure used at the new volume
It is expected that at a higher pressure, the volume will decrease
Thus, the weight and the pressure are inversely proportional
Mathematically:
[tex]P_1V_1\text{ = P}_2V_2[/tex]The above is according to Boyle's law which states that volume and pressure are inversely proportional
where:
V1 is the initial volume which is 4 cc
P1 is the initial weight which is 600 g
V2 is the final volume which is 2.5 cc
P2 is the final pressure which is unknown
Substituting the values:
[tex]P_2\text{ = }\frac{600\times4}{2.5}\text{ = 960 g}[/tex]Cobalt(II) chloride reacts with fluorine in a single replacement reaction to produce cobalt(II) fluoride and chlorine gas. How many grams of fluorine are required to produce 124.13 g of cobalt(II)fluoride?
The balanced equation of the reaction is:
CoCl2 + F2 → CoF2 + Cl2
Now, we will follow the next steps to solve the question.
1. We find the moles present in 124.13 g of cobalt(II)fluoride (CoF2) using the molar molar mass of CoF2. The molar mass of CoF2 is: 96.93g/mol
2. By stoichiometry we find the moles of fluorine (F2) needed. Since the ratio CoF2 to F2 is 1, the moles will be the same as those produced from cobalt(II)fluoride.
3. We find the grams of fluorine by multiplying the moles by the molar mass of fluorine. The molar mass of fluorine is 38.00 g/mol
Let's proceed with the calculations:
1. Moles of CoF2
[tex]\begin{gathered} molCoF_2=givengCoF_2\times\frac{1molCoF_2}{MolarMass,gCoF_2} \\ molCoF_2=124.13gCoF_2\times\frac{1molCoF_2}{96.93gCoF_2}=1.28molCoF_2 \end{gathered}[/tex]2. Moles of F2
[tex]molF_2=1.28molCoF_2\times\frac{1molF_2}{1molCoF_2}=1.28molF_2[/tex]3. Grams of F2
[tex]\begin{gathered} gF_2=givenmolF_2\times\frac{MolarMass,gF_2}{1molF_2} \\ gF_2=1.28molF_2\times\frac{38.00gF_2}{1molF_2}=48.66gF_2 \end{gathered}[/tex]Answer: To produce 124.13 grams of cobalt(II)fluoride are required 48.66grams of fluorine
A new alloy is designed for use in a car radiator. If the 17.6 kg radiator required 8.69 × 105 J of heat to warm from 22.1°C to 155.8°C, what is the specific heat of the new alloy?
A new alloy is designed for use in a car radiator. If the 17.6 kg radiator required 8.69 × 105 J of heat to warm from 22.1°C to 155.8°C, the specific heat of the new alloy is 369.2 J / kg °C.
Specific heat formula is given as :
Q = mcΔT
given that :
mass , m = 17.6 kg
Q = 8.69 × 10⁵ J
ΔT , change in temperature = 22.1 °C - 155.8 °C = 133.7 °C
c = specific heat = ?
Substituting the values in the formula we get:
Q = mcΔT
c = Q / mΔT
c = 8.69 × 10⁵ J / 17.6 kg × 133.7 °C
c = 8.69 × 10⁵ J / 2353.12 kg °C
c = 369.2 J / kg °C
Thus, A new alloy is designed for use in a car radiator. If the 17.6 kg radiator required 8.69 × 10⁵ J of heat to warm from 22.1°C to 155.8°C, the specific heat of the new alloy is 369.2 J / kg °C.
To learn more about specific heat here
https://brainly.com/question/15090979
#SPJ1
How many atoms are in 275 grams of iron (III) hydroxide. Include units and name of atom/molecule.
To calculate the number of atoms of any compound it is necessary to use the Avogadro constant. This is a constant of proportion between the amount of matter and the number of entities that are linked to that amount. These entities can be atoms, molecules, ions, electrons, protons, neutrons. The value of the Avogrado constant is 6.022 x 10^23 mol^-1.
So to calculate the number of atoms in 275 grams of iron (III) hydroxide:
- First you need to transform grams into moles
- transform moles into atoms/molecule using Avogrado constant.
- To transform 275 grams of Fe(OH)₃ you need to use the molecular mass of Fe(OH)₃ and the following equation: mole = mass/molar mass
Molecular mass of Fe(OH)₃:
Fe - 55.85
O - 16
H - 1
(1x55.85) + (3x16) + (3x1) = 106.86 g/mol
Replace the value in the equation:
mole = 250/106.86
mole = 2.34 mole of Fe(OH)₃
- Now, let's solve the number of molecules of Fe(OH)₃ into 2.34 mole of Fe(OH)₃:
6.022 x 10^23 molecule --- 1 mol
x molecule ---- 2.34 mole
x = 1.41 x 10^24 molecules of Fe(OH)₃
Answer: There are 1.41 x 10^24 molecules of Fe(OH)₃
How many grams of solute would you use to prepare the following solutions?241.0 mL of 1.11 M NaOHExpress your answer with the appropriate units.
10.7 grams
Explanations:The formula for calculating the molarity of a solution is given as:
[tex]\begin{gathered} molarity=\frac{moles}{volume} \\ moles=molarity\times volume \end{gathered}[/tex]Given the following parameters
molarity of NaOH = 1.11M
volume of solution = 241.0mL = 0.241L
Find the moles of NaOH
[tex]\begin{gathered} moles\text{ of Na}OH=\frac{1.11mol}{L}\times0.241L \\ moles\text{ of Na}OH=0.2675moles \end{gathered}[/tex]Determine the mass of solute (NaOH)
[tex]\begin{gathered} Mass\text{ of NaOH}=mole\times molar\text{ mass} \\ Mass\text{ of NaOH}=0.2675\times40 \\ Mass\text{ of NaOH}=10.7grams \end{gathered}[/tex]Hence the grams of solute that would be used to prepare the solution is 10.7grams
The combustion of liquid ethanol (C2H, OH)produces carbon dioxide and water. After 5.8 mLof ethanol (density = 0.789 g/mL) was allowed toburn in the presence of 12.5 g of oxygen gas, 3.10mL of water (density = 1.00 g/mL) was collected.
Answer
Explanation
Given data: