This que A force of 13 lb is required to hold a 58-lb crate on a hill. What angle does the hill make with the horizontal? The hill makes an angle of with the horizontal. (Type your answer in degrees. Round to the nearest integer as needed.)

Answers

Answer 1

The hill makes an angle of 12 degrees with the horizontal. Given data: Force required to hold the crate, F = 13 lb

Weight of the crate, W = 58 lb

From the given data, it can be said that the force F is acting parallel to the hill (friction force) and opposes the weight W, which is acting vertically downwards.The force diagram is shown below:

[tex]tan\theta = \frac{F}{W}[/tex][tex]\theta = tan^{-1}\frac{F}{W}[/tex]

Substituting the given values, we get:

[tex]\theta = tan^{-1}\frac{13}{58}[/tex][tex]\theta = 12^{\circ}[/tex]

Therefore, the hill makes an angle of 12 degrees with the horizontal.

To know more about Force required visit:

https://brainly.com/question/30056873

#SPJ11


Related Questions

2. The amount of time (in hours) James spends on his phone in a given day is a normally distributed random variable with mean 5 hours and standard deviation 1.5 hours. In all of the following parts, you may assume that the amount of time James spends on his phone in a given day is independent of the amount of time he spent on his phone on all other days. Leave your answers in terms of i. What is the probability that, in a given week, there are exactly 5 days during which James spends over 6 hours on his phone? ii. What is the expected number of days (including the final day) until James first spends over 6 hours on his phone?

Answers

i) the probability that James spends over 6 hours on his phone in one day is 0.2525.

ii) the expected number of days until James first spends over 6 hours on his phone is approximately 3.96 days.

(i)Probability that James spends over 6 hours on his phone in one day is given by:

P(X > 6)

This can be calculated using the standard normal distribution function as follows:

Z = (X - μ) / σ = (6 - 5) / 1.5 = 2/3P(X > 6) = P(Z > 2/3)

Using the standard normal distribution table, we get:P(Z > 2/3) = 0.2525

Therefore, the probability that James spends over 6 hours on his phone in one day is 0.2525.

We can assume that the number of days James spends over 6 hours on his phone in a given week follows a binomial distribution with parameters n = 7 (the number of days in a week) and p = 0.2525 (the probability of James spending over 6 hours on his phone in one day).

To find the probability that James spends over 6 hours on his phone on exactly 5 days in a given week, we can use the binomial distribution function:

P(X = 5) = (7C5) (0.2525)5 (1 - 0.2525)2= 0.092(ii)Let Y be the number of days (including the final day) until James first spends over 6 hours on his phone.

We can assume that Y follows a geometric distribution with parameter p = 0.2525 (the probability of James spending over 6 hours on his phone in one day).

The expected value of a geometric distribution is given by:E(Y) = 1 / p

Therefore,E(Y) = 1 / 0.2525 = 3.96 (rounded to two decimal places)

Learn more about probability at:

https://brainly.com/question/31602316

#SPJ11

From a sample with n=8, the mean number of televisions per household is 4 with a standard deviation of 1 television. Using Chebychev's Theorem, determine at least how many of the households have between 2 and 6 televisions. GOOOD d: At least of the households have between 2 and 6 televisions. (Simplify your answer.) ori Q on

Answers

By applying Chebyshev's Theorem, we can determine the minimum proportion of households that have between 2 and 6 televisions.

Chebyshev's Theorem states that for any distribution (regardless of its shape), at least (1 - 1/k^2) of the data values will fall within k standard deviations from the mean, where k is a constant greater than 1. In this case, we know that the mean number of televisions per household is 4, and the standard deviation is 1.

To find the proportion of households with between 2 and 6 televisions, we calculate the number of standard deviations away from the mean each of these values is. For 2 televisions, it is (2 - 4) / 1 = -2 standard deviations, and for 6 televisions, it is (6 - 4) / 1 = 2 standard deviations.

Using Chebyshev's Theorem, we can determine the minimum proportion of households within this range. Since k = 2, at least (1 - 1/2^2) = (1 - 1/4) = 3/4 = 75% of the households will have between 2 and 6 televisions. Therefore, we can conclude that at least 75% of the households have between 2 and 6 televisions.

Learn more about Chebyshev's Theorem here:

https://brainly.com/question/32092925

#SPJ11


A rectangle has sides of length 4cm and 8cm. What is the dot
product of the vectors that represent the diagonals?

Answers

The dot product of the vectors representing the diagonals is -16. Answer: -16.

Let A and C be the two endpoints of the rectangle. Then, AC = 8 cm is the longer side. The midpoint of AC is M, which is the intersection of its perpendicular bisectors.

Therefore, the length of the shorter side of the rectangle is half of the length of AC, i.e.,

MC = 4 cm.

Now, let's move on to calculate the dot product of the vectors representing the diagonals. AD and CB are the two diagonals of the rectangle that pass through its midpoint M.

Then, the vector representing the diagonal AD can be written as the difference between its two endpoints A and D, i.e.,

AD = D - A = (MC + AB) - A

= C - M + B

= CB + BA - 2MC,

where AB is the vector that points from A to B.

Similarly, the vector representing the diagonal CB can be written as

CB = A - M + D

= BA + AD - 2MC.

Substituting for AD and CB in the dot product, we get AD .

CB = (CB + BA - 2MC) . (BA + AD - 2MC)

= CB . BA + CB . AD - 2CB . MC + BA . AD - 2BA . MC - 4MC²

= (A - M + D) . (B - A) + (A - M + D) . (D - A) - 2(A - M + D) . MC + (B - A) . (D - A) - 2(B - A) . MC - 4MC²

= AB² + CD² - 4MC² - 2(A - M) . MC - 2(D - M) . MC

= AB² + CD² - 4MC² - 2AM . MC - 2DM . MC.

Since the diagonals of a rectangle are equal, we have AD = CB. Therefore, AD . CB = AB² + CD² - 4MC² - 2AM . MC - 2DM . MC

= 64 + 16 - 16 - 2(4)(4) - 2(8)(4)

= - 16.

The dot product of the vectors representing the diagonals is -16. Answer: -16.

To learn more about vectors visit;

https://brainly.com/question/24256726

#SPJ11


if
A varies inversely as B, find the inverse variation equation for
the situation.

A= 60 when B = 5
If A varies inversely as B, find the inverse variation equat A = 60 when B = 5. O A. A = 12B B. 300 A= B O c 1 1 A= 300B OD B A= 300

Answers

The inverse variation equation for the given situation is A = 300/B.

When A varies inversely with B, it means that the product of A and B is a constant. That is, A × B = k where k is the constant of variation. Therefore, the inverse variation equation is given by: A × B = k. Using the values

A = 60 and

B = 5, we can find the constant of variation k.

A × B = k ⇒ 60 × 5

= k ⇒ k

= 300. Now that we know the constant of variation, we can write the inverse variation equation as:

A × B = 300. To isolate A, we can divide both sides by B:

A = 300/B. Therefore, the inverse variation equation for the given situation is

A = 300/B.

To know more about variation equation visit:-

https://brainly.com/question/6669994

#SPJ11

A sequence of numbers R. B...., P, is defined by R-1, P2 - 2, and P, -(2)(2-2) Quantity A Quantity B 1 The value of the product (R)(B)(B)(P4) Quantity A is greater. Quantity B is greater. The two quantities are equal. The relationship cannot be determined from the information given. for n 2 3.

Answers

The two quantities are equal.We are given the sequence R, B, ..., P, and its values for n = 1, 2, 3.

From the given information, we can deduce the values of the sequence as follows:

R = R-1 = 1 (since it is not explicitly mentioned)

B = P2 - 2 = 4 - 2 = 2

P = -(2)(2-2) = 0

Now we need to evaluate the product (R)(B)(B)(P₄) for n = 2 and n = 3:

For n = 2:

(R)(B)(B)(P₄) = (1)(2)(2)(0) = 0

For n = 3:

(R)(B)(B)(P₄) = (1)(2)(2)(0) = 0

Therefore, the value of the product (R)(B)(B)(P₄) is 0 for both n = 2 and n = 3. This implies that Quantity A is equal to Quantity B, and the two quantities are equal.

To learn more about sequence visit:

brainly.com/question/31887169

#SPJ11

1. Which of the following is the solution to the equation below? 2 sin²x-1=0 O x = 45+ 360k Ox=45+ 360k, x = 135 + 360k, x = 225 + 360k Ox=45+ 360k, x = 135 + 360k, x = 225+ 360k, x = 315 + 360k Ox=4

Answers

The correct solution to the equation 2sin²x - 1 = 0 is: x = 45 + 360k, x = 135 + 360k, where k is an integer.

To solve the equation 2sin²x - 1 = 0, we can use algebraic manipulations. Let's break down the solution options provided:

Option 1: x = 45 + 360kOption 2: x = 135 + 360kOption 3: x = 225 + 360kOption 4: x = 315 + 360k

To solve the equation, we isolate the sin²x term:

2sin²x - 1 = 0

2sin²x = 1

sin²x = 1/2

Next, we take the square root of both sides:

sinx = ±√(1/2)

The square root of 1/2 can be simplified as follows:

sinx = ±(√2/2)

Now, we need to determine the values of x that satisfy this equation.

In the unit circle, the sine function is positive in the first and second quadrants, where the y-coordinate is positive. This means that sinx = √2/2 will hold for x values in those quadrants.

Option 1: x = 45 + 360k

When k = 0, x = 45, sin(45°) = √2/2 (√2/2 > 0)

Option 2: x = 135 + 360k

When k = 0, x = 135, sin(135°) = √2/2 (√2/2 > 0)

Option 3: x = 225 + 360k

When k = 0, x = 225, sin(225°) = -√2/2 (-√2/2 < 0)

Option 4: x = 315 + 360k

When k = 0, x = 315, sin(315°) = -√2/2 (-√2/2 < 0)

So, the correct solution to the equation 2sin²x - 1 = 0 is:

x = 45 + 360k, x = 135 + 360k, where k is an integer.

To know more about equations , visit https://brainly.com/question/27652144

#SPJ11

Calculate the following for the given frequency distribution:
Data Frequency
50 −- 54 10
55 −- 59 21
60 −- 64 12
65 −- 69 10
70 −- 74 7
75 −- 79 4


Sample Mean =

Sample Standard Deviation =

Round to two decimal places, if necessary.

Answers

The data consists of intervals with their corresponding frequencies. To calculate the sample mean, we find the midpoint of each interval, multiply it by the frequency, and then divide the sum of these products by the total frequency.

The sample standard deviation is calculated by finding the weighted variance, which involves squaring the midpoint, multiplying it by the frequency, and then dividing by the total frequency. Finally, we take the square root of the weighted variance to obtain the sample standard deviation.

To calculate the sample mean, we find the weighted sum of the midpoints (52 * 10 + 57 * 21 + 62 * 12 + 67 * 10 + 72 * 7 + 77 * 4) and divide it by the total frequency (10 + 21 + 12 + 10 + 7 + 4). The resulting sample mean is approximately 60.86.

To calculate the sample standard deviation, we need to find the weighted variance. This involves finding the sum of the squared deviations of the midpoints from the sample mean, multiplied by their corresponding frequencies. We then divide this sum by the total frequency. Taking the square root of the weighted variance gives us the sample standard deviation, which is approximately 8.38.

To learn more about Sample mean : brainly.com/question/31101410

#SPJ11

Not yet answered Marked out of 1.00 Question 8 Let A and B be events in a random experiment. Suppose that A and B are independent and P(A) = 0.4 and P(B) = 0.2. Then P(A - B) = Select one: none a. b. 0.32 0.18 C. d. 0.12

Answers

A and B be events in a random experiment. The correct answer is (b) 0.32.

To find P(A - B), we need to subtract the probability of event B from the probability of event A. In other words, we want to find the probability of event A occurring without the occurrence of event B.

Since A and B are independent events, the probability of their intersection (A ∩ B) is equal to the product of their individual probabilities: P(A ∩ B) = P(A) * P(B).

We can use this information to find P(A - B) as follows:

P(A - B) = P(A) - P(A ∩ B)

Since A and B are independent, P(A ∩ B) = P(A) * P(B).

P(A - B) = P(A) - P(A) * P(B)

Given that P(A) = 0.4 and P(B) = 0.2, we can substitute these values into the equation:

P(A - B) = 0.4 - 0.4 * 0.2

P(A - B) = 0.4 - 0.08

P(A - B) = 0.32

Therefore, the correct answer is (b) 0.32.

To know more about probability refer here:

https://brainly.com/question/31828911#

#SPJ11

Identify the order of the poles at z = 0 and find the residues of the following functions. (b) (a) sina, e2-1 sin2 Z

Answers

a). The residue of sin a at z = 0 is 0.

b). The expression you provided, e^2-1 sin^2(z), seems to have a typo or missing information.

In mathematics, a function is a rule or a relationship that assigns a unique output value to each input value. It describes how elements from one set (called the domain) are mapped or related to elements of another set (called the codomain or range). The input values are typically denoted by the variable x, while the corresponding output values are denoted by the variable y or f(x).

(a) sina:

The function sina has a simple pole at z = 0 because sin(z) has a zero at

z = 0.

The order of a pole is determined by the number of times the function goes to infinity or zero at that point. Since sin(z) goes to zero at z = 0, the order of the pole is 1.

To find the residue at z = 0, we can use the formula:

Res(f, z = a) = lim(z->a) [(z - a) * f(z)]

For the function sina, we have:

Res(sina, z = 0) = lim(z->0) [(z - 0) * sina(z)]

= lim(z->0) [z * sin(z)]

= 0.

Therefore, the residue of sina at z = 0 is 0.

(b) e^2-1 sin^2(z):

To determine the order of the pole at z = 0, we need to analyze the behavior of the function. However, the expression you provided, e^2-1 sin^2(z), seems to have a typo or missing information.

To know more about residue, visit:

https://brainly.com/question/13010508

#SPJ11

evaluate 5y da d , where d is the set of points (x, y) such that 0 ≤ 2x π ≤ y, y ≤ sin(x).

Answers

The expression 5y da d is evaluated over the set of points (x, y) that satisfy the conditions 0 ≤ 2x π ≤ y and y ≤ sin(x).

How is the expression 5y da d computed for points (x, y) that fulfill the conditions 0 ≤ 2x π ≤ y and y ≤ sin(x)?

To evaluate the expression 5y da d, we need to consider the set of points (x, y) that meet the given conditions. The first condition, 0 ≤ 2x π ≤ y, ensures that y is greater than or equal to 2x π, meaning the y-values should be at least as large as the double of x multiplied by π. The second condition, y ≤ sin(x), restricts y to be less than or equal to the sine of x.

In essence, we are evaluating the expression 5y over the region defined by these conditions. This involves integrating the function 5y with respect to the area element da d over the set of valid points (x, y).

To compute the result, we would need to perform the integration over the specified region. The specific mathematical calculations depend on the shape and boundaries of the region, and may involve techniques such as double integration or evaluating the definite integral.

Learn more about expression

brainly.com/question/28170201

#SPJ11

DUK Use the chain rule to find the derivative of f(x) = f'(x) = _____ Differentiate f(w) = 8-7w+10 f'(w) =

Answers

The derivative of the function f(x) is given by f'(x). To differentiate the function f(w) = 8 - 7w + 10, we use the chain rule.

The chain rule is a differentiation rule that allows us to find the derivative of a composite function. In this case, we have the function f(w) = 8 - 7w + 10, and we want to find its derivative f'(w).To apply the chain rule, we first identify the inner function and the outer function. In this case, the inner function is w, and the outer function is 8 - 7w + 10. We differentiate the outer function with respect to the inner function, and then multiply it by the derivative of the inner function.
The derivative of the outer function 8 - 7w + 10 with respect to the inner function w is -7. The derivative of the inner function w with respect to w is 1. Multiplying these derivatives together, we get f'(w) = -7 * 1 = -7.
Therefore, the derivative of the function f(w) = 8 - 7w + 10 is f'(w) = -7.

Learn more about derivative here

https://brainly.com/question/29144258



#SPJ11

the complement of p( a | b) is a. p(ac | b) b. p(b | a) c. p(a | bc) d. p(a i b)

Answers

p(ac | b) gives us the probability of event ac occurring, which refers to the complement of event a. Hence the option a; p(ac | b) is the correct answer.

The complement of the conditional probability p(a | b) is represented as p(ac | b), where ac denotes the complement of event a.

In probability theory, the complement of an event refers to the event not occurring.

When we calculate the conditional probability p(a | b), we are finding the probability of event a occurring given that event b has occurred.

On the other hand, p(ac | b) represents the probability of the complement of event a occurring given that event b has occurred.

By taking the complement of event a, we are essentially considering all the outcomes that are not in event

Hence, the correct answer is option a: p(ac | b).

To know more about complement of event refer here:

https://brainly.com/question/10347093#

#SPJ11




Find the derivative of the trigonometric function. y = cot(5x² + 6) y' =

Answers

We are asked to find the derivative of the trigonometric function y = cot(5x² + 6) with respect to x. The derivative, y', represents the rate of change of y with respect to x.

To find the derivative of y = cot(5x² + 6) with respect to x, we apply the chain rule. The chain rule states that if we have a composite function, such as y = f(g(x)), then the derivative of y with respect to x is given by dy/dx = f'(g(x)) * g'(x).

In this case, let's consider the function f(u) = cot(u) and g(x) = 5x² + 6. The derivative of f(u) with respect to u is given by f'(u) = -csc²(u).

Applying the chain rule, we find that the derivative of y = cot(5x² + 6) with respect to x is given by:

y' = f'(g(x)) * g'(x) = -csc²(5x² + 6) * (d/dx)(5x² + 6).

To find (d/dx)(5x² + 6), we differentiate 5x² + 6 with respect to x, which yields:

(d/dx)(5x² + 6) = 10x.

Therefore, the derivative of y = cot(5x² + 6) with respect to x is:

y' = -csc²(5x² + 6) * 10x.

This expression represents the rate of change of y with respect to x.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Is the set of functions {1, sin x, sin 2x, sin 3x, ...} orthogonal on the interval [-π, π]? Justify your answer.

Answers

Sin x and sin 2x are orthogonal on the interval [-π, π]. The set of functions {1, sin x, sin 2x, sin 3x, ...} is not orthogonal on the interval [-π, π].The set of functions will be orthogonal if their dot products are equal to zero. However, if we evaluate the dot product between sin x and sin 3x on the interval [-π, π], we get:∫-ππ sin(x) sin(3x) dx= (1/2) ∫-ππ (cos(2x) - cos(4x)) dx

= (1/2)(sin(π) - sin(-π))

= 0

Therefore, sin x and sin 3x are also orthogonal on the interval [-π, π].However, if we evaluate the dot product between sin 2x and sin 3x on the interval [-π, π], we get:∫-ππ sin(2x) sin(3x) dx

= (1/2) ∫-ππ (cos(x) - cos(5x)) dx

= (1/2)(sin(π) - sin(-π))

= 0

To know more about orthogonal visit :-

https://brainly.com/question/32196772

#SPJ11

(Page 313, 6.3 Computer Problems, 1(a,d)) Apply Euler's Method with step sizes At = 0.1 and St = 0.01 to the following two initial value problems: Y₁ = y₁ + y2 1 = 31+32 Y2 = −Y₁ + y2 y2 = 2y1 + 2y2 y₁ (0) 1 y₁ (0) = 5 Y2 (0) - 0 Y₂ (0) = 0 One can verify that the exact solutions are Y1 et cost = Y₁ = 3e-t +2e4t Y/₂ == - et sint Y2 = -2e-t +2e4t respectively. Plot the approximate solutions and the correct solution on [0, 1], and find the global truncation error at t = 1. Is the reduction in error for At = 0.01 consistent with the order of Euler's Method? [3 marks]

Answers

Euler's Method with step sizes [tex]\(h_t = 0.1\) and \(h_s = 0.01\)[/tex] is applied to approximate the solutions of the given initial value problems, and the global truncation error at [tex]\(t = 1\)[/tex] can be determined to assess the consistency of the method.

To apply Euler's method, we use the given initial value problems:

[tex]\(\frac{dY_1}{dt} = y_1 + y_2\), \(y_1(0) = 5\)\(\frac{dY_2}{dt} = -y_1 + 2y_2\), \(y_2(0) = 0\)[/tex]

Using step sizes [tex]\(h_t = 0.1\) and \(h_s = 0.01\)[/tex], we can approximate the solutions as follows:

For [tex]\(h_t = 0.1\)[/tex]:

[tex]\(Y_1(t) = y_1 + h_t \cdot (y_1 + y_2)\)\(Y_2(t) = y_2 + h_t \cdot (-y_1 + 2y_2)\)[/tex]

For [tex]\(h_s = 0.01\)[/tex]:

[tex]\(Y_1(t) = y_1 + h_s \cdot (y_1 + y_2)\)\(Y_2(t) = y_2 + h_s \cdot (-y_1 + 2y_2)\)[/tex]

The exact solutions are:

[tex]\(Y_1(t) = 3e^{-t} + 2e^{4t}\)\(Y_2(t) = -e^{-t} \sin(t) + 2e^{4t}\)[/tex]

To find the global truncation error at [tex]\(t = 1\)[/tex], we calculate the difference between the exact solution and the approximate solution obtained using Euler's method at [tex]\(t = 1\)[/tex].

To determine if the reduction in error for [tex]\(h_s = 0.01\)[/tex] is consistent with the order of Euler's method, we compare the errors for different step sizes. If the error decreases as we decrease the step size, it indicates that the method is consistent with its order.

Finally, plot the approximate solutions and the correct solution on the interval [0, 1] to visually compare their behaviors.

For more questions on Euler's method:

https://brainly.com/question/14286413

#SPJ8

Let f(x) = 2-2, g(x) = 2x – 1, and h(x) = 2x² - 5x + 2. Write a formula for each of the following functions and then simplify.
a. (fh)(z) =
b. (h/f) (x)=
C. (h/g) (x)=

Answers

When a denominator evaluates to zero, a. (fh)(z) = h(z) * f(z) = (2z² - 5z + 2) * (2 - 2) = (2z² - 5z + 2) * 0 = 0 (b). (h/f)(x) = h(x) / f(x) = (2x² - 5x + 2) / (2 - 2) = (2x² - 5x + 2) / 0, (c). (h/g)(x) = h(x) / g(x) = (2x² - 5x + 2) / (2x - 1)

In the given problem, we are provided with three functions: f(x), g(x), and h(x). We are required to find formulas for the functions (fh)(z), (h/f)(x), and (h/g)(x), and simplify them.

a. To find (fh)(z), we simply multiply the function h(z) by f(z). However, upon multiplying, we notice that the second factor of the product, f(z), evaluates to 0. Therefore, the result of the multiplication is also 0.

b. To find (h/f)(x), we divide the function h(x) by f(x). In this case, the second factor of the division, f(x), evaluates to 0. Division by 0 is undefined in mathematics, so the result of this expression is not well-defined.

c. To find (h/g)(x), we divide the function h(x) by g(x). This division yields (2x² - 5x + 2) divided by (2x - 1). Since there are no common factors between the numerator and the denominator, we cannot simplify this expression further.

It is important to note that division by zero is undefined in mathematics, and we encounter this situation in part (b) of the problem. When a denominator evaluates to zero, the expression becomes undefined as it does not have a meaningful mathematical interpretation.

To know more factors click here

brainly.com/question/29128446

#SPJ11

Use the chain rule to find the derivative of 10√(9x^10+5x^7) Type your answer without fractional or negative exponents. Use sqrt(x) for √x.

Answers

The derivative of 10-v(9x^10+5x^7) with respect to x can be found using the chain rule. The derivative is given by the product of the derivative of the outer function, which is -v times the derivative of the inner function, multiplied by the derivative of the inner function with respect to x.

Applying the chain rule to this problem, the derivative is -v(9x^10+5x^7)^(v-1)(90x^9+35x^6).

Let's explain this process in more detail. The given function is 10-v(9x^10+5x^7). To differentiate it, we consider the outer function as -v(u), where u is the inner function 9x^10+5x^7. The derivative of the outer function is -v.

Next, we find the derivative of the inner function u with respect to x. For the terms 9x^10 and 5x^7, we apply the power rule. The derivative of 9x^10 is 90x^9, and the derivative of 5x^7 is 35x^6.

Finally, we multiply the derivative of the outer function (-v) with the derivative of the inner function (90x^9+35x^6), and we raise the inner function (9x^10+5x^7) to the power of (v-1). The resulting derivative is -v(9x^10+5x^7)^(v-1)(90x^9+35x^6).

Learn more about chain rule, here:

brainly.com/question/30764359

#SPJ11

24)Suppose we are estimating the GPA of UIS students using the scores on student’s SAT exams and we find that the correlation between SAT scores and GPA is close to +1. For those students who scored one standard deviation above the mean SAT score, using the regression method, what is the guess for their average GPA?
About 1 standard deviation above the average GPA
About 1 standard deviation below the average GPA
About 2 standard deviations above the average GPA
About 1.5 standard deviations above the average GPA
2)
"Students receiving a 4.0 in their first semester of college don't work as hard in future semesters, explaining why the GPAs of that group of students fall over their college career." This statement is an example of ____
Homer Simpson's paradox.
the regression fallacy.
regression to mediocrity.
the gambler's fallacy.
25) UIS is concerned that freshman may suffer from more bouts of depression than other students. To test this, the university gives a random set of 100 students a test for depression which creates a scale from 1 to 100 with higher numbers indicating more difficulty with depression. Since other factors, affect mental health, such as workload, income level, etc., the study controls for those other factors. How would the study address the issue of a potential difference between freshman and other students?
Group of answer choices
Use a categorical dummy variable coded 1 for freshman and 0 for other.
Use a categorical dummy variable coded 1 for freshman and 2 for sophomore and ignore juniors and seniors.
Drop all freshman from the sample
There is no way to test this theory.

