Use the substitution formula to evaluate the integral. 4 r dr 14+2 O 2V6-4 0-246 +4 o Ovo 1 O √6.2

Answers

Answer 1

The value of the integral ∫(4r / √(14+2r^2)) dr is 2√(14+2r^2) + C.

To evaluate the integral ∫(4r / √(14+2r^2)) dr, we can use the substitution method. Let's make the substitution u = 14 + 2r^2. To find the differential du, we take the derivative of u with respect to r: du = 4r dr. Rearranging this equation, we have dr = du / (4r).

Substituting the values into the integral, we get: ∫(4r / √(14+2r^2)) dr = ∫(du / √u).

Now, the integral becomes ∫(1 / √u) du. We can simplify this integral by using the power rule of integration, which states that the integral of x^n dx equals (x^(n+1) / (n+1)) + C, where C is the constant of integration.

Applying the power rule, we have: ∫(1 / √u) du = 2√u + C. Substituting the original variable back in, we have:2√(14+2r^2) + C. Therefore, the value of the integral ∫(4r / √(14+2r^2)) dr is 2√(14+2r^2) + C.

To know more about integration , refer here :

https://brainly.com/question/31744185#

#SPJ11


Related Questions

1.
2.
3.
T Which best describes the area of the blue rectangle? 3 x 100 The total amount of speed during the 40 seconds. (20, 88) 90 The total amount of acceleration during the 40 seconds. 80 speed in feet/sec

Answers

The blue rectangle represents the area of a certain quantity, but based on the given options, it is unclear which quantity it corresponds to.

The options mentioned are the total amount of speed during the 40 seconds, the total amount of acceleration during the 40 seconds, and the speed in feet/sec. Without further information or context, it is not possible to determine which option best describes the area of the blue rectangle.

In order to provide a more detailed answer, it is necessary to understand the context in which the blue rectangle is presented. Without additional information about the specific scenario or problem, it is not possible to determine the meaning or significance of the blue rectangle's area. Therefore, it is crucial to provide more details or clarify the question to determine which option accurately describes the area of the blue rectangle.

In conclusion, without proper context or further information, it is not possible to determine which option best describes the area of the blue rectangle. More specific details are needed to associate the blue rectangle with a particular quantity, such as speed, acceleration, or another relevant parameter.

To learn more about rectangle click here:

brainly.com/question/15019502

#SPJ11

In Problems 1–10, for each polynomial function find the
following:
(A) Degree of the polynomial
(B) All x intercepts
(C) The y intercept
Just number 7
Please show work for finding the x-intercepts.
1. f(x) = 7x + 21 2. f(x) = x2 - 5x + 6 3. f(x) = x2 + 9x + 20 4. f(x) = 30 - 3x 5. f(x) = x2 + 2x + 3x + 15 6. f(x) = 5x + x4 + 4x + 10 7. f(x) = x (x + 6) 8. f(x) = (x - 5)²(x + 7)? 9. f(x) = (x -

Answers

For the polynomial function f(x) = x(x + 6):(A) The degree of the polynomial is 2.(B) To find the x-intercepts, we set f(x) equal to zero and solve for x. In this case, we have x(x + 6) = 0. (C) The y-intercept occurs when x = 0.

The given polynomial function f(x) = x(x + 6) is a quadratic polynomial with a degree of 2. To find the x-intercepts, we set the polynomial equal to zero and solve for x. By factoring out x from x(x + 6) = 0, we obtain the solutions x = 0 and x + 6 = 0, which gives x = 0 and x = -6 as the x-intercepts. The y-intercept occurs when x is equal to 0, and by substituting x = 0 into the function, we find that the y-intercept is (0, 0).

learn more about quadratic polynomial  here

brainly.com/question/17489661

#SPJ11

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Then find the
area of the region.
2y = 5sqrtx, y = 3, and 2y + 42 = 9

Answers

To sketch the region enclosed by the given curves, we need to analyze the equations and determine the boundaries of the region. Then we can decide whether to integrate with respect to x or y and find the area of the region.

The given curves are:

2y = 5√x

y = 3

2y + 42 = 9

Let's start by sketching each curve separately:

The curve 2y = 5√x represents a parabolic shape with the vertex at the origin (0, 0) and opens upwards.

The equation y = 3 represents a horizontal line parallel to the x-axis, passing through y = 3.

The equation 2y + 42 = 9 can be simplified to 2y = -33, which represents a horizontal line parallel to the x-axis, passing through y = -33/2.

Now, let's analyze the boundaries of the region:

The curve 2y = 5√x intersects the y-axis at y = 0, and as x increases, y also increases.

The line y = 3 is a horizontal boundary for the region.

The line 2y = -33 has a negative y-intercept and extends towards negative y-values.

Based on this analysis, the region is bounded by the curves 2y = 5√x, y = 3, and 2y = -33.

To find the area of the region, we need to determine the limits of integration. Since the curves intersect at different x-values, it is more convenient to integrate with respect to x. The x-values that define the region are found by solving the equations:

2y = 5√x (which can be rearranged as y = 5√(x/2))

y = 3

2y = -33

By setting the equations equal to each other, we can find the x-values:

5√(x/2) = 3, and 5√(x/2) = -33/2

By solving these equations, we can determine the limits of integration, which are the x-values where the curves intersect. After determining the limits, we can integrate the appropriate function and find the area of the region enclosed by the curves.

To learn more about  curves  click here: brainly.com/question/31833783 #SPJ11

Consider the number of ways of colouring indistinguishable balls from a palette of three colours, blue, red and green, so that there is an odd number of red balls, an odd number of green and at least four blue balls. (a) Use a simple generating function to find the number of such ways of colouring 11 balls. (b) Express this generating function in the form (1 - 1)(1+)'giving values for 7 and [6]

Answers

The number of ways of coloring 11 balls with the given conditions is 11,501,376, and the values for 7 and [6] are 11,501,376 and 1,188,000, respectively.

to find the number of ways of coloring indistinguishable balls with specific conditions, we can use generating functions. let's break down the problem into parts:

(a) number of ways of coloring 11 balls:to find the number of ways of coloring 11 balls with the given conditions, we need to consider the possible combinations of red, green, and blue balls.

let's define the generating function for the number of red balls as r(x), green balls as g(x), and blue balls as b(x).

the generating function for an odd number of red balls can be expressed as r(x) = x + x³ + x⁵ + ...

similarly, the generating function for an odd number of green balls is g(x) = x + x³ + x⁵ + ...and the generating function for at least four blue balls is b(x) = x⁴ + x⁵ + x⁶ + ...

to find the generating function for the number of ways of coloring the balls with the given conditions, we multiply these generating functions:

f(x) = r(x) * g(x) * b(x)

    = (x + x³ + x⁵ + ...) * (x + x³ + x⁵ + ...) * (x⁴ + x⁵ + x⁶ + ...)

expanding this product and collecting like terms, we find the generating function for the number of ways of coloring the balls.

(b) expressing the generating function in the form (1 - 1)(1+):to express the generating function in the form (1 - 1)(1+), we can factor out common terms.

f(x) = (x + x³ + x⁵ + ...) * (x + x³ + x⁵ + ...) * (x⁴ + x⁵ + x⁶ + ...)

    = (1 + x² + x⁴ + ...) * (1 + x² + x⁴ + ...) * (x⁴ + x⁵ + x⁶ + ...)

now, we can rewrite the generating function as:

f(x) = (1 - x²)² * (x⁴ / (1 - x))

to find the values for 7 and [6], we substitute x = 7 and x = [6] into the generating function:

f(7) = (1 - 7²)² * (7⁴ / (1 - 7))

f(7) = (-48)² * (-2401) = 11,501,376

f([6]) = (1 - [6]²)² * ([6]⁴ / (1 - [6]))f([6]) = (-30)² * (-1296) = 1,188,000

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

The population density of a city is given by P(x,y)= -25x²-25y +500x+600y+180, where x and y are miles from the southwest comer of the city limits and P is the number of people per square mile. Find the maximum population density, and specify where it occurs The maximum density is people per square mile at (xy)-

Answers

The maximum population density occurs at (10, ∞).

To find the maximum population density, we need to find the critical point of the given function. Taking partial derivatives with respect to x and y, we get:

∂P/∂x = -50x + 500

∂P/∂y = -25

Setting both partial derivatives equal to zero, we get:

-50x + 500 = 0

-25 = 0

Solving for x and y, we get:

x = 10

y = any value

Substituting x = 10 into the original equation, we get:

P(10,y) = -25(10)² - 25y + 500(10) + 600y + 180

P(10,y) = -2500 - 25y + 5000 + 600y + 180

P(10,y) = 575y - 2320

To find the maximum value of P(10,y), we need to take the second partial derivative with respect to y:

∂²P/∂y² = 575 > 0

Since the second partial derivative is positive, we know that P(10,y) has a minimum value at y = -∞ and a maximum value at y = ∞. Therefore, the maximum population density occurs at (10, ∞).

To know more about population density refer here:

https://brainly.com/question/26981525#

#SPJ11

Use part one of the fundamental theorem of calculus to find the derivative of the function. W g(w) = = 60 sin(5 + +9) dt g'(w) =

Answers

the derivative of g(w) is g'(w) = 60 sin(5w + 9).

To find the derivative of the function g(w) using the fundamental theorem of calculus, we can express g(w) as the definite integral of its integrand function over a variable t. The derivative of g(w) with respect to w can be found by applying the chain rule and differentiating the upper limit of the integral.

Given g(w) = ∫[5 to w] 60 sin(5t + 9) dt

Using the fundamental theorem of calculus, we have:

g'(w) = d/dw ∫[5 to w] 60 sin(5t + 9) dt

Applying the chain rule, we differentiate the upper limit w with respect to w:

g'(w) = 60 sin(5w + 9) * d(w)/dw

Since d(w)/dw is simply 1, the derivative simplifies to:

g'(w) = 60 sin(5w + 9)

To know more about integral visit:

brainly.com/question/31059545

#SPJ11

(5 points) By recognizing each series below as a Taylor series evaluated at a particular value of c, find the sum of each convergent series. A3 3 + (-1)"32141 37 + + + (2n+1)! B. 1 +7+ 2 + 깊 + + 3!

Answers

a) Substitute $x=3$ and then evaluate it as a finite sum. b) We find that$$B = \frac{1}{2}\cdot\left(-\frac{1}{\frac{1+i\√{3}}{2}}-\frac{1}{\frac{1-i\√{3}}{2}}\right) = \frac{2}{3}.$$

(a) $A₃ = 3+\frac{(-1)³}{3!}+\frac{2³}{5!}

= \frac{37}{15}$, where $c=0$.

Here, we recognize the Taylor series of $\sin x$ at $x

=3$ as$$\sin x

= \sum_{n=0}^\infty\[tex]frac\frac{{(-1)^n}}{2n+1)!}x^{2n+1}}[/tex]

(b) $B=\sum_{n=1}^\infty\frac{1}{n²+n+1}$.

Here, we recognize the partial fractions$$\frac{1}{n²+n+1}

= \frac{1}{2}\cdot\frac{1}{n+\frac{1+i\√{3}}{2}} + \frac{1}{2}\cdot\frac{1}{n+\frac{1-i\√{3}}{2}}$$

of the summand, and then we recognize that$$\sum_{n=1}^\infty\frac{1}{n-z}

= -\frac{1}{z}$$for any complex number $z$ with positive real part.

To know  more about the Taylor series

https://brainly.com/question/31396645

#SPJ11

Becca measured the heights of several wildflowers she found that their heights were 2,3,3,5 and 7 inches

Answers

The false statement from the data-set is given as follows:

D. The median of the data is of 5 inches.

How to obtain the median of a data-set?

The median of a data-set is defined as the middle value of the data-set, the value of which 50% of the measures are less than and 50% of the measures are greater than. Hence, the median also represents the 50th percentile of the data-set.

The data-set in this problem is given as follows:

2, 3, 3, 5 and 7.

The data-set has an odd cardinality of 5, hence the median is the element at the position (5 + 1)/2 = 3, hence statement D is false.

More can be learned about the median of a data-set at brainly.com/question/3514929

#SPJ1

Use the Maclaurin series for e'to prove that: [e*] = et. dx

Answers

The integral ∫[e^x] dx can be proven to be equal to e^x using the Maclaurin series expansion of e^x.

The Maclaurin series expansion of e^x is given by:

e^x = 1 + x + (x^2)/2! + (x^3)/3! + (x^4)/4! + ...

Integrating both sides of the equation with respect to x, we have:

∫[e^x] dx = ∫(1 + x + (x^2)/2! + (x^3)/3! + (x^4)/4! + ...) dx

Using the properties of integration, we can integrate each term of the series individually:

∫[e^x] dx = ∫1 dx + ∫x dx + ∫(x^2)/2! dx + ∫(x^3)/3! dx + ∫(x^4)/4! dx + ...

Evaluating the integrals, we get:

∫[e^x] dx = x + (x^2)/2 + (x^3)/(3*2!) + (x^4)/(4*3*2!) + (x^5)/(5*4*3*2!) + ...

Simplifying the expression, we obtain:

∫[e^x] dx = x + (x^2)/2 + (x^3)/3! + (x^4)/4! + (x^5)/5! + ...

Comparing this result with the Maclaurin series expansion of e^x, we can see that they are identical.

Therefore, we can conclude that ∫[e^x] dx = e^x.

learn more about Maclaurin series here:

https://brainly.com/question/31745715

#SPJ11

1. Find f '(x) for f(x) = x? In(x*e*p'-s) 2. Evaluate the following integral: 5* xeox? : хе dx

Answers

1. The derivative of f(x) = x * ln(x * e * p' - s) with respect to x is f'(x) = ln(x * e * p' - s) + (x * e * p') / (x * e * p' - s).

2.  The evaluated integral ∫5 * x * e^x dx is equal to 5x * e^x - 5 * e^x + C, where C is the constant of integration.

1. To find f'(x) for f(x) = x * ln(x * e * p' - s), we will apply the product rule and chain rule.

Let's break down the function into its components:

u(x) = x

v(x) = ln(x * e * p' - s)

Now, we can use the product rule:

f'(x) = u'(x) * v(x) + u(x) * v'(x)

Taking the derivatives:

u'(x) = 1 (derivative of x with respect to x)

v'(x) = 1 / (x * e * p' - s) * (1 * e * p') (applying the chain rule)

Substituting the values into the product rule formula:

f'(x) = 1 * ln(x * e * p' - s) + x * (1 / (x * e * p' - s) * (1 * e * p'))

Simplifying:

f'(x) = ln(x * e * p' - s) + (x * e * p') / (x * e * p' - s)

Therefore, the derivative of f(x) = x * ln(x * e * p' - s) with respect to x is f'(x) = ln(x * e * p' - s) + (x * e * p') / (x * e * p' - s).

2. To evaluate the integral ∫5 * x * e^x dx, we will use integration by parts.

Let's break down the integrand:

u = x (function to differentiate)

dv = 5 * e^x dx (function to integrate)

Taking the derivatives and integrating:

du = dx (derivative of x with respect to x)

v = ∫5 * e^x dx = 5 * e^x (integral of e^x)

Now we can apply the integration by parts formula:

∫u dv = uv - ∫v du

Plugging in the values:

∫5 * x * e^x dx = x * (5 * e^x) - ∫(5 * e^x) dx

Simplifying:

∫5 * x * e^x dx = 5x * e^x - 5 * ∫e^x dx

The integral of e^x is simply e^x, so:

∫5 * x * e^x dx = 5x * e^x - 5 * e^x + C

Therefore, the evaluated integral ∫5 * x * e^x dx is equal to 5x * e^x - 5 * e^x + C, where C is the constant of integration.

Learn more about integration

brainly.com/question/18125359

#SPJ11

a) (10 pts) Convert the following integral into the spherical coordinates 2 у s Svav INA-x - 7 و - 4- 22- ( x2z+y?z + z3 +4 z) dzdxdy = ? -V4 - x2-y? b)(20 pts) Evaluate the following integral 14- (

Answers

the integral is in spherical coordinates.

= ∫∫∫ [ρ³sin²(φ) + ρ⁴cos⁴(φ) + 4ρcos(φ)] ρ² sin(φ) dρ dφ dθ

What is integral?

The value obtained after integrating or adding the terms of a function that is divided into an infinite number of terms is generally referred to as an integral value.

a) To convert the given integral into spherical coordinates, we need to express the differential elements dz, dx, and dy in terms of spherical coordinates.

In spherical coordinates, we have the following relationships:

x = ρsin(φ)cos(θ)

y = ρsin(φ)sin(θ)

z = ρcos(φ)

where ρ represents the radial distance, φ represents the polar angle, and θ represents the azimuthal angle.

To express the differentials dz, dx, and dy in terms of spherical coordinates, we can use the Jacobian determinant:

dx dy dz = ρ² sin(φ) dρ dφ dθ

Now, let's substitute the expressions for x, y, and z into the given integral:

∫∫∫ [x²z + y²z + z³ + 4z] dz dx dy

= ∫∫∫ [(ρsin(φ)cos(θ))²(ρcos(φ)) + (ρsin(φ)sin(θ))²(ρcos(φ)) + (ρcos(φ))³ + 4(ρcos(φ))] ρ² sin(φ) dρ dφ dθ

Simplifying and expanding the terms, we get:

= ∫∫∫ [(ρ³sin²(φ)cos²(θ) + ρ³sin²(φ)sin²(θ) + ρ⁴cos⁴(φ) + 4ρcos(φ))] ρ² sin(φ) dρ dφ dθ

= ∫∫∫ [ρ³sin²(φ)(cos²(θ) + sin²(θ)) + ρ⁴cos⁴(φ) + 4ρcos(φ)] ρ² sin(φ) dρ dφ dθ

= ∫∫∫ [ρ³sin²(φ) + ρ⁴cos⁴(φ) + 4ρcos(φ)] ρ² sin(φ) dρ dφ dθ

Now, the integral is in spherical coordinates.

b) Since the question is cut off, the complete expression for the integral is not provided.

Hence,  the integral is in spherical coordinates.

= ∫∫∫ [ρ³sin²(φ) + ρ⁴cos⁴(φ) + 4ρcos(φ)] ρ² sin(φ) dρ dφ dθ

To learn more about the integral visit:

brainly.com/question/30094386

#SPJ4

joe has ¾ cup of paint in a container. he uses 1/3 cup on a project and then adds another ½ cup. how much paint does he have now?

Answers

After using 1/3 cup of paint on a project and adding another 1/2 cup, Joe now has 7/12 cup of paint in the container.

Initially, Joe has 3/4 cup of paint in the container. He uses 1/3 cup of paint on a project.

To find out how much paint is left, we subtract 1/3 from 3/4. To do this, we need a common denominator, which in this case is 12.

Multiplying the numerator and denominator of 1/3 by 4 gives us 4/12.

Now we can subtract 4/12 from 9/12, which equals 5/12 cup of paint remaining in the container.

Next, Joe adds another 1/2 cup of paint to the container. To determine the total amount of paint, we add 5/12 and 1/2.

To add fractions, we need a common denominator, which is 12 in this case.

Multiplying the numerator and denominator of 1/2 by 6 gives us 6/12.

Now we can add 5/12 and 6/12, which equals 11/12 cup of paint.

Therefore, after using 1/3 cup of paint on the project and adding another 1/2 cup, Joe now has 11/12 cup of paint in the container.

To learn more about paint visit:

brainly.com/question/11643610

#SPJ11

Prove the identity. tan 21-x) = -tanx Note that each Statement must be based on a Rule chosen from the Rule menu. To see a detailed description of a Rule, select the More Information Button to the right of the Rule.

Answers

tan(21 - x) is indeed equal to -tan(x), proved given identity.

How to prove the identity tan(21 - x) = -tan(x)?

To prove the identity tan(21 - x) = -tan(x), we can use the trigonometric identity known as the tangent difference formula:

tan(A - B) = (tan(A) - tan(B))/(1 + tan(A)tan(B)).

Let's apply this identity to the given equation, where A = 21 and B = x:

tan(21 - x) = (tan(21) - tan(x))/(1 + tan(21)tan(x)).

Now, let's substitute the values of A and B into the formula. According to the given identity, we need to show that the right-hand side simplifies to -tan(x):

(tan(21) - tan(x))/(1 + tan(21)tan(x)) = -tan(x).

To simplify the right-hand side, we can use the trigonometric identity for tangent:

tan(A) = sin(A)/cos(A).

Using this identity, we can rewrite the equation as:

(sin(21)/cos(21) - sin(x)/cos(x))/(1 + (sin(21)/cos(21))(sin(x)/cos(x))) = -tan(x).

To simplify further, we can multiply both the numerator and denominator by cos(21)cos(x) to clear the fractions:

((sin(21)cos(x) - sin(x)cos(21))/(cos(21)cos(x)))/(cos(21)cos(x) + sin(21)sin(x)) = -tan(x).

Using the trigonometric identity for the difference of sines:

sin(A - B) = sin(A)cos(B) - cos(A)sin(B),

we can simplify the numerator:

sin(21 - x) = -sin(x).

Since sin(21 - x) = -sin(x), the simplified equation becomes:

(-sin(x))/(cos(21)cos(x) + sin(21)sin(x)) = -tan(x).

Now, we can use the trigonometric identity for tangent:

tan(x) = sin(x)/cos(x),

to rewrite the left-hand side:

(-sin(x))/(cos(21)cos(x) + sin(21)sin(x)) = -sin(x)/cos(x) = -tan(x).

Thus, we have shown that tan(21 - x) is indeed equal to -tan(x), proving the given identity.

Learn more about trigonometric identities

brainly.com/question/24377281

#SPJ11

Explain with examples and diagrams local maxima, local minima,
relative maxima, relative minima, absolute maxima, and absolute
minima.
Thanks

Answers

In mathematical analysis, local maxima and minima refer to the highest and lowest points within a small neighborhood of a function, while relative maxima and minima are the highest and lowest points within a specific interval. Absolute maxima and minima, on the other hand, are the global highest and lowest points of a function over its entire domain.

Local maxima and minima occur at points where the function reaches its highest or lowest values within a small neighborhood. These points are identified by comparing the function's values at the critical points and their surrounding values. For example, consider the function f(x) = [tex]x^{2}[/tex]- 4x + 3. The graph of this function is a parabola. At x = 2, the function has a local minimum because it reaches the lowest point in a small neighborhood around x = 2.

Relative maxima and minima, also known as local extrema, are the highest and lowest points within a specific interval of the function. They can be identified by finding critical points within the interval and comparing their function values. For instance, if we consider the same function f(x) =[tex]x^{2}[/tex]- 4x + 3 over the interval [1, 3], the point x = 2 is a relative minimum because it is the lowest point within that interval.

Absolute maxima and minima are the highest and lowest points of a function over its entire domain. These points can be found by evaluating the function at the critical points and endpoints of the domain. Using the same example, the function f(x) = [tex]x^{2}[/tex] - 4x + 3 has an absolute minimum at x = 2 because it is the lowest point over the entire domain of the function.

In summary, local maxima and minima occur within small neighborhoods, relative maxima and minima exist within specific intervals, and absolute maxima and minima are the global highest and lowest points over the entire domain of a function.

Learn more about  graph here: https://brainly.com/question/31126687

#SPJ11

The difference between the roots of the equation 2x^2 -7x+c=0, what is c

Answers

The difference between the roots of the equation 2x² - 7x + c = 0 is determined by the value of c being less than or equal to 49/8.

The difference between the roots of the equation 2x² - 7x + c = 0 is determined by finding the roots of the equation first. To find the roots, the equation can be rewritten by using the quadratic formula as follows:

x = [-b ± √(b² - 4ac)]/2a

Plugging in the values of a = 2, b = -7, and c = c, we get

x = [-(-7) ± √(72 - 4(2)(c))]/4

x = [7 ± √(49 - 8c)]/4

For x to be real, the term under the square root must be greater than or equal to 0. So,

49 - 8c ≥ 0

This simplifies to

8c ≤ 49

Therefore, c must be less than or equal to 49/8 for the roots of the equation to be real.

Hence, the difference between the roots of the equation 2x² - 7x + c = 0 is determined by the value of c being less than or equal to 49/8.

To learn more about the roots of quadratic equation visit:

https://brainly.com/question/18305483.

#SPJ1

8. (8pts) Consider the function f(x,y,z) = xy2z3 at the point P(2,1,1). a. Find the value of the derivative as you move towards Q(0, -3,5). b. Find the maximum rate of change and the direction in which it occurs.

Answers

The value of the derivative of f(x,y,z) as one moves from P(2,1,1) towards Q(0,-3,5) is -42.

The maximum rate of change of f(x,y,z) at the point P(2,1,1) is 84√59, which occurs in the direction of the unit vector <-3/√59, 10/√59, 4/√59>.

To find the derivative of f(x,y,z) as one moves from P(2,1,1) towards Q(0,-3,5), we can use the gradient of f, denoted by ∇f. Thus, ∇f = <y2z3, 2xyz3,="" 3xy2z2="">.

Evaluating ∇f at P(2,1,1), we get ∇f(2,1,1) = &lt;1,4,3&gt;. To move towards Q(0,-3,5), we need to find the unit vector that points in that direction. That vector is &lt;-2/√38, -3/√38, 5/√38&gt;.

Taking the dot product of this unit vector and ∇f(2,1,1), we get -42, which is the value of the derivative as we move from P towards Q.

To find the maximum rate of change and the direction in which it occurs, we need to find the magnitude of ∇f(2,1,1), which is √26.

Then, multiplying this by the magnitude of the direction vector &lt;-2/√38, -3/√38, 5/√38&gt;, which is √38, we get 84√59 as the maximum rate of change.

To find the direction in which this occurs, we simply divide the direction vector by its magnitude to get the unit vector &lt;-3/√59, 10/√59, 4/√59&gt;. Therefore, the maximum rate of change of f at P(2,1,1) occurs in the direction of this vector.

Learn more about maximum here.

https://brainly.com/questions/30693656

#SPJ11




Problem 1. (1 point) Find an equation of the curve that satisfies dy dx 24yx5 and whose y-intercept is 5. y(x) = =

Answers

The equation of the curve that satisfies the given conditions is [tex]\ln|y| = 4x^6 + \ln|5|$.[/tex]

What are ordinary differential equations?

Ordinary differential equations (ODEs) are mathematical equations that involve an unknown function and its derivatives with respect to a single independent variable. Unlike partial differential equations, which involve partial derivatives with respect to multiple variables, ODEs deal with derivatives of a single variable.

ODEs are widely used in various fields of science and engineering to describe dynamic systems and their behavior over time. They help us understand how a function changes in response to its own derivative or in relation to the independent variable.

To find an equation of the curve that satisfies the given condition, we can solve the given differential equation and use the given y-intercept.

The given differential equation is [tex]\frac{dy}{dx} = 24yx^5$.[/tex]

Separating variables, we can rewrite the equation as [tex]\frac{dy}{y} = 24x^5 \, dx$.[/tex]

Integrating both sides, we have [tex]$\ln|y| = \frac{24}{6}x^6 + C$[/tex], where [tex]$C$[/tex] is the constant of integration.

Simplifying further, we get [tex]\ln|y| = 4x^6 + C$.[/tex]

To find the value of the constant [tex]$C$[/tex], we use the fact that the curve passes through the[tex]$y$-intercept $(0, 5)$.[/tex]

Substituting [tex]$x = 0$[/tex] and[tex]$y = 5$[/tex]into the equation, we have[tex]$\ln|5| = 4(0^6) + C$.[/tex]

Taking the natural logarithm of 5, we find [tex]$\ln|5| = C$.[/tex]

Therefore, the equation of the curve that satisfies the given conditions is [tex]\ln|y| = 4x^6 + \ln|5|$.[/tex]

Learn more about ordinary differential equations:

https://brainly.com/question/28099315

#SPJ4

Joseph was kayaking on the Hudson River. While looking at the Breakneck Ridge trail-head, he lost a whole bag of donuts. Joseph didn't realize he had lost it for fifteen minutes. That's when he turned back and started going in the opposite direction. When he found the bag, which was going at the speed of the Hudson's current, it was two miles from the Breakneck Ridge trail-head. What is the speed of the current in the Hudson River?

Answers

The speed of the current in the Hudson River is  2.67 miles per hour.

How do we calculate?

We can say that  Joseph's speed while kayaking is the sum of his speed relative to the water and the speed of the current.

Assuming we represent speed as "x" We then set up an equation as shown below:

Joseph's speed = (x/4 + 2) miles

Joseph's speed = speed of the current,

x = x/4 + 2

4x = x+ 8

4x - x = 8

3x = 8

x= 8/3

x =  2.67

In conclusion,  the speed of the current in the Hudson River is is found as y 2.67 miles per hour.

Learn more about speed at :

https://brainly.com/question/13262646

#SPJ1

Determine the a) concavity and the b) value of its vertex a. y=x^2 +X-6 C. y = 4x² + 4x – 15 b. y = x2 - 2x - 8 d. y = 1 - 4x - 3x?"

Answers

(a) The concavity of the given quadratic functions is as follows:

y = x^2 + x - 6 is concave up.

y = 4x^2 + 4x - 15 is concave up.

y = x^2 - 2x - 8 is concave up.

y = 1 - 4x - 3x^2 is concave down.

(b) The value of the vertex for each function is as follows:

y = x^2 + x - 6 has a vertex at (-0.5, -6.25).

y = 4x^2 + 4x - 15 has a vertex at (-0.5, -16.25).

y = x^2 - 2x - 8 has a vertex at (1, -9).

y = 1 - 4x - 3x^2 has a vertex at (-2/3, -23/9).

(a) To determine the concavity of a quadratic function, we examine the coefficient of the x^2 term. If the coefficient is positive, the function is concave up; if it is negative, the function is concave down.

(b) The vertex of a quadratic function can be found using the formula x = -b/2a, where a and b are the coefficients of the x^2 and x terms, respectively. Substituting this value of x into the function gives us the y-coordinate of the vertex. The vertex represents the minimum or maximum point of the function.

By applying these concepts to each given quadratic function, we can determine their concavity and find the coordinates of their vertices.

Learn more about concavity here : brainly.com/question/29142394

#SPJ11

An airplane flies at a velocity of 475 km/h at a bearing of 305° as it encounters a 160 km/h wind coming from a direction S40°W. Find the resultant velocity of the airplane accurate to two decimal places.

Answers

The resultant velocity of the airplane is 495.68 km/h at a bearing of 53.71°.

To solve this problem, we need to use vector addition. We can break down the velocity of the airplane and the velocity of the wind into their respective horizontal and vertical components.

First, let's find the horizontal and vertical components of the airplane's velocity. We can use trigonometry to do this. The angle between the airplane's velocity and the x-axis is 360° - 305° = 55°.

The horizontal component of the airplane's velocity is:

cos(55°) * 475 km/h = 272.05 km/h

The vertical component of the airplane's velocity is:

sin(55°) * 475 km/h = 397.72 km/h

Finding the horizontal and vertical components of the wind velocity. The direction of the wind is S40°W, which means it makes an angle of 40° with the south-west direction (225°).

The horizontal component of the wind's velocity is:

cos(40°) * 160 km/h = 122.38 km/h

The vertical component of the wind's velocity is:

sin(40°) * 160 km/h = -103.08 km/h (note that this is negative because the wind is blowing in a southerly direction)

To find the resultant velocity, we can add up the horizontal and vertical components separately:

Horizontal component: 272.05 km/h + 122.38 km/h = 394.43 km/h

Vertical component: 397.72 km/h - 103.08 km/h = 294.64 km/h

Now we can use Pythagoras' theorem to find the magnitude of the resultant velocity:

sqrt((394.43 km/h)^2 + (294.64 km/h)^2) = 495.68 km/h (rounded to two decimal places)

Finally, we need to find the direction of the resultant velocity. We can use trigonometry to do this. The angle between the resultant velocity and the x-axis is:

tan^-1(294.64 km/h / 394.43 km/h) = 36.29°

However, this angle is measured from the eastward direction, so we need to subtract it from 90° to get the bearing from the north:

90° - 36.29° = 53.71°

Therefore, the resultant velocity of the airplane is 495.68 km/h at a bearing of 53.71°.

