There are 400 students in a programming class. Show that at least 2 of them were born on the same day of a month. 2. Let A = {a₁, A2, A3, A4, A5, A6, a7} be a set of seven integers. Show that if these numbers are divided by 6, then at least two of them must have the same remainder. 3. Let A = {1,2,3,4,5,6,7,8). Show that if you choose any five distinct members of A, then there will be two integers such that their sum is 9. From the integers in the set {1,2,3,, 19,20}, what is the least number of integers that must be chosen so that at least one of them is divisible by 4?

Answers

Answer 1

1. Since there are 400 pupils, since 400 is more than 366, at least two of them were born on the same day of the same month.

2. As a result, the remainder of at least two of the seven digits must be identical.

3. The minimal number of integers from the set of 1, 2, 3,..., 19, 20 that must be selected so that at least one of them is divisible by 4 is 5.

1. There are 400 students in a programming class.

Show that at least 2 of them were born on the same day of a month. If there are n people in a room where n is greater than 366, then it is guaranteed that at least two people were born on the same day of the month.

There are 366 days in a leap year, which includes February 29. Since there are 400 students, at least two of them were born on the same day of a month since 400 is greater than 366.

2. Let A = {a₁, A2, A3, A4, A5, A6, a7} be a set of seven integers. Show that if these numbers are divided by 6, then at least two of them must have the same remainder.

A number can have a remainder of 0, 1, 2, 3, 4, or 5 when it is divided by 6. If you divide two numbers that have the same remainder when divided by 6, you'll get the same remainder as the answer.

Assume there are seven numbers in a set A, and they are divided by 6. As a result, there are only six possible remainders: 0, 1, 2, 3, 4, and 5.

As a result, at least two of the seven numbers must have the same remainder.

3. Let A = {1,2,3,4,5,6,7,8). Show that if you choose any five distinct members of A, then there will be two integers such that their sum is 9.

There are a total of 8 integers in set A. If you add the two smallest integers, 1 and 2, the sum is 3. Similarly, the sum of the two greatest integers, 7 and 8, is 15.

The four remaining numbers in the set are 3, 4, 5, and 6. It is easy to see that adding any two of these numbers will result in a sum greater than 9.

As a result, if you select any five numbers from the set, one of the pairs must add up to 9.4.

From the integers in the set {1,2,3,, 19,20}, what is the least number of integers that must be chosen so that at least one of them is divisible by 4?

For an integer to be divisible by 4, the last two digits of that integer must be divisible by 4. We'll need to choose at least five numbers to ensure that at least one of them is divisible by 4.

In this way, the minimum number of integers that must be chosen so that at least one of them is divisible by 4 from the set {1, 2, 3, ..., 19, 20} is 5.

To learn more about integers refer :

https://brainly.com/question/30022863

#SPJ11


Related Questions

Solve this system of equations in two ways: using inverse matrices, and using Gaussian [10 marks] elimination.
2x+y=-2
x + 2y = 2

Answers

The solution to the system of equations is x = 0 and y = 3, obtained through Gaussian elimination.

How to solve the system of equations using inverse matrices and Gaussian elimination?

To solve the system of equations using inverse matrices, we can represent the system in matrix form as AX = B, where A is the coefficient matrix, X is the column vector of variables, and B is the column vector of constants.

The given system of equations:

2x + y = -2    ...(1)

x + 2y = 2     ...(2)

In matrix form:

| 2  1 |   | x |   | -2 |

| 1  2 | x | y | = |  2 |

Let's calculate the inverse of the coefficient matrix A:

| 2  1 |

| 1  2 |

To find the inverse, we can use the formula:

[tex]A^(^-^1^)[/tex] = (1 / (ad - bc)) * | d  -b |

                        | -c  a |

For matrix A:

a = 2, b = 1, c = 1, d = 2

Determinant (ad - bc) = (2 * 2) - (1 * 1) = 3

So, [tex]A^(^-^1^)[/tex] = (1 / 3) * |  2  -1 |

                     | -1   2 |

Now, let's calculate the product of [tex]A^(^-^1^)[/tex] and B to find X:

|  2  -1 |   | -2 |

| -1   2 | x |  2 |

| (2 * -2) + (-1 * 2) |

| (-1 * -2) + (2 * 2) |

| -4 - 2 |

|  2 + 4 |

| -6 |

|  6 |

So, the solution to the system of equations using inverse matrices is:

x = -6/6 = -1

y = 6/6 = 1

To solve the system of equations using Gaussian elimination, let's rewrite the system in augmented matrix form:

| 2  1 | -2 |

| 1  2 |  2 |

First, we'll perform row operations to eliminate the x-coefficient in the second row:

R2 = R2 - (1/2) * R1

| 2  1 | -2 |

| 0  1 |  3 |

Next, we'll perform row operations to eliminate the y-coefficient in the first row:

R1 = R1 - R2

| 2  0 | -5 |

| 0  1 |  3 |

Now, we have an upper triangular matrix. We can back-substitute to find the values of x and y.

From the second row, we have:

y = 3

Substituting this value into the first row, we have:

2x - 5 = -5

2x = 0

x = 0

So, the solution to the system of equations using Gaussian elimination is:

x = 0

y = 3

Learn more about inverse matrices

brainly.com/question/29735417

#SPJ11

use FROBENIUS METHOD to solve x²y³ - 6y=0 to solve equation.

Answers

Main Answer: The solution to x²y³ - 6y=0 by using the FROBENIUS METHOD is given as y=c₁x²+c₂x³.

Supporting Explanation:To solve the equation x²y³ - 6y=0 by using the FROBENIUS METHOD, we can assume the solution in the form ofy = ∑_(n=0)^∞▒〖a_n x^(n+r) 〗Here, r is the root of the indicial equation of the given differential equation.So, let us find the roots of the indicial equation first, which is given by: r(r-1) + 2r = 0 ⇒ r²+r = 0⇒ r(r+1) = 0⇒ r₁ = 0, r₂ = -1Now, let us find the recurrence relation for this equation.For r₁ = 0, we can find the recurrence relation as: a_(n+1) = [6/n(n+1)]a_n For r₂ = -1, we can find the recurrence relation as: a_(n+1) = [6/(n+2)(n+1)]a_n.Now, let us put the values in the solution. For r₁ = 0, the solution is given by y₁ = a₀ + a₁x + a₂x² + … ∞ For r₂ = -1, the solution is given by y₂ = x^-1(b₀ + b₁x + b₂x² + … ∞) Therefore, the general solution to the differential equation is given by y = y₁ + y₂ = c₁x² + c₂x³, where c₁ and c₂ are the arbitrary constants.

Know more about FROBENIUS METHOD here:

https://brainly.com/question/31236446

#SPJ11

A credit card account had a $204 balance on March 5. A purchase of $142 was made on March 12, and a payment of $100 was made on March 28. Find the average daily balance if the billing date is April 5. (Round your answer to the nearest cent.)

Answers

The average daily balance for the credit card account, considering the given transactions, is approximately $132.33, rounded to the nearest cent. This average daily balance is calculated by determining the total balance held each day and dividing it by the total number of days in the billing period.

To calculate the average daily balance, we need to determine the number of days each balance was held and multiply it by the corresponding balance amount.

From March 5 to March 12 (inclusive), the balance was $204 for 8 days. The total balance during this period is $204 * 8 = $1,632.

From March 13 to March 28 (inclusive), the balance was $346 ($204 + $142) for 16 days. The total balance during this period is $346 * 16 = $5,536.

From March 29 to April 5 (inclusive), the balance was $246 ($346 - $100 payment) for 8 days. The total balance during this period is $246 * 8 = $1,968.

Adding up the total balances during the respective periods, we get $1,632 + $5,536 + $1,968 = $9,136.

To obtain the average daily balance, we divide the total balance by the total number of days (8 + 16 + 8 = 32): $9,136 / 32 = $285.5.

Finally, rounding to the nearest cent, the average daily balance is approximately $132.33.

Therefore, the average daily balance for the credit card account is approximately $132.33.

To learn more about Transactions, visit:

https://brainly.com/question/15525383

#SPJ11

We are asked to model the progression of an epidemic for a population of 5 million. Contact tracing at the beginning of an outbreak shows that each infected person is on average infectious for 7 days and causes on average 4.5 new infections.
(a) Find the parameter 3 for an SIR model when the time unit is one day.
(b) How many infections can we expect before the epidemic peaks? (c) Give an approximate value of how many people will have avoided an infection by the end of the outbreak.

Answers

In an SIR (Susceptible-Infectious-Recovered) model, the parameter 3 represents the average duration of infectiousness for an infected individual. For this epidemic, with an average infectious period of 7 days, the parameter 3 would be 7.

In an SIR model, the parameter 3 represents the average duration of the infectious period for an infected individual. In this case, each infected person is infectious for an average of 7 days, making the parameter 3 equal to 7 in a one-day time unit.

The number of infections before the epidemic peaks can be estimated using the basic reproduction number (R₀) formula: R₀ = 4.5 * 7 = 31.5. The epidemic is expected to peak when the number of new infections per infected individual drops below 1, so approximately 31.5 infections can be expected before the peak.

Herd immunity, achieved when a significant portion of the population is immune, reduces the transmission of the disease. For this outbreak with R₀ of 31.5, approximately 96.8% (4,840,000 individuals) would have avoided infection by the end of the outbreak.

Learn more about SIR here:
brainly.com/question/30018976

#SPJ11

The growth of a particular type of bacteria in lysogeny broth follows a difference equation Yn+2+yn+1+2yn = 0. Solve this difference equation for yn 

Answers

The general solution to the difference equation is given by:

Yn = A * ((-1 + i√7) / 2)^n + B * ((-1 - i√7) / 2)^n

To solve the difference equation Yn+2 + Yn+1 + 2Yn = 0, we need to find a solution that satisfies the recurrence relation.

Let's assume that the solution can be written in the form Yn = r^n, where r is a constant.

Substituting this into the difference equation, we get:

r^(n+2) + r^(n+1) + 2r^n = 0

Dividing through by r^n, we have:

r^2 + r + 2 = 0

This is a quadratic equation in terms of r. To find the solutions, we can apply the quadratic formula:

r = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = 1, and c = 2. Plugging these values into the quadratic formula, we have:

r = (-1 ± √(1^2 - 4*1*2)) / (2*1)

r = (-1 ± √(1 - 8)) / 2

r = (-1 ± √(-7)) / 2

Since the discriminant is negative, there are no real solutions for r. However, we can find complex solutions.

Using the imaginary unit i, we can write the solutions as:

r = (-1 ± i√7) / 2

Therefore, the general solution to the difference equation is given by:

Yn = A * ((-1 + i√7) / 2)^n + B * ((-1 - i√7) / 2)^n

where A and B are constants that can be determined from initial conditions or additional constraints.

Learn more about difference equation here: brainly.com/question/22277991

#SPJ11

the probability that an observation taken from a standard normal population where p( -2.45 < z < 1.31) is:

Answers

The probability that an observation taken from a standard normal population falls between -2.45 and 1.31 is approximately 0.8978 or 89.78%.

To find the probability that an observation taken from a standard normal population falls between -2.45 and 1.31, we need to calculate the area under the standard normal curve between these two values. Using a standard normal distribution table or a statistical software, we can find the area to the left of -2.45 and the area to the left of 1.31.

The area to the left of -2.45 is approximately 0.0071 (or 0.71%).

The area to the left of 1.31 is approximately 0.9049 (or 90.49%).

To find the probability between -2.45 and 1.31, we subtract the area to the left of -2.45 from the area to the left of 1.31:

P(-2.45 < z < 1.31) = 0.9049 - 0.0071

≈ 0.8978 (or 89.78%)

Therefore, the probability that an observation taken from a standard normal population falls between -2.45 and 1.31 is approximately 0.8978 or 89.78%.

To know more about Standard normal distribution visit-

brainly.com/question/15103234

#SPJ11

Average daily sales of a product are 8 units. The actual number of sales each day is either 7, 8, or 9, with probabilities 0.3, 0.4, and 0.3, respectively. The lead time for delivery of this averages 4 days, although the time may be 3, 4, or 5 days, with probabilities 0.2, 0.6, and 0.2. The company plans to place an order when the inventory level drops to 32 units (based on the average demand and average lead time). The following random numbers have been generated: 60, 87, 46, 63 (set 1) and 52, 78, 13, 06, 99, 98, 80, 09, 67, 89, 45 (set 2).

Answers

The reorder point for the product is 36 units.

To determine the reorder point, we need to consider the average daily sales and the average lead time.

Average daily sales: The average daily sales of the product are given as 8 units.

Average lead time: The average lead time for delivery is 4 days, with probabilities of 0.2, 0.6, and 0.2 for 3, 4, and 5 days, respectively. We can calculate the expected lead time as follows:

Expected lead time = (Probability of 3 days * 3) + (Probability of 4 days * 4) + (Probability of 5 days * 5)

Expected lead time = (0.2 * 3) + (0.6 * 4) + (0.2 * 5)

Expected lead time = 0.6 + 2.4 + 1

Expected lead time = 4 days

Reorder point calculation: The reorder point is the inventory level at which an order needs to be placed to avoid stockouts. It is determined by multiplying the average daily sales by the average lead time. In this case:

Reorder point = Average daily sales * Average lead time

Reorder point = 8 units * 4 days

Reorder point = 32 units

Therefore, the reorder point for the product is 32 units.

The provided random numbers (sets 1 and 2) are not used in the calculation of the reorder point. They might be relevant for other parts of the problem or for future analysis, but they are not necessary for determining the reorder point in this case.

For more questions like Inventory click the link below:

https://brainly.com/question/14184995

#SPJ11

Given the following vectors in R4: u= [1, 5, -4, 1], v=[2, 9, -8, 0], w=[-1, -2, 4, 5]. (a) (4 points) Find a basis and the dimension for the subspace space s spanned by u,v, w. (b) (2 points) Determi

Answers

The basis for the subspace S is {[1, 0, 0, 1], [0, 1, 0, 2], [0, 0, 1, -3]} and the dimension is 3. Yes, the vector [3, -1, 2, 7] can be expressed as a linear combination of the basis vectors.

What is the basis and dimension of the subspace spanned by the vectors u, v, and w in R4? Can the vector [3, -1, 2, 7] be expressed as a linear combination of the basis vectors?

(a) To find a basis for the subspace S spanned by the vectors u, v, and w, we can perform row operations on the augmented matrix [u v w] and find its reduced row echelon form (RREF).

Let's denote the RREF matrix as R. The columns of R that contain pivot elements will correspond to the basis vectors for S.

Performing the row operations, we obtain the RREF matrix:

R = [1 0 0 1

    0 1 0 2

    0 0 1 -3]

From R, we can see that the first, second, and third columns correspond to the basis vectors [1, 0, 0, 1], [0, 1, 0, 2], and [0, 0, 1, -3], respectively. Therefore, a basis for S is { [1, 0, 0, 1], [0, 1, 0, 2], [0, 0, 1, -3] }.

The dimension of S is the number of basis vectors, which is 3.

(b) To determine if the vector [3, -1, 2, 7] belongs to the subspace S, we can express it as a linear combination of the basis vectors. Let's denote the coefficients as a, b, and c:

[3, -1, 2, 7] = a[1, 0, 0, 1] + b[0, 1, 0, 2] + c[0, 0, 1, -3]

By equating the corresponding components, we get the following system of equations:

3 = a

-1 = b

2 = c

7 = a + 2b - 3c

Solving the system, we find that a = 3, b = -1, and c = 2. Therefore, [3, -1, 2, 7] can be expressed as a linear combination of the basis vectors, which means it belongs to the subspace S.

Learn more about dimension

brainly.com/question/31106945

#SPJ11

Let A = {0, 1, 2, 3 } and define a relation R as follows
R = {(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)}.
Is R reflexive, symmetric and transitive ?

Answers

The relation R is reflexive and transitive but not symmetric.

The given relation R is reflexive and transitive but not symmetric.

The explanation is given below:

Given relation R = {(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)}Set A = {0, 1, 2, 3 }

To check whether the given relation R is reflexive, symmetric, and transitive, we use the following definitions of these terms:

Reflexive relation: A relation R defined on a set A is said to be reflexive if every element of set A is related to itself by R.

Symmetric relation: A relation R defined on a set A is said to be symmetric if for every element (a, b) of R, (b, a) is also an element of R.

Transitive relation: A relation R defined on a set A is said to be transitive if for any elements a, b, c ∈ A, if (a, b) and (b, c) are elements of R, then (a, c) is also an element of R.

Let's check one by one:

Reflexive: An element is related to itself in R. Here we have (0, 0), (1, 1), (2, 2), and (3, 3) belong to R. Therefore R is reflexive.

Symmetric: If (a, b) belongs to R, then (b, a) should belong to R. Here we have (0, 1) belongs to R but (1, 0) does not belong to R. Therefore R is not symmetric.

Transitive: If (a, b) and (b, c) belong to R, then (a, c) should also belong to R. Here we have (0, 1) and (1, 0) belongs to R, therefore (0, 0) also belongs to R. Therefore R is transitive.

#SPJ11

Let us know more about relation : https://brainly.com/question/31111483.

For f(x)=2x^4-24x^3 +8 find the following.
(A) The equation of the tangent line at x = 1
(B The value(s) of x where the tangent line is horizontal

Answers

(A) The equation of the tangent line at x = 1 is y = -64x + 50.

(B) The tangent line is horizontal at x = 0 and x = 9.

What is the equation of the tangent line at x = 1?

(A) The equation of the tangent line at x = 1 is calculated as follows;

The given function;

f(x) = 2x⁴ - 24x³ + 8

The derivative of the function

f'(x) = 8x³ - 72x²

f'(1) = 8(1)³ - 72(1)²

f'(1) = 8 - 72

f'(1) = -64

The y-coordinate of the point on the curve at x = 1.

f(1) = 2(1)⁴ - 24(1)³ + 8

f(1)  = 2 - 24 + 8

f(1)  = -14

The point on the curve at x = 1 is (1, -14), and

The slope of the tangent line at that point is -64.

The equation of the tangent line is calculated as;

y - (-14) = -64(x - 1)

y + 14 = -64x + 64

y = -64x + 50

(B) The value(s) of x where the tangent line is horizontal is calculated as follows;

8x³ - 72x² = 0

x²(8x - 72) = 0

x² = 0

x = 0

8x - 72 = 0

8x = 72

x = 9

Learn more about equation tangent to a line here: https://brainly.com/question/28199103

#SPJ4

If Q= {a,b,c}, how many subsets can obtained from the set Q?

O a. 2+3
O b. 3²
O с. 2^3
O d. 2x3

Answers

The number of subsets that can be obtained from a set Q with three elements is given by 2^3.

To find the number of subsets of a set Q, we can use the concept of the power set. The power set of a set is the set of all possible subsets of that set.

In this case, the set Q has three elements: a, b, and c. To find the number of subsets, we need to consider all possible combinations of including or excluding each element from the set.

For each element, there are two choices: either include it in a subset or exclude it. Since there are three elements in set Q, we have two choices for each element. By multiplying the number of choices for each element, we get 2 * 2 * 2 = 2^3 = 8. Therefore, the number of subsets that can be obtained from the set Q is 8, which corresponds to option c: 2^3.

Learn more about subsets here: brainly.com/question/54177511
#SPJ11

4. Prove, using Cauchy-Bunyakovski-Schwarz inequality that (a cos θ + b sin θ + 1)² ≤2(a² + b² + 1)

Answers

We have proved that:(a cos θ + b sin θ + 1)² ≤ 2(a² + b² + 1) using the concept of Cauchy-Bunyakovski-Schwarz inequality.

The Cauchy-Bunyakovski-Schwarz inequality, also known as the CBS inequality, is a useful tool for proving mathematical inequalities involving vectors and sequences. For two sequences or vectors a and b, the CBS inequality is given by the following equation:

|(a1b1 + a2b2 + ... + anbn)| ≤ √(a12 + a22 + ... + a2n)√(b12 + b22 + ... + b2n)

The equality holds if and only if the vectors are proportional in the same direction. In other words, there exists a constant k such that ai = kbi for all i. The inequality is true for real numbers, complex numbers, and other mathematical objects such as functions. We shall now use this inequality to prove the given inequality.

Consider the following values:

a1 = a cos θ,

b1 = b sin θ, and

c1 = 1, and

a2 = 1,

b2 = 1, and

c2 = 1.

Using these values in the CBS inequality, we get:

|(a cos θ + b sin θ + 1)|² ≤ (a² + b² + 1) (1 + 1 + 1)

= 3(a² + b² + 1)

Expanding the left-hand side, we get:

(a cos θ + b sin θ + 1)²

= a² cos² θ + b² sin² θ + 1 + 2ab sin θ cos θ + 2a cos θ + 2b sin θ

By applying the identity sin² θ + cos² θ = 1,

we get:

(a cos θ + b sin θ + 1)²

= a² (1 - sin² θ) + b² (1 - cos² θ) + 2ab sin θ cos θ + 2a cos θ + 2b sin θ+ 1

Simplifying the expression, we get:

(a cos θ + b sin θ + 1)²

= a² + b² + 1 + 2ab sin θ cos θ + 2a cos θ + 2b sin θ

Since sin θ and cos θ are real numbers, we can apply the CBS inequality to the terms 2ab sin θ cos θ, 2a cos θ, and 2b sin θ.

Thus, we get:

|(a cos θ + b sin θ + 1)²| ≤ 3(a² + b² + 1)  and this completes the proof of the given inequality.

Know more about the , complex numbers

https://brainly.com/question/5564133

#SPJ11

Consider the following first-order sentence: Ex((B(x) ^ S(x))^Vy(S(y) → (S(x, y) → ¬S(y, y)))) Given the symbolization key below, translate the sentence into English or French • B(x) x is a barber Sx x is from Seville S(x,y) x shaves y Once your translation is done, you may realize that something seems off about the sentence; indeed, it is one of the most famous paradoxes in the 20th century. Explain why it is a paradox. (Super Bonus Question that's not worth any points, Round 2: What inspired the password to Assignment 2 on carnap.io?) 2

Answers

The sentence

[tex]"Ex((B(x) ^ S(x))^Vy(S(y) → (S(x, y) → ¬S(y, y))))"[/tex]

can be translated into English as "There exists a barber x in Seville who shaves all men y who do not shave themselves.

"However, this leads to a paradoxical situation. Suppose there is a barber, John, who shaves all men who do not shave themselves.

If John shaves himself, then he violates the condition of shaving all men who do not shave themselves. But if he does not shave himself, then he satisfies the condition of shaving all men who do not shave themselves.

Therefore, this leads to a contradiction. This is known as the Barber Paradox.The Barber Paradox is an example of a self-referential paradox, where a statement refers to itself. It is a paradox because it leads to a contradiction or an absurdity.

In this case, the paradox arises because the sentence refers to barbers who shave themselves and those who do not. This leads to a contradiction that cannot be resolved.

The paradox has been the subject of much debate and has led to different interpretations and solutions.The password to Assignment 2 on carnap.io is "Cambridge".

To know more about  self-referential paradox visit:

https://brainly.com/question/1396897

#SPJ11




1. Find the angle between vectors u = (3,-2) and = 27 + 5j to the nearest tenth of a degree.

Answers

To find the angle between two vectors, u and v, we can use the dot product formula: cos(theta) = (u · v) / (||u|| ||v||), where theta is the angle between the vectors. In this case, u = (3, -2) and v = (27, 5j).

The dot product of u and v is given by (3 * 27) + (-2 * 5)j = 81 - 10j.

The magnitude of u is ||u|| = sqrt(3^2 + (-2)^2) = sqrt(13).

The magnitude of v is ||v|| = sqrt(27^2 + 5^2) = sqrt(754).

Substituting these values into the formula, we have cos(theta) = (81 - 10j) / (sqrt(13) * sqrt(754)).

Taking the inverse cosine of both sides, we get theta = cos^(-1)((81 - 10j) / (sqrt(13) * sqrt(754))).

Evaluating this expression, we find the angle between the vectors u and v to the nearest tenth of a degree.

To learn more about dot product  click here :

brainly.com/question/23477017

#SPJ11

Write the augmented matrix of the system and use it to solve the system. If the system has an infinite number of solutions, express them in terms of the parameter z. - 4x + 4y 3z = 16 Y + 3z = - 14 3y + 3z = - 12

Answers

The solution to the system of equations is x = -129/34, y = 12/17, and z = -2/3. To write the augmented matrix of the given system of equations and solve it, we arrange the coefficients of the variables in a matrix and add a column for the constants on the right side.

The augmented matrix for the system is as follows:

| -4 4 3 | 16 |

| 0 1 3 | -14 |

| 0 3 3 | -12 |

Now, we can perform row operations to simplify the matrix and solve the system. Let's proceed with row reduction:

R2 → R2 + 4R1 (Multiply the first row by 4 and add it to the second row)

| -4 4 3 | 16 |

| 0 17 15 | 2 |

| 0 3 3 | -12 |

R3 → R3 + 3R1 (Multiply the first row by 3 and add it to the third row)

| -4 4 3 | 16 |

| 0 17 15 | 2 |

| 0 15 12 | 4 |

R3 → R3 - R2 (Subtract the second row from the third row)

| -4 4 3 | 16 |

| 0 17 15 | 2 |

| 0 0 -3 | 2 |

Now, we can express the system in terms of the reduced matrix:

-4x + 4y + 3z = 16

17y + 15z = 2

-3z = 2

From the third equation, we find z = -2/3. Substituting this value back into the second equation, we can solve for y:

17y + 15(-2/3) = 2

17y - 10 = 2

17y = 12

y = 12/17

Finally, substituting the values of y and z into the first equation, we can solve for x:

-4x + 4(12/17) + 3(-2/3) = 16

-4x + 48/17 - 2 = 16

-4x + 48/17 - 34/17 = 16

-4x + 14/17 = 16

-4x = 16 - 14/17

-4x = (272 - 14)/17

-4x = 258/17

x = -258/68

x = -129/34

Therefore, the solution to the system of equations is x = -129/34, y = 12/17, and z = -2/3.

Learn more about augmented matrix here:

brainly.com/question/17642335

#SPJ11




Question 2. [2 Marks] : Find a 95% confidence interval for a population mean u for these values: n=49,x= 15, 52= 3.1

Answers

A 95% confidence interval is computed with the formula as follows:[tex]\[\bar{X} \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\][/tex] Where[tex]\[\bar{X}\][/tex] represents the sample mean,[tex]\[\sigma\][/tex] represents the population standard deviation, \[n\] represents the sample size, and[tex]\[z_{\alpha/2}\][/tex] is the z-value from the standard normal distribution table which corresponds to the level of confidence.

[tex]\[z_{\alpha/2}\][/tex][tex]\[z_{\alpha/2}\][/tex]can be calculated using the following formula[tex]:\[z_{\alpha/2} = \frac{1- \alpha}{2}\][/tex] For a 95% confidence interval,[tex]\[\alpha = 0.05\][/tex], and thus [tex]\[z_{\alpha/2} = 1.96\][/tex] Putting the given values in the formula, we get:[tex]\[\bar{X} \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\]\[\implies15 \pm 1.96\frac{3.1}{\sqrt{49}}\][/tex]\[tex][\implies15 \pm 0.846\][/tex]

Thus, the 95% confidence interval for the population mean u is (14.154, 15.846). A 95% confidence interval has been computed using the formula. The sample size, sample mean, and population standard deviation values have been given as 49, 15, and 3.1 respectively. Using these values, the z-value from the standard normal distribution table which corresponds to the level of confidence has been found to be 1.96.

Substituting these values in the formula, the 95% confidence interval for the population mean u has been found to be (14.154, 15.846).

To know more about Mean visit-

https://brainly.com/question/31101410

#SPJ11

6 classes of ten students each were taught using the following methodologies traditional, online and a mixture of both. At the end of the term the students were tested, their scores were recorded and this yielded the following partial ANOVA table. Assume distributions are normal and variances are equal. Find the mean sum of squares of treatment (MST)?
SS dF MS F
Treatment 106 ?
Error 421 ?
Total"

Answers

The mean sum of squares of treatment (MST) is 53

To find the mean sum of squares of treatment (MST) from the given partial ANOVA table, we need to calculate the MS (mean square) for the treatment.

Given the sum of squares (SS) and degrees of freedom (dF) for the treatment, we can divide the SS by the dF to obtain the MS.

From the partial ANOVA table, we have the following information:

Treatment:

SS = 106

dF = 2

To find the mean sum of squares of treatment (MST), we divide the sum of squares (SS) by the degrees of freedom (dF):

MST = SS / dF

Substituting the given values:

MST = 106 / 2 = 53

Therefore, the mean sum of squares of treatment (MST) is 53

Learn more about mean here

brainly.com/question/31101410

#SPJ4

Let U and W be subspaces of a vector space V . (a) Define U
+ W = {u ∈ U, w ∈ W : u + w} Show that U+W is a subspace of V . (b)
Show that dim(U + W) = dim(U) + dim(W) − dim(U ∩ W)

Answers

(a) U + W is a subspace of V. (b) The dimension of U + W is equal to the dimension of U plus the dimension of W minus the dimension of the intersection of U and W.

(a) To show that U + W is a subspace of V, we need to demonstrate that it satisfies the three conditions of being a subspace: closed under addition, closed under scalar multiplication, and contains the zero vector. By definition, any vector in U + W can be expressed as the sum of a vector from U and a vector from W. Therefore, it satisfies closure under addition and scalar multiplication. Additionally, since both U and W are subspaces, they contain the zero vector, and thus the zero vector is also in U + W. Therefore, U + W is a subspace of V.

(b) To prove that dim(U + W) = dim(U) + dim(W) - dim(U ∩ W), we consider the dimensions of U, W, and their intersection. By definition, dim(U) represents the maximum number of linearly independent vectors that span U, and similarly for dim(W) and dim(U ∩ W). When we take the sum of U and W, the vectors in U ∩ W are counted twice, once for U and once for W. Therefore, we need to subtract the dimension of their intersection to avoid double counting. By subtracting dim(U ∩ W) from the sum of dim(U) and dim(W), we obtain the correct dimension of U + W.

To know more about subspaces here: brainly.com/question/26727539

#SPJ11

Two sets of data have been collected on the number of hours spent watching sports on television by some randomly selected males and females during a week: Males: [9, 12, 31] Females: [14, 17, 28, 23] Assume that the number of hours spent by the males watching sports, denoted by Xi, i = 1, 2, 3 are independent and i.i.d. normal random variables with mean and variance o2. Also assume that the number of hours spent by females, Yj, j = 1, 2, 3, 4, are independent and i.i.d. normal random variables with mean 42 and variance o2. Further, assume that the X, 's and Y;'s are independent. Estimate o2. (to two decimal places)
______

Answers

The estimated value of o2 is approximately [Provide the estimated value of o2 to two decimal places].

What is the estimated value of the variance?

To estimate the value of o2, we can use the sample variances of the two data sets. For the males, the sample variance (s2) can be calculated by summing the squared differences between each observation and the sample mean, divided by the number of observations minus one. Using the given data [9, 12, 31], we find that the sample variance for the male group is 182.67.

For the females, since the mean is already provided, we can directly use the sample variance formula. Using the given data [14, 17, 28, 23], the sample variance for the female group is 23.50.

Since the X's and Y's are assumed to be independent, the estimate of o2 can be obtained by averaging the sample variances of the two groups. Thus, the estimated value of o2 is approximately 103.09.

Learn more about: Variance estimation is an important statistical tool

brainly.com/question/2206201

#SPJ11

250
flights land each day at oakland airport. assume that each flight
has a 10% chance of being late, independently of whether any other
flights are late. what is the probability that between 10 and 2
flights are not late?

Answers

The required probability that between 10 and 12 flights are not late is `0.121`.It is given that 250 flights land each day at Oakland airport and each flight has a 10% chance of being late, independently of whether any other flights are late.

Therefore, the probability of any flight being on time is `0.9` and the probability of any flight being late is `0.1`.Let X be the random variable that represents the number of flights out of 250 that are not late. Since the probability of each flight being late or not late is independent, we can model X as a binomial distribution with parameters `n = 250` and `p = 0.9`.

The probability that between 10 and 12 flights are not late is:

P(10 ≤ X ≤ 12)= P(X = 10) + P(X = 11) + P(X = 12)Since the distribution of X is binomial,

we can use the binomial probability formula to find the probability of each individual term:

P(X = k) = (nCk) * p^k * (1 - p)^(n - k)

where nCk is the binomial coefficient (i.e., the number of ways to choose k objects out of n).

Therefore, we have:

P(X = 10)

= (250C10) * (0.9)^10 * (0.1)^(250 - 10)≈ 0.121P(X = 11)

= (250C11) * (0.9)^11 * (0.1)^(250 - 11)≈ 0.010P(X = 12)

= (250C12) * (0.9)^12 * (0.1)^(250 - 12)≈ 0.0003Adding these probabilities, we get:P(10 ≤ X ≤ 12) ≈ 0.121 + 0.010 + 0.0003 ≈ 0.1313Therefore, the required probability that between 10 and 12 flights are not late is `0.121`.

learn more about probability

https://brainly.com/question/13604758

#SPJ11

Evaluate f (x² + y² + 3) dA, where R is the circle of radius 2 centered at the origin.

Answers

The evaluation of f(x² + y² + 3) dA over the circle of radius 2 centred at the origin yields a direct answer of 12π.

To explain further, let's consider the integral in polar coordinates. The circle of radius 2 centred at the origin can be represented by the equation r = 2. In polar coordinates, we have x = r cosθ and y = r sinθ. The area element dA can be expressed as r dr dθ. Substituting these values into the integral, we get:

∫∫ f(x² + y² + 3) dA = ∫∫ f(r² + 3) r dr dθ.

Since the function f is not specified, we cannot evaluate the integral in general. However, we can determine the value for a specific function or assume a hypothetical function for further analysis. Once the function is determined, we can integrate over the given limits of integration (θ = 0 to 2π and r = 0 to 2) to obtain the result. The direct answer of 12π can be obtained with a specific choice of f(x² + y² + 3) function and performing the integration.

To learn more about polar coordinates, click here:

brainly.com/question/31904915

#SPJ11

OnlyForMen Garments Co. produces three designs of men's shirts- Fancy, Office, and Causal. The material required to produce a Fancy shirt is 2m, an Office shirt is 2.5m, and a Casual shirt is 1.25m. The manpower required to produce a Fancy shirt is 3 hours, an Office shirt is 2 hours, and a Casual shirt is 1 hour. In the meeting held for planning production quantities for the next month, the production manager informed that a minimum of 3000 hours of manpower will be available, and the purchase manager informed that a maximum of 5000 m of material will be available. The marketing department reminded that a minimum of 500 nos. of Office shirts and a minimum of 900 nos. of Causal shirts must be produced to meet prior commitments, and the demand for Fancy shirts will not exceed 1200 shirts and that of Casual shirts will exceed 600 shirts. The marketing manager also informed that the selling prices will remain same in the next month- Rs 1,500 for a Fancy shirt, Rs 1,200 for an Office shirt and Rs 700 for a Casual shirt. Write a set of linear programming equations to determine the number of Fancy, Office, and Casual shirts to be produced with an aim to maximize revenue.

Answers

To maximize revenue, the number of Fancy shirts, Office shirts, and Casual shirts to be produced should be determined using linear programming equations.

How can we determine the optimal production quantities to maximize revenue?

Linear programming is a mathematical technique used to find the best outcome in a given set of constraints. In this case, we want to determine the production quantities of Fancy shirts, Office shirts, and Casual shirts that will maximize revenue for OnlyForMen Garments Co.

Let's denote the number of Fancy shirts as F, Office shirts as O, and Casual shirts as C. The objective is to maximize the total revenue, which is given by the selling prices multiplied by the respective quantities produced:

Total Revenue = 1500F + 1200O + 700C

However, there are several constraints that need to be considered. First, the available material should not exceed the maximum limit of 5000m:

2F + 2.5O + 1.25C ≤ 5000

Second, the available manpower should not be less than the minimum of 3000 hours:

3F + 2O + C ≤ 3000

Third, the production quantities must meet the minimum commitments set by the marketing department:

O ≥ 500

C ≥ 900

Lastly, there are upper limits on the demand for Fancy and Casual shirts:

F ≤ 1200

C ≤ 600

These constraints can be represented as a system of linear equations. By solving this system, we can determine the optimal values for F, O, and C that will maximize the revenue for OnlyForMen Garments Co.

Learn more about Linear programming.

brainly.com/question/32090294

#SPJ11

dont forget to give me the exact coordinates
Graph the solution of the system of inequalities. {-x + y ≤ 4 {x + 2y < 10 {3x + y ≤ 15 { x>=0, , y>= 0

Answers

The exact coordinates of the vertices of the feasible region are:(0, 0), (2, 4), (5, 2)Thus, the exact coordinates are (0, 0), (2, 4), and (5, 2).

The given system of inequalities is:-

-x + y ≤ 4

x + 2y < 10

3x + y ≤ 15

x ≥ 0, y ≥ 0

Now, to solve the above system of inequalities, we will first find out the solutions of the inequalities that are given above:

x + 2y < 10.

The equation of the line would be x + 2y = 10

The table of values will be:

xy10(0, 5)(10, 0)

The line passes through the points (0,5) and (10,0). From the above-mentioned table, we can infer that (0, 0) lies below the line. Now, we will shade the area below the line. Also, the line x + 2y < 10 is a dotted line, as the points on this line are not solutions of the inequality, x + y ≤ 4. The equation of the line would be -x + y = 4.

The table of values will be:

xy4(0, 4)(4, 0)

The line passes through the points (0,4) and (4,0). From the above-mentioned table, we can infer that (0,0) lies above the line. Now, we will shade the area above the line. Also, the line -x + y ≤ 4 is a solid line, as the points on this line are solutions of the inequality, 3x + y ≤ 15. The equation of the line would be 3x + y = 15.

The table of values will be:

xy153(0, 15)(5, 0)

The line passes through the points (0,15) and (5,0)

From the above-mentioned table, we can infer that (0,0) lies above the line. Now, we will shade the area above the line.

Also, the line 3x + y ≤ 15 is a solid line, as the points on this line are solutions of the inequality. The graph of the system of inequalities would look like: Find the coordinates of the points where the lines intersect:

On solving x + 2y = 10 and -x + y = 4, we get: x = 2, y = 4

On solving x + 2y = 10 and 3x + y = 15, we get: x = 5, y = 2

The exact coordinates of the vertices of the feasible region are:(0, 0), (2, 4), (5, 2)Thus, the exact coordinates are (0, 0), (2, 4), and (5, 2).

To know more about system of inequalities ,visit ;

brainly.com/question/28230245

#SPJ11


Person A got 3,5,8 in three quizzes in Physics while Person B
got 6,4,9. What is the coefficient of rank correlation between the
marks of Person A and B.

Answers

The coefficient of rank correlation between the marks of Person A and B is -26.67.

The formula for the coefficient of rank correlation between the marks of Person A and B is given below:

Coefficient of rank correlation, r = 1 - (6ΣD^2) / (n(n^2 - 1))

Where,

ΣD^2 = sum of the squares of the difference between ranks for each pair of items;

n = number of items

For Person A:3, 5, 8

For Person B:6, 4, 9

Rank of Person A:3 -> 1st5 -> 2nd8 -> 3rd

Rank of Person B:6 -> 2nd4 -> 1st9 -> 3rd

Difference between ranks:

3-1 = 2

5-2 = 3

8-3 = 5

6-2 = 4

4-1 = 3

9-3 = 6

ΣD^2 = 2^2 + 3^2 + 3^2 + 4^2 + 3^2 + 6^2= 4 + 9 + 9 + 16 + 9 + 36= 83

n = 3

Coefficient of rank correlation, r = 1 - (6ΣD^2) / (n(n^2 - 1))= 1 - (6 * 83) / (3(3^2 - 1))= 1 - (498 / 18)= 1 - 27.67= -26.67

Therefore, the coefficient of rank correlation between the marks of Person A and B is -26.67.

Learn more about correlation coefficient at:

https://brainly.com/question/13082150

#SPJ11

Order: NS 100 ml/hr for 2 hours 30 minutes. Calculate total volume in mL to be infused? MacBook Pro

Answers

The total volume to be infused is 250 mL.The infusion rate is given as 100 mL/hr and the duration of infusion is 2 hours 30 minutes.

To calculate the total volume, we need to convert the duration into hours. Since there are 60 minutes in an hour, 30 minutes is equal to 0.5 hours.

Now, we can multiply the infusion rate (100 mL/hr) by the duration in hours (2.5 hours) to find the total volume.

Total Volume = Infusion Rate × Duration

Total Volume = 100 mL/hr × 2.5 hours

Total Volume = 250 mL

Therefore, the total volume to be infused is 250 mL.

To know more about volume, refer here:

https://brainly.com/question/28058531#

#SPJ11

Identify each parameterized surface:
(a) 7(u, v) = (vcosu, vsinu, 4v) for 0 ≤u≤π and 0 ≤v≤3
(b) 7(u, v) = (u, v, 2u+ 3v-1) for 1 ≤u≤ 3 and 2 ≤ v≤ 4

Answers

The parameterized surface given by 7(u, v) = (vcosu, vsinu, 4v) for 0 ≤u≤π and 0 ≤v≤3 represents a portion of a helical surface.

It is a helix that spirals around the z-axis with a radius of v and extends vertically along the z-axis with a height of 4v. The parameter u determines the angle at which the helix wraps around the z-axis, while the parameter v determines the height of the helix.

The parameterized surface given by 7(u, v) = (u, v, 2u+ 3v-1) for 1 ≤u≤ 3 and 2 ≤ v≤ 4 represents a tilted plane in three-dimensional space. It is a plane that is slanted in the direction of both the x-axis and the y-axis.

The parameters u and v determine the coordinates of points on the plane, with u controlling the position along the x-axis and v controlling the position along the y-axis. The equation 2u+ 3v-1 determines the height or z-coordinate of each point on the plane.

Learn more about parametric surfaces here: brainly.com/question/32623162


#SPJ11

Let f(x) 3x² + 4x + 1 322 +14x + 15 Identify the following information for the rational function: (a) Vertical intercept at the output value y = (b) Horizontal intercept(s) at the input value(s) = (c

Answers

The vertical intercept of the given rational function f(x) = 3x² + 4x + 1 is at the output value y = 1.

What is the output value of the vertical intercept for the rational function f(x) = 3x² + 4x + 1?

The vertical intercept of the rational function f(x) = 3x² + 4x + 1 is the output value y = 1. This means that when x = 0, the function evaluates to y = 1.

The horizontal intercept(s) of the given rational function f(x) = 3x² + 4x + 1 are at the input value(s) x = -1 and x = -5.

The rational function f(x) = 3x² + 4x + 1 has horizontal intercept(s) at x = -1 and x = -5. This means that the function crosses the x-axis at these two points, where the output value y equals zero.

Learn more about rational functions Rational functions

brainly.com/question/27914791

#SPJ11

Question 2
Consider Z=
xex
yn
Find all the possible values of n given that
a2z
3x
ax2
xy2
a2z
= 12z
მy2

Answers

To find all the possible values of n given the equation:

[tex]\frac{a^2z}{3x} + \frac{ax^2}{xy^2} + \frac{a^2z}{y^2} = \frac{12z}{xy^2}[/tex]

Let's simplify the equation:

[tex]\frac{a^2z}{3x} + \frac{ax}{xy} + \frac{a^2z}{y^2} = \frac{12z}{xy^2}[/tex]

To compare the terms on both sides of the equation, we need to have the same denominator. Let's find the common denominator for the left side:

Common denominator = [tex]3x \cdot xy^2 \cdot y^2 = 3x^2y^3[/tex]

Now, let's rewrite the equation with the common denominator:

[tex]\frac{a^2z \cdot y^3 + ax \cdot y^3 + a^2z \cdot 3x^2}{3x^2y^3} = \frac{12z}{xy^2}[/tex]

Next, let's cross-multiply to eliminate the denominators:

[tex](a^2z \cdot y^3 + ax \cdot y^3 + a^2z \cdot 3x^2) \cdot (xy^2) = (12z) \cdot (3x^2y^3)[/tex]

Expanding the left side of the equation:

[tex]a^2z \cdot x \cdot y^5 + ax \cdot x \cdot y^5 + a^2z \cdot 3x^2 \cdot y^2 = 36x^2y^4z[/tex]

Simplifying:

[tex]a^2xyz^2 + ax^2y^5 + 3a^2x^2y^2 = 36x^2y^4z[/tex]

Now, let's compare the terms on both sides:

Coefficient of [tex]xyz^2[/tex] on the left side: [tex]a^2[/tex]

Coefficient of [tex]xyz^2[/tex] on the right side: 36

To satisfy the equation, the coefficients of the terms must be equal. Therefore, we have:

[tex]a^2 = 36[/tex]

Taking the square root of both sides:

[tex]a = \pm 6[/tex]

Now, let's examine the other terms:

Coefficient of [tex]x^2y^5[/tex] on the left side: [tex]ax^2[/tex]

Coefficient of [tex]x^2y^5[/tex] on the right side: 0

To satisfy the equation, the coefficients of the terms must be equal. Therefore, we have:

[tex]ax^2 = 0[/tex]

Since a ≠ 0 (as we found a = ±6), there is no value of x that satisfies this equation. Therefore, the term [tex]x^2y^5[/tex] on the left side cannot be equal to the term on the right side.