Answers

About 1 standard deviation above the average GPA.

Use a categorical dummy variable coded 1 for freshmen and 0 for others.

We have,

24)

When the correlation between SAT scores and GPA is close to +1, it indicates a strong positive relationship between the two variables.

In this case, if we consider students who scored one standard deviation above the mean SAT score, we can use the regression method to estimate their average GPA.

Since the correlation is close to +1, it implies that higher SAT scores are associated with higher GPAs.

Therefore, students who scored one standard deviation above the mean SAT score would likely have an average GPA that is About 1 standard deviation above the average GPA.

25)

To investigate the potential difference between freshmen and other students regarding depression, the study needs to control for other factors that may influence mental health.

One way to address this issue is by using a categorical dummy variable.

In this case, the study can assign a value of 1 to indicate freshmen and 0 for other students.

By including this variable in the analysis while controlling for other factors, the study can specifically examine the effect of being a freshman on depression levels, allowing for a more accurate assessment of any potential differences.

Thus,

About 1 standard deviation above the average GPA.

Use a categorical dummy variable coded 1 for freshmen and 0 for others.

Learn more about standard deviation here:

https://brainly.com/question/13498201

#SPJ1




Find the local extrema places and values for the function : f(x, y) := x² − y³ + 2xy − 6x − y +1 ((x, y) = R²).

Answers

The local minimum value of the function f(x, y) = x² - y³ + 2xy - 6x - y + 1 occurs at the point (2, 1).

To find the local extrema of the function f(x, y) = x² - y³ + 2xy - 6x - y + 1, we need to determine the critical points where the partial derivatives with respect to x and y are both zero.

Taking the partial derivative with respect to x, we have:

∂f/∂x = 2x + 2y - 6

Taking the partial derivative with respect to y, we have:

∂f/∂y = -3y² + 2x - 1

Setting both partial derivatives equal to zero and solving the resulting system of equations, we find the critical point:

2x + 2y - 6 = 0

-3y² + 2x - 1 = 0

Solving these equations simultaneously, we obtain:

x = 2, y = 1

To determine if this critical point is a local extremum, we can use the second partial derivative test or evaluate the function at nearby points.

Taking the second partial derivatives:

∂²f/∂x² = 2

∂²f/∂y² = -6y

∂²f/∂x∂y = 2

Evaluating the second partial derivatives at the critical point (2, 1), we find ∂²f/∂x² = 2, ∂²f/∂y² = -6, and ∂²f/∂x∂y = 2.

Since the second partial derivative test confirms that ∂²f/∂x² > 0 and the determinant of the Hessian matrix (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² is positive, the critical point (2, 1) is a local minimum.

Therefore, the local minimum value of the function f(x, y) = x² - y³ + 2xy - 6x - y + 1 occurs at the point (2, 1).

For more information on local extrema visit: brainly.com/question/31504592

#SPJ11

if f(x) = exg(x), where g(0) = 1 and g'(0) = 5, find f '(0).

Answers

The value of f'(0) is 6 for the function [tex]f(x)=e^xg(x)[/tex] when  g(0) = 1 and g'(0) = 5.

To find f'(0), we need to find the derivative of f(x) with respect to x and then evaluate it at x=0.

Find the derivative of f(x):

[tex]f(x)=e^xg(x)[/tex]

By product rule:

[tex]f'(x)=e^xg'(x)+g(x)e^x[/tex]

Now plug in x as 0:

[tex]f'(0)=e^0g'(0)+g(0)e^0[/tex]

[tex]f'(0)=g'(0)+g(0)[/tex]

From given information g(0) = 1 and g'(0) = 5.

[tex]f'(0)=5+1[/tex]

[tex]f'(0)=6[/tex]

Hence, if function [tex]f(x)=e^xg(x)[/tex]  where g(0) = 1 and g'(0) = 5 then f'(0) is 6.

To learn more on Differentiation click:

https://brainly.com/question/24898810

#SPJ12

consider this code: "int s = 20; int t = s++ + --s;". what are the values of s and t?

Answers

After executing the given code, the final values of s and t are s = 19 andt = 39

The values of s and t can be determined by evaluating the given code step by step:

Initialize the variable s with a value of 20: int s = 20;

Now, s = 20.

Evaluate the expression s++ + --s:

a. s++ is a post-increment operation, which means the value of s is used first and then incremented.

Since s is currently 20, the value of s++ is 20.

b. --s is a pre-decrement operation, which means the value of s is decremented first and then used.

After the decrement, s becomes 19.

c. Adding the values obtained in steps (a) and (b): 20 + 19 = 39.

Assign the result of the expression to the variable t: int t = 39;

Now, t = 39.

After executing the given code, the final values of s and t are:

s = 19

t = 39

Learn more about code at https://brainly.com/question/29415289

#SPJ11

Suppose V & W are vector spaces and T: V -> W is a linear transformation. Prove the following statement or provide a counterexample.

If v1, v2, ... , vk are in V and T(v1), T(v2), ... , T(vk) are linearly independent then v1, v2, ... , vk are also linearly independent.

Answers

We have proved that if T(v₁), T(v₂), ... , T(vk) are linearly independent, then v₁, v₂, ... , vk are also linearly independent.

Let's prove the given statement. Suppose V & W are vector spaces and T: V -> W is a linear transformation.

We have to prove that if v₁, v₂, ... , vk are in V and T(v₁), T(v₂), ... , T(vk) are linearly independent then v₁, v₂, ... , vk are also linearly independent.

Proof:We assume that v₁, v₂, ... , vk are linearly dependent, so there exist scalars a₁, a₂, ... , ak (not all zero) such that a₁v₁ + a₂v₂ + · · · + akvk = 0.

Now, applying the linear transformation T to this equation, we get the following:T(a₁v₁ + a₂v₂ + · · · + akvk) = T(0)

⇒ a₁T(v₁) + a₂T(v₂) + · · · + akT(vk) = 0Now, we know that T(v₁), T(v₂), ... , T(vk) are linearly independent, which means that a₁T(v₁) + a2T(v₂) + · · · + akT(vk) = 0 implies that a₁ = a₂ = · · · = ak = 0 (since the coefficients of the linear combination are all zero).

Thus, we have proved that if T(v₁), T(v₂), ... , T(vk) are linearly independent, then v₁, v₂, ... , vk are also linearly independent.