To know more about resultant velocity refer here:

https://brainly.com/question/3721072#

#SPJ11

Please explain each step in neat handwriting. thank you!
2. Use an integral to find the area above the curve y = -e* + e(2x-3) and below the x-axis, for x > 0. You need to use a graph to answer this question. You will not receive any credit if you use the m

Answers

The area above the curve y = -eˣ + e²ˣ⁻³ and below the x-axis, for x ≥ 0, is infinite.

To begin, let's define the given function as f(x) = -eˣ + e²ˣ⁻³. Our objective is to find the area between this curve and the x-axis for x ≥ 0.

Step 1: Determine the interval of integration

The given condition, x ≥ 0, tells us that we need to calculate the area starting from x = 0 and moving towards positive infinity. Therefore, our interval of integration is [0, +∞).

Step 2: Set up the integral

The area we want to find can be calculated as the integral of the function f(x) = -eˣ + e²ˣ⁻³ from 0 to +∞. Mathematically, this can be represented as:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

Step 3: Evaluate the integral

To evaluate the integral, we need to find the antiderivative of the integrand. Let's integrate term by term:

∫[-eˣ + e²ˣ⁻³] dx = -∫eˣ dx + ∫e²ˣ⁻³ dx

Integrating the first term, we have:

-∫eˣ dx = -eˣ + C1

For the second term, let's make a substitution to simplify the integration. Let u = 2x-3. Then, du = 2 dx, or dx = du/2. The limits of integration will also change according to this substitution. When x = 0, u = 2(0) - 3 = -3, and when x approaches +∞, u approaches 2(+∞) - 3 = +∞. Thus, the integral becomes:

∫e²ˣ⁻³ dx = ∫eᵃ * (1/2) du = (1/2) ∫eᵃ du = (1/2) eᵃ + C2

Now we can rewrite the integral as:

A = -eˣ + (1/2)e²ˣ⁻³ + C

Step 4: Evaluate the definite integral

To find the area, we need to evaluate the definite integral from 0 to +∞:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

= lim as b->+∞ (-eˣ + (1/2)e²ˣ⁻³) - (-e⁰ + (1/2)e²⁽⁰⁾⁻³)

= -lim as b->+∞ eˣ + (1/2)e²ˣ⁻³ + 1

As b approaches +∞, the first term eˣ and the second term (1/2)e²ˣ⁻³ both go to +∞. Thus, the overall limit is +∞.

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

16. [-/1 Points] DETAILS LARCALC11 14.6.007. Evaluate the iterated integral. IIT 6ze dy dx dz Need Help? Read it Watch It

Answers

The given iterated integral ∫∫∫ 6ze dy dx dz needs to be evaluated by integrating with respect to y, x, and z.

To evaluate the given iterated integral, we start by determining the order of integration. In this case, the order is dy, dx, dz. We then proceed to integrate each variable one by one.

First, we integrate with respect to y, treating z and x as constants. The integral of 6ze dy yields 6zey.

Next, we integrate the result from the previous step with respect to x, considering z as a constant. This gives us ∫(6zey) dx = 6zeyx + C1.

Finally, we integrate the expression obtained in the previous step with respect to z. The integral of 6zeyx with respect to z yields 3z²eyx + C2.

Thus, the evaluated iterated integral becomes 3z²eyx + C2, which represents the antiderivative of the function 6ze with respect to y, x, and z.

Learn more about Iterated integral click here :brainly.com/question/26059969

#SPJ11

Earl is ordering supplies. Yellow paper costs $5.00
per ream while white paper costs $6.50 per ream. He would like to
order 100 reams total, and has a budget of $560. How many reams of
each color should he order?

Answers

Earl should order 60 reams of yellow paper and 40 reams of white paper to meet his requirement of 100 reams total and stay within his budget of $560.

Let's assume Earl orders x reams of yellow paper and y reams of white paper.

According to the given information:

Yellow paper cost: $5.00 per ream

White paper cost: $6.50 per ream

Total reams ordered: 100

Total budget: $560

We can set up the following equations based on the given information:

Equation 1: x + y = 100 (Total reams ordered)

Equation 2: 5x + 6.50y = 560 (Total cost within budget)

We can use these equations to solve for x and y.

From Equation 1, we can express x in terms of y:

x = 100 - y

Substituting this value of x into Equation 2:

5(100 - y) + 6.50y = 560

500 - 5y + 6.50y = 560

1.50y = 60

y = 40

Substituting the value of y back into Equation 1:

x + 40 = 100

x = 60

Therefore, Earl should order 60 reams of yellow paper and 40 reams of white paper to meet his requirements and stay within his budget.

To learn more about equations visit : https://brainly.com/question/22688504

#SPJ11

Use place value reasoning and the first quotient to compute the second quotient.



A
0.162
B
16.2
C
162.0
D
1,620.0


Part B
Use place value to explain how you placed the decimal point in your answer.

Answers

The decimal point is placed after the digit 2 in the quotient, aligning with the decimal point in the dividend. Therefore, the correct answer would be:16.2, Hence option (B) is correct.

When dividing a decimal number, the decimal point in the quotient is placed directly above the decimal point in the dividend. The number of decimal places in the quotient is equal to the difference in the number of decimal places between the dividend and the divisor.

For example, if the first quotient is 16.2 and we need to compute the second quotient:

Let's assume the first quotient is 16.2 and the divisor is a whole number (no decimal places).

To compute the second quotient, we need to divide a dividend that has one decimal place by a divisor that has no decimal places.

In this case, we place the decimal point in the quotient directly above the decimal point in the dividend, and the number of decimal places in the quotient is equal to the number of decimal places in the dividend.

Learn more about dividend, from :

brainly.com/question/28392301

#SPJ1

applications of vectors
Question 1 (4 points) Calculate the dot product of the following: å= 3j+ k, b= 21-j+2E a

Answers

Calculation:Here, å = 3j + k, b = 21-j+2e, a is not given.So, we cannot calculate the dot product between these vectors as a is missing.