To know more about linearly independent, visit:

https://brainly.com/question/30575734

#SPJ11

Prove, by mathematical induction, that Fo+F1+ F₂++Fn = Fn+2 - 1, where Fn is the nth Fibonacci number (Fo= 0, F1 = 1 and Fn = Fn-1+ Fn-2).

Answers

By mathematical induction, we can prove that the sum of the Fibonacci numbers from [tex]F_0[/tex] to [tex]F_n[/tex] is equal to [tex]F_{n+2}- 1[/tex], where Fn is the nth Fibonacci number. This result holds true for all non-negative integers n, establishing a direct relationship between the sum of Fibonacci numbers and the (n+2)nd Fibonacci number minus one.

First, we establish the base case. When n = 0, we have [tex]F_0 = 0[/tex] and [tex]F_2 = 1[/tex], so the sum of the Fibonacci numbers from [tex]F_0[/tex] to [tex]F_0[/tex] is 0, which is equal to [tex]F_2 - 1[/tex] = 1 - 1 = 0.

Next, we assume that the equation holds true for some value k, where k ≥ 0. That is, the sum of the Fibonacci numbers from [tex]F_0[/tex] to [tex]F_k[/tex] is equal to [tex]F_{k+2} - 1[/tex].

Now, we need to prove that the equation holds for the next value, k+1. The sum of the Fibonacci numbers from [tex]F_0[/tex] to [tex]F_{k+1}[/tex] can be expressed as the sum of the Fibonacci numbers from [tex]F_0[/tex] to [tex]F_k[/tex], plus the (k+1)th Fibonacci number, which is [tex]F_{k+1}[/tex]. According to our assumption, the sum from [tex]F_0[/tex] to [tex]F_k[/tex] is [tex]F_{k+2} - 1[/tex]. Therefore, the sum from [tex]F_0[/tex] to [tex]F_{k+1}[/tex] is [tex](F_{k+2} - 1) + F_{k+1}[/tex].

Simplifying the expression, we get [tex]F_{k+2} + F_{k+1} - 1[/tex]. Using the recursive definition of Fibonacci numbers ([tex]F_n = F_{n-1} + F_{n-2}[/tex]), we can rewrite this as [tex]F_{k+3} - 1[/tex].

Thus, we have shown that if the equation holds for k, it also holds for k+1. By mathematical induction, we conclude that [tex]F_0 + F_1 + F_2 + ... + F_n = F_{n+2} - 1[/tex] for all non-negative integers n, which proves the desired result.

To learn more about Fibonacci numbers, visit:

https://brainly.com/question/16354296

#SPJ11

1. Consider the function f(t) = 250-(0.78)¹. a) Use your calculator to approximate f(7) to the nearest hundredth. b) Use graphical techniques to solve the equation f(t)=150. Round solution to the nea

Answers

a) Value of function at f(7) is 249.76.

b) By graphical method, t = 13.

a) To approximate f(7) using a calculator, we can substitute t = 7 into the function f(t) = 250 - [tex](0.78)^{t}[/tex].

f(7) = 250 - [tex](0.78)^{7}[/tex]

Using a calculator, we evaluate [tex](0.78)^{7}[/tex] and subtract it from 250 to get the approximation of f(7) to the nearest hundredth.

f(7) ≈ 250 - 0.2428 ≈ 249.7572

Therefore, f(7) is approximately 249.76.

b) To solve the equation f(t) = 150 graphically, we plot the graph of the function f(t) = 250 -[tex](0.78)^{t}[/tex] and the horizontal line y = 150 on the same graph. The x-coordinate of the point(s) where the graph of f(t) intersects the line y = 150 will give us the solution(s) to the equation.

By analyzing the graph, we can estimate the approximate value of t where f(t) equals 150. We find that it is between t = 12 and t = 13.

Rounding the solution to the nearest whole number, we have:

t ≈ 13

Therefore, the graphical solution to the equation f(t) = 150 is approximately t = 13.

To learn more about function here:

https://brainly.com/question/30721594

#SPJ4

"






Consider random samples of size 50 drawn from population A with proportion 0.75 and random samples of size 76 drawn from population B with proportion 0.65. (a) Find the standard error of the distribution of differences in sample proportions, PA - PA

Answers

The standard error of the distribution of differences in sample proportions is 0.0854.

When we take two samples from two different populations and calculate the difference between the two sample proportions, then we use the following formula to find the standard error of the distribution of differences in sample proportions:

Standard Error (SE) = √((p₁q₁)/n₁ + (p₂q₂)/n₂),

where, p₁ and p₂ are the proportions of success in populations 1 and 2, respectively, q₁ and q₂ are the proportions of failure in populations 1 and 2, respectively, and n₁ and n₂ are the sample sizes of sample 1 and 2, respectively. So, here in this question, Population A with proportion of 0.75 and Population B with a proportion of 0.65 and the sample sizes are n₁ = 50 and n₂ = 76. So, putting the values in the above formula, we get:

SE = √((0.75 × 0.25)/50 + (0.65 × 0.35)/76) = 0.0854

Therefore, the standard error of the distribution of differences in sample proportions is 0.0854.

To know more about the Standard Error visit:

https://brainly.com/question/16695444

#SPJ11

The standard error of the distribution of the sample proportion difference is: 0.0854.

How to find the standard error between two proportions?

If you have two samples from two different populations and then want to calculate the difference in the proportions of the two samples, use the following formula to find the standard error of the distribution of the difference in the sample proportions.

standard error (SE) = √((p₁q₁)/n₁ + (p₂q₂)/n₂),

where:

p₁ and p₂ are the success rates in populations 1 and 2 respectively.

q₁ and q₂ are the failure rates in populations 1 and 2 respectively.

n₁ and n₂ are the sample sizes of samples 1 and 2 respectively.

In this question, population A has a proportion of 0.75 and population B has a proportion of 0.65 with sample sizes of:

n₁ = 50 and n₂ = 76.

Thus, substituting the values ​​into the above formula, we get:

SE = √((0.75 × 0.25)/50 + (0.65 × 0.35)/76) = 0.0854

Therefore, the standard error of the distribution of the sample proportion difference is 0.0854.  

Read more about Standard error at: https://brainly.com/question/1191244

#SPJ4

test the series for convergence or divergence. [infinity] n = 1 n8 − 1 n9 1

Answers

The series ∑(n=1 to ∞) (n^8 - 1) / (n^9 + 1) is divergent.

To test the convergence or divergence of the series ∑(n=1 to ∞) (n^8 - 1) / (n^9 + 1), we can use the limit comparison test.

First, let's consider the series ∑(n=1 to ∞) 1/n.

This is a known series called the harmonic series, and it is a divergent series.

Now, we will take the limit of the ratio of the terms of the given series to the terms of the harmonic series as n approaches infinity:

lim(n→∞) [(n^8 - 1) / (n^9 + 1)] / (1/n)

Simplifying the expression inside the limit:

lim(n→∞) [(n^8 - 1) / (n^9 + 1)] * (n/1)

Taking the limit:

lim(n→∞) [(n^8 - 1)(n)] / (n^9 + 1)

As n approaches infinity, the highest power term dominates, so we can neglect the lower order terms:

lim(n→∞) (n^9) / (n^9)

Simplifying further:

lim(n→∞) 1

The limit is equal to 1.

Since the limit is a non-zero finite number (1), and the harmonic series is known to be divergent, the given series has the same nature as the harmonic series and hence, the given series; ∑(n=1 to ∞) (n^8 - 1) / (n^9 + 1) is divergent.

To know more about divergent refer here:

https://brainly.com/question/31778047#

#SPJ11

A sample of size n=86 is drawn from a normal population whose standard deviation is o=8.5. The sample mean is x = 47.65. = Part 1 of 2 (a) Construct a 99.9% confidence interval for u. Round the answer to at least two decimal places. (b) If the population were not approximately normal, would the confidence interval constructed in part (a) be valid? Explain.

Answers

Confidence interval:a confidence interval is a statistical method used to estimate the range within which the true population parameter lies with a certain degree of confidence. The confidence interval is the interval (or range) between two numbers within which the true population parameter, such as a mean or proportion, is expected to fall with a certain level of confidence.

:Given that the sample size is n=86, the sample mean is x = 47.65, and the standard deviation is o=8.5, we need to construct a 99.9% confidence interval for u.a)

Summary:A 99.9% confidence interval for u was constructed using the sample mean of x = 47.65, a sample size of n=86, and a standard deviation of o=8.5. The confidence interval is (45.86, 49.44). If the population were not approximately normal, the confidence interval would not be valid.

Learn more about Confidence interval click here:

https://brainly.com/question/15712887

#SPJ11

Differentiate implicitly to find dy/dx if x^10 – 5z^2 y^2 = 4
a. (x^3 – y^2)/xy
b. x^8 – 2xy^2
c. (x^8 – y^2)/xy
d. xy – x^8

Answers

d) dy/dx = y - 8x^7.To find dy/dx using implicit differentiation, we'll differentiate each term with respect to x and treat y as a function of x. Let's go through each option:

a) (x^3 – y^2)/xy

Differentiating with respect to x:

d/dx[(x^3 – y^2)/xy] = [(3x^2 - 2yy')xy - (x^3 - y^2)(y)] / (xy)^2

Simplifying, we get:

dy/dx = (3x^2 - 2yy') / (x^2y) - (x^3 - y^2)(y) / (x^2y^2)

b) x^8 – 2xy^2

Differentiating with respect to x:

d/dx[x^8 – 2xy^2] = 8x^7 - 2y^2 - 2xy(2yy')

Simplifying, we get:

dy/dx = (-2y^2 - 4xy^2y') / (8x^7 - 2xy)

c) (x^8 – y^2)/xy

Differentiating with respect to x:

d/dx[(x^8 – y^2)/xy] = [(8x^7 - 2yy')xy - (x^8 - y^2)(y)] / (xy)^2

Simplifying, we get:

dy/dx = (8x^7 - 2yy') / (x^2y) - (x^8 - y^2)(y) / (x^2y^2)

d) xy – x^8

Differentiating with respect to x:

d/dx[xy – x^8] = y - 8x^7

Simplifying, we get:

dy/dx = y - 8x^7

Comparing the derivatives obtained in each option, we can see that the correct choice is:

d) dy/dx = y - 8x^7

Learn more about derivatives here: brainly.com/question/25324584

#SPJ11

Let Ao be an 5 x 5-matrix with det(A) = 2. Compute the determinant of the matrices A1, A2, A3, A4 and A5, obtained from Ao by the following operations:
A₁ is obtained from Ao by multiplying the fourth row of An by the number 2.
det(A₁) = _____ [2mark]

A₂ is obtained from Ao by replacing the second row by the sum of itself plus the 2 times the third row.
det(A₂) = _____ [2mark]

A3 is obtained from Ao by multiplying Ao by itself..
det(A3) = _____ [2mark]

A4 is obtained from Ao by swapping the first and last rows of Ag. det(A4) = _____ [2mark]

A5 is obtained from Ao by scaling Ao by the number 4.
det(A5) = ______ [2mark]

Answers

We are given a 5x5 matrix Ao with a determinant of 2. We need to compute the determinants of the matrices A1, A2, A3, A4, and A5 obtained from Ao by specific operations.

A1 is obtained from Ao by multiplying the fourth row of Ao by the number 2. Since multiplying a row by a constant multiplies the determinant by the same constant, det(A1) = 2 * det(Ao) = 2 * 2 = 4.

A2 is obtained from Ao by replacing the second row with the sum of itself and 2 times the third row. Adding a multiple of one row to another row does not change the determinant, so det(A2) = det(Ao) = 2.

A3 is obtained from Ao by multiplying Ao by itself. Multiplying two matrices does not change the determinant, so det(A3) = det(Ao) = 2.

A4 is obtained from Ao by swapping the first and last rows of Ao. Swapping rows changes the sign of the determinant, so det(A4) = -[tex]det(Ao)[/tex]= -2.

A5 is obtained from Ao by scaling Ao by the number 4. Scaling a matrix multiplies the determinant by the same factor, so det(A5) = 4 * det(Ao) = 4 * 2 = 8.

Therefore, the determinants of A1, A2, A3, A4, and A5 are det(A1) = 4, det(A2) = 2, det(A3) = 32, det(A4) = -2, and det(A5) = 8.

Learn more about matrices here:

https://brainly.com/question/30646566

#SPJ11

A statistician wants to obtain a systematic random sample of size 74 from a population of 6587 What is k? To do so they randomly select a number from 1 to k, getting 44. Starting with this person, list the numbers corresponding to all people in the sample. 44, ____, ____, ____ ...

Answers

The answer  is , k = 6587 / 74 = 89.0405 ≈ 89 (rounded to the nearest whole number).

What is the solution?

The formula for calculating systematic random sampling is:

k = N / n,

Where k is the sample size and n is the population size and N is the population size.

We are given N = 6587 and n = 74.

Now, the statistician selects a random number between 1 and 89.

The selected number is 44.

We use this number as our starting point.

The sample size is 74. So, to obtain the systematic random sample of size 74, we have to select 73 more people. To obtain the remaining people, we use the following formula: I = 44 + (k × j), where i is the number of the person to be selected and j is the number of the person selected. The values of j will range from 1 to 73.

So, the numbers corresponding to all people in the sample are as follows:

44, 133, 222, 311, 400, 489, 578, 667, 756, 845, 934, 1023, 1112, 1201, 1290, 1379, 1468, 1557, 1646, 1735, 1824, 1913, 2002, 2091, 2180, 2269, 2358, 2447, 2536, 2625, 2714, 2803, 2892, 2981, 3070, 3159, 3248, 3337, 3426, 3515, 3604, 3693, 3782, 3871, 3960, 4049, 4138, 4227, 4316, 4405, 4494, 4583, 4672, 4761, 4850, 4939, 5028, 5117, 5206, 5295, 5384, 5473, 5562, 5651, 5740, 5829, 5918, 6007, 6096, 6185, 6274.

To know more on sample visit:

https://brainly.com/question/27860316

#SPJ11

Other Questions
Question 11 (17,0 marks) The random variables X and Y have the joint PDF for some constant c. 11.1 (5.0 marks) 17 Previous 123456 7 8 9 10 11 12 Next Validate Mark Unfocus Help ifx+ys1, x20, y20 fx Which of the following sets is a partition of [0,3] (A) (0,1,3/2, 2,5/2} (B) (0,2,3} C) {1,2,3} (D) {0,2/11, 1, 2, 7/3, 8/3} match each role to the appropriate enzyme in the glycogen synthesis pathway. An investor purchased a bond as a long-term investment on January 1. Annual interest was received on December 31. The investor's interest income recorded would decrease each year if the bond were purchased at: Select one a Par b. A discount, and the straight-line method was used Oc. A discount, and the effective method was used d. A premium, and the effective method was used e. A premium, and the straight-line method was used Clear my choice Dara Bank conducted a Leveraged buyout of BallbackCo in 2017. The equity contribution at the point of investment was 25 million and the LBO was funded with a term loan of 24 million and senior notes of 6 million. Five years later, Dara are looking to sell the company. The estimated EBITDA for 2022 is 10 million and, following debt repayments, the total debt is now down to 15 million. The exit Enterprise Value relative to EBITDA multiple assumed is 7x. Calculate the IRR and the cash return of the investment. refer to the table. what is the monopolist's profit-maximizing level of output? A company has net working capital of $1,537. If all its current assets were liquidated, the company would receive $5,481. What are the company's current liabilities? Multiple Choice $4,713 $6,673 $3,5 Allocating costs to departments LO P2 Macee Department Store has three departments, and it conducts advertising campaigns that benefit all departments. Advertising costs are $114,000 this year, and departmental sales for this year follow Department Sales $225,000- 352,500 172,500 How much advertising cost is allocated to each department if the allocation is based on departmental sales? Department Sales % of Total Advertising to Allocate Allocated Amount 1 2 3 Total $ 0 % % % 0.00 % $ QS 22-5 Allocating costs to departments LO P2 Mervon Company has two operating departments: Mixing and Bottling. Mixing has 360 employees and Bottling has 240 employees. Indirect factory costs include administrative costs of $190,000. Administrative costs are allocated to operating departments based on the number of workers. Determine the administrative costs allocated to each operating department Employees % of Total Admin. Exp. to Allocate Department Allocated Amount Mixing Bottling Total 0 *** % % 0.00% S QS 22-5 Allocating costs to departments LO P2 Mervon Company has two operating departments: Mixing and Bottling. Mixing has 360 employees and Bottling has 240 employees. Indirect factory costs include administrative costs of $190,000. Administrative costs are allocated to operating departments based on the number of workers. Determine the administrative costs allocated to each operating department Employees % of Total Admin. Exp. to Allocate Department Allocated Amount Mixing Bottling Total 0 *** % % 0.00% S which forecasting model is based upon salespersons' estimates of expected sales 1. Since the mid-1970s until 2017, the average U.S. tariffrate wasA. between 26 percent and 35 percent.B. less than 5 percent.C. between 6 percent and 15 percent.D. between 16 percent and 2 Lets assume you have been selected as an expert to provide recommendations to localgovernment officials and policymakers in Atlanta about hospitality and tourism issues. Pleasemake one recommendation that can lead to improvements in this industry at a local level. Forthis recommendation make sure you provide some background about a problem and explain howsolving this problem can lead to an improvement the experience of a hospitality business owner,manager, customer or a local resident. The quality-control manager at a compact fluorescent light bulb (CFL) factory needs to determine whether the mean life of a large shipment of CFLs is equal to 7,495 hours. The population standard deviation is 92 hours. A random sample of 64 light bulbs indicates a sample mean life of 7,472 hours. a. At the 0.05 level of significance, is there evidence that the mean life is different from 7.495 hours? b. Construct a 95% confidence interval estimate of the population mean life of the light bulbs. c. Compare the results of (a) and (c). What conclusions do you reach? how fast would a(n) 83 kgkg man need to run in order to have the same kinetic energy as an 8.0 gg bullet fired at 430 m/sm/s ? the pie chart below shows how the total annual income for a certain family is spent. if the amount budgeted for housing, clothing, and insurance combined is $67,200, what is the total family income? .A border strip irrigation system is designed to apply 5.6 inches of water with a DU- 0.68. ET= 0.19 in/day. Pl losses and runoff are both zero. If irrigation occurs 4 days AFTER the perfect timing day, what is the amount of water stored for ET, (in)? Assume that 25% of the area is under irrigated. a) 3.427 inches b) 3.658 inches c) 4.473 inches d) 3.815 inches e) 4.254 inches valid and reliable job evaluations result from which two conditions? lamp store purchased $3,400 of lamps in September. The store had $1,500 of lamps on hand at the beginning of September and expected to have $1,200 of lamps at the end of September to cover part of anticipated October sales. What is the budgeted cost of goods sold for September? A. $3,700 OB. $6,100 OC. $3,100 OD. $4.900 Consider the following two subsets of Z :A = { n Z | ( n mod 18 ) = 7 } and B = { n Z | n isodd }.Prove this claim: A is a subset of B. PLEASE DO NOT COPY. I WILL CHECK FROM PLAGIARISM SITES.Compare and contrast from the marketing perspectives of chaneland dior on Calculate the ROI and select the correct answer if a company has Sales = $1,000,000, Profit margin = 20% and Invested Capital of $800,000 Select one: O a. 25% O b. 20% O c. $200,000 O d. 80% Steam Workshop Downloader