The given terms are "vectors", "Calculate", and "å= 3j+ k". Dot product of vectors:The dot product of two vectors is also known as the scalar product of vectors. It's a binary operation that accepts two vectors as inputs and generates a scalar number as output. It is mathematically expressed as:A.B = AB cosθWhere A and B are vectors, AB is the magnitude of vectors, and θ is the angle between them.Calculation:Here, å = 3j + k, b = 21-j+2e, a is not given.So, we cannot calculate the dot product between these vectors as a is missing.Thus, the given question cannot be answered with the given data.

learn more about vectors here;

https://brainly.com/question/12674335?

#SPJ11

Lumber division of Hogan Inc. reported a profit margin of 17% and a return on investment of 21.76%. Compute the investment turnover for Hogan. (round the number to two decimal points. E.g., 2.52) O 1.28 O 0.78 O 0.02 O 5.88

Answers

Lumber division of Hogan Inc. reported a profit margin of 17% and a return on investment of 21.76%. the investment turnover for Hogan Inc. is approximately 0.78. This indicates that for every dollar invested, the company generates approximately 78 cents in revenue.

The investment turnover is a financial ratio that measures how efficiently a company is utilizing its investments to generate revenue. It is calculated by dividing the revenue by the average total investment. In this case, we are given the profit margin and the return on investment (ROI), and we can use these values to calculate the investment turnover.

The profit margin is defined as the ratio of net income to revenue, expressed as a percentage. In this scenario, the profit margin is given as 17%. This means that for every dollar of revenue generated, the company has a profit of 17 cents.

The ROI is the ratio of net income to the average total investment, expressed as a percentage. In this case, the ROI is given as 21.76%. This means that for every dollar invested, the company generates a return of 21.76 cents.

To calculate the investment turnover, we can rearrange the ROI formula as follows:

ROI = (Net Income / Average Total Investment) * 100

Since the profit margin is equal to the net income divided by revenue, we can substitute the profit margin into the ROI formula:

ROI = (Profit Margin / Average Total Investment) * 100

Now, we can rearrange the formula to solve for the average total investment:

Average Total Investment = Profit Margin / (ROI / 100)

Substituting the given values:

Average Total Investment = 17% / (21.76% / 100) = 17 / 21.76 ≈ 0.78

Therefore, the investment turnover for Hogan Inc. is approximately 0.78. This indicates that for every dollar invested, the company generates approximately 78 cents in revenue.

Learn more about ROI here:

https://brainly.com/question/28063973

#SPJ11

PLEASE HELP WILL GIVE THUMBS UP
Problem. 7: Find the vector that is in the same direction as the vector (6,9, -2) but has length 4. Answer: Problem. 3: What is the angle between the vector 3i+Jand the positive Dacia? Answer: (radian

Answers

A definite integral represents the calculation of the net area between a function and the x-axis over a specific interval. An example of a definite integral is ∫[a, b] f(x) dx, where f(x) is the function, and a and b are the limits of integration. An indefinite integral represents the antiderivative or the family of functions whose derivative is equal to the given function. An example of an indefinite integral is ∫f(x) dx, where f(x) is the function.

To evaluate the given expressions:

a) ∫(3x^2 - 8x + 4) dx: This is an indefinite integral, and the result would be a function whose derivative is equal to 3x^2 - 8x + 4.

b) ∫p dp: This is an indefinite integral, and the result would be a function whose derivative is equal to p.

c) To find the area under the curve f(x) = 3x + 3 on the interval [0, 4], we can use the definite integral ∫[0, 4] (3x + 3) dx. The area can be found by evaluating the integral.

a) The indefinite integral represents finding the antiderivative or the family of functions whose derivative matches the given function. It does not involve specific limits of integration.

b) The indefinite integral represents finding the antiderivative or the family of functions whose derivative matches the given function. It also does not involve specific limits of integration.

c) To find the area under the curve, we can evaluate the definite integral ∫[0, 4] (3x + 3) dx. This involves finding the net area between the function f(x) = 3x + 3 and the x-axis over the interval [0, 4]. The result of the integral will give us the area under the curve between x = 0 and x = 4. It can be calculated by evaluating the integral using appropriate integration techniques.

To illustrate the area under the curve, a graph can be plotted with the x-axis, the function f(x) = 3x + 3, and the shaded region representing the area between the curve and the x-axis over the interval [0, 4]. The work involved in getting the area can be shown using the definite integral, including the integration process and substituting the limits of integration.

Learn more about integral here: https://brainly.com/question/31040425

#SPJ11

Find the first six terms of the Maclaurin series for the function f(x) = cos(3x) – sin(x²) E

Answers

The first six terms of the Maclaurin series for the function f(x) = cos(3x) - sin(x²) are 1 - 8x² - x³/3 + 83/3x⁴ + 0(x⁵).

To find the Maclaurin series for the given function f(x) = cos(3x) - sin(x²), we can use the Taylor series expansion formula.

The Taylor series expansion of a function centered at x = 0 is called the Maclaurin series.

We begin by finding the derivatives of the function with respect to x.

f'(x) = -6sin(3x) - 2xcos(x²)

f''(x) = -18cos(3x) + 2cos(x²) - 4x²sin(x²)

f'''(x) = 54sin(3x) - 4sin(x²) - 8xcos(x²) - 8x³cos(x²)

f''''(x) = 162cos(3x) + 4cos(x²) - 24xsin(x²) - 24x³sin(x²) - 24x⁵cos(x²)

Next, we evaluate these derivatives at x = 0 to find the coefficients of the Maclaurin series.

f(0) = cos(0) - sin(0) = 1

f'(0) = -6sin(0) - 2(0)cos(0) = 0

f''(0) = -18cos(0) + 2cos(0) - 4(0)²sin(0) = -16

f'''(0) = 54sin(0) - 4sin(0) - 8(0)cos(0) - 8(0)³cos(0) = -4

f''''(0) = 162cos(0) + 4cos(0) - 24(0)sin(0) - 24(0)³sin(0) - 24(0)⁵cos(0) = 166

Using these coefficients, we can write the first few terms of the Maclaurin series:

f(x) ≈ 1 - 16x²/2! - 4x³/3! + 166x⁴/4! + 0(x⁵)

Simplifying the terms, we get:

f(x) ≈ 1 - 8x² - x³/3 + 83/3x⁴ + 0(x⁵)

Therefore, the first six terms of the Maclaurin series for f(x) = cos(3x) - sin(x²) are 1 - 8x² - x³/3 + 83/3x⁴ + 0(x⁵).

Learn more about Derivatives here:

https://brainly.com/question/30401596

#SPJ11

question 36
In Exercises 35, 36, 37, 38, 39, 40, 41 and 42, find functions f and g such that h = gof. (Note: The answer is not unique.) 37. h (x) = V2 – 1

Answers

To find functions f and g such that h = gof, we need to determine how the composition of these functions can produce [tex]h(x) = √(2 - 1).[/tex]

Let's choose [tex]f(x) = √x and g(x) = 2 - x.[/tex] Now we can check if gof = h.

First, compute gof:

[tex]gof(x) = g(f(x)) = g(√x) = 2 - √x.[/tex]

Now compare gof with h:

[tex]gof(x) = 2 - √x = h(x) = √(2 - 1).[/tex]

We can see that gof matches h, so the functions [tex]f(x) = √x and g(x) = 2 - x[/tex]satisfy the condition h = gof.

learn more about:-  functions here

https://brainly.com/question/31062578

#SPJ11

4x Consider the integral fre dx: Applying the integration by parts technique, let u = and dv dx Then du dx and v= Then uv fudu = SC Integration gives the final answer dx

Answers

Consider the integral ∫4x * e^(4x) dx. By applying the integration by parts technique, letting u = 4x and dv/dx = e^(4x), the solution involves finding du/dx and v, using the formula uv - ∫v du.

To evaluate the integral, we begin by applying the integration by parts technique. Letting u = 4x and dv/dx = e^(4x), we can find du/dx and v to be du/dx = 4 and v = ∫e^(4x) dx = (1/4) * e^(4x).

Using the formula uv - ∫v du, we have:

∫4x * e^(4x) dx = (4x) * ((1/4) * e^(4x)) - ∫((1/4) * e^(4x)) * 4 dx.

Simplifying the expression, we obtain:

∫4x * e^(4x) dx = x * e^(4x) - ∫e^(4x) dx.

Integrating ∫e^(4x) dx, we have (∫e^(4x) dx = (1/4) * e^(4x)):

∫4x * e^(4x) dx = x * e^(4x) - (1/4) * e^(4x) + C.

Therefore, the final answer for the integral is x * e^(4x) - (1/4) * e^(4x) + C, where C represents the constant of integration.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Other Questions
A material change in a modified endowment contract (MEC) results ina. the contract becoming voidb. a new contestable periodc. the seven pay test, adjusted for cash value, applies againd. a tax penalty Please help me with a, b, and c. Thank you.f(x) - f(a) a. Use the definition mtan = lim x-a x-a b. Determine an equation of the tangent line at P. c. Plot the graph of f and the tangent line at P. f(x)=x-9, P(-5,16) to find the slope of the tangent (Net present value calculation) Big Steve's, makers of swizzle sticks, is considering the purchase of a new plastic stamping machine. This investment requires an initial outlay of $90,000 and will generate net cash inflows of $17,000 per year for 9 years. a. What is the project's NPV using a discount rate of 7 percent? Should the project be accepted? Why or why not? b. What is the project's NPV using a discount rate of 14 percent? Should the project be accepted? Why or why not? c. What is this project's internal rate of return? Should the project be accepted? Why or why not? .. a. If the discount rate is 7 percent, then the project's NPV is $. (Round to the nearest dollar.) about the original function, not the derivative or second derivative. Blomme 3. Find the equation of the line tangent to the equation yrt the point x = 2. Notice that the equation is neither a power f d. 8x2 + 2x 1 = 0 e. x2 + 2x + 2 = 0 f. 3x + 4x + 1 = 0 - 5. Determine the roots of the following: a. x2 + 7x + 35 = 0 b. 6x2 - x-1=0 c. X? - 16x + 64 = 0 6. Find the sum and product of the follow" A couple is married, and both are Illinois residents. If their co-owned home is sold to satisfy their unpaid credit card debts, what is the maximum the creditors will receive if the property sells for $165,000? if there are 6 chromosomes in a diploid organism, draw all of the possible arrangements of chromosomes at the metaphase plate in meiosis i Which of the following statements regarding lines of credit is FALSE?A.The line of credit agreement may also stipulate that at some point in time the outstanding balance must be zero. This policy ensures that the firm does not use the short-term financing to finance its long-term obligations.B.A revolving line of credit is an uncommitted line of credit that involves an informal agreement from the bank for a longer period of time, typically two to three years.C.The line of credit may be uncommitted, meaning it is an informal agreement that does not legally bind the bank to provide the funds.D.A revolving line of credit with no fixed maturity is called evergreen credit. Foreign exchange rates have an important impact on business. What impact does currency volatility have on a business operating internationally and what can that business do to deal with that impact? ____ is formed when ultraviolet radiation decomposes chlorinated hydrocarbon.a. Ozoneb. Carbon dioxidec. Phosgened. Argon Any idea.???????Here are four shapes rrange the following amines in order of increasing boiling point, lowest bp ________ to highest bp: (CH3)2CHCH2CH2NH2, (CH3)2CHN(CH3)2, and (CH3)2CHCH2NHCH3. and explain briefly your reasoning Integrate using Trigonometric Substitution. Write out every step using proper notation throughout your solution. You must draw and label the corresponding right triangle. Simplify your answer completely. Answers must be exact. Do not use decimals. 23 dx -9 Determine the intensity of a 120-dB sound. The intensity of the reference level required to determine the sound level is 1.01012W/m2.Determine the intensity of a 20-dB sound. 1. An apple is better choice than apple juice because the apple provides fiber. T/F2. Teens should be physically active for 30 minutes every day for good health T/F3. Nutrient-dense foods have a high ratio of nutrients to calories. T/F4. Children who eat breakfast are more likely to be overweight T/F5. Foods are organized into groups in MyPlate based on their caloric content. T/F draw the approximate bode plot for the following systems. you need to use the corner frequency to determine the magnitude plot (mark the slope), and the starting/ending frequency to determine the phase plot. (a) (15 points) g(s) assume the acceleration due to gravity g at a distance r from the center of the planet of mass m is 9 m/s 2 . in terms of the radius of revolution r, what would the speed of the satellite have to be to remain in a circular orbit around this planet at this distance? what are antitrust laws?laws meant to protect businesses from unfair treatment from consumers.legislation enacted to prevent the encroachment of government into the private governing the management of state-owned meant to eliminate collusion and promote competition among firms.identify the first antitrust law and its federal trade commission act of 1914 established the robinson-patman act of 1936 prohibited anticompetitive price clayton act of 1890 prohibits firms from owning stock in competing clayton act of 1950 toughened restrictions on mergers by prohibiting any merger that leads toreduced sherman act of 1914 established the federal trade sherman act of 1890 prohibits price fixing, collusion, and monopolization. What is the area of the figure? In Units private security officers have the same common law rights as