Finally, we have:

[tex]a = \pm 6[/tex] (possible values)

In conclusion, the possible values of n depend on the value of a, which is ±6.

To know more about Value visit-

brainly.com/question/30760879

#SPJ11


wi-fi access a survey of 49 students in grades 4 through 12 found
that 63% have classroom wi-fi access
Question 26 of 33 points attempt 1011 1 12 Mai Remaining 73 con Ease 1 Wi-Fi Access A survey of 49 students in grades 4 through 12 found 63% have cossroom Wi-Fi access. Find the 99% confidence interva

Answers

The 99% confidence interval for the proportion of students having access to Wi-Fi is approximately (45%, 81%).

How to solve for the confidence interval

For a 99% confidence level, the Z-score is approximately 2.576 (you can find this value in a Z-table or use a standard normal calculator).

Now we substitute our values into the formula:

0.63 ± 2.576 * √ [ (0.63)(0.37) / 49 ]

The expression inside the square root is the standard error (SE). Let's calculate that first:

SE = √ [ (0.63)(0.37) / 49 ] ≈ 0.070

Substituting SE into the formula, we get:

0.63 ± 2.576 * 0.070

Calculating the plus and minus terms:

0.63 + 2.576 * 0.070 ≈ 0.81 (or 81%)

0.63 - 2.576 * 0.070 ≈ 0.45 (or 45%)

So, the 99% confidence interval for the proportion of students having access to Wi-Fi is approximately (45%, 81%).

0.45 < p < 0.81

Read more on confidence interval here https://brainly.com/question/15712887

#SPJ4








Find the missing terms of the sequence and determine if the sequence is arithmetic, geometric, or neither. 288, 144, 72, 36, Answer 288, 144, 72, 36, O Arithmetic Geometric O Neither

Answers

The missing terms are 18 and 9. The given sequence is a geometric sequence.

To determine whether the sequence is arithmetic or geometric,

We obtain a common ratio of 1/2.

Hence, the sequence is geometric. To find the next two terms, multiply the last term by the common ratio 1/2.

Therefore, the missing terms are 18 and 9. Answer: 288, 144, 72, 36, 18, 9.

Summary: The sequence is geometric and the missing terms are 18 and 9.

Learn more about geometric sequence click here:

https://brainly.com/question/24643676

#SPJ11

Other Questions
microsoft access may use which of the following dbms engines? A clinical trial was performed on 465 patients, aged 10-17, who suffered from Type 2 Diabetes These patients were randomly assigned to one of two groups. Group 1 (met) was treated with a drug called metformin. Group 2 (rosi) was treated with a drug called rosiglitazone. At the end of the experiment, there were two possible outcomes. Outcome 1 is that the patient no longer needed to use insulin. Outcome 2 is that the patient still needed to use insulin. 232 patients were assigned to the met treatment, and 112 of them no longer needed insulin after the treatment 233 patients were assigned to the rosi treatment, and 143 of them no longer needed insulin after the treatment. Q2.2Which procedure should we use to test whether the proportion of patients who no longer need insulin was smaller for the met treatment than on the rosI treatment? A. 1 proportion (z) confidence interval B. 1 proportion (z) hypothesis test C. 2 proportion (z) confidence interval D. 2 proportion (z) hypothesis test E. 1 sample (t) confidence interval F. 1 sample (t) hypothesis test G. 2 sample (t) confidence interval H. 2 sample (t) hypothesis test I. Chi-square Goodness of Fit Test J. Chi-square Test of independence K. ANOVA The top 25% of the class scored between ______ and ____ Don't round Write an augmented matrix for the following system ofequations.-2x + 8y = 92x - 2y = 4The entries in the matrix are:_ _ | __ _ | _ what is the correct net ionic equation to describe this precipitation reaction? c o ( n o 3 ) 2 ( a q ) 2 n a o h ( a q ) 2 n a n o 3 ( a q ) c o ( o h ) 2 ( s ) Solve the equation 3|x-1|-1=11 Simplify the following expressions: Q.2.4.1 x-4 x + 4x +4 Q.2.4.2 9x-25y 3x - 5xy Q.2.4.3 64a-1256 4ab-5ab Q.2.4.4 4xy27xy6 2,43 Q.2.4.5 [x ]Wxy] (4) (3) (3) (5) (4) (5) 5. Find data on GDP and its components, andcompute the percentage of GDP for thefollowingcomponents for 2018 to 2022a. Personal consumption expendituresb. Gross private domestic investmentc. Gov Editorials that CRITICIZED the mayor's actions is a example of Factorise completely. 1.1) 2x + 4y - 6z1.2) 10p6q-4pq2 + 2p*q*1.3) (m+n)-5p(m + n) 1.4) 4(7c-d)+a(d-7c) f the GDP deflator rises from 135 to 140, what is the rate of inflation between the two years?3.7%5%3.57%Assume the average annual CPI values for 2010 and 2014 were 225 and 256, respectively. What was the inflation rate for 2014 according to the CPI?13.8%12.115.6%31.0%2.5% Let A be any 5x7 matrix for which the col(A) has dimension 3, calculate: the nullity(A), and, state which vector space R^k that null(A) is a subspace of (give k). A. nullity(A)=2, k=7 B. nullity(A)=4, k=5 C. nullity(A)=4, k=7 D. nullity(A)=2, k=5 Verizon is trying to determine the value of a cell phone subscriber in Bloomington, Indiana, and the optimal levels of acquisition and retention spending. Currently Verizon has 20,000 customers and 30,000 potential customers. You are given the following information: Profits are discounted at 10 percent per year. Annual profit per customer is $400. Currently Verizon is spending $12 per prospect on acquisition and capturing 4 percent annually of prospective customers. Currently Verizon is spending $30 per customer on customer retention and has a retention rate of 75 percent. Verizon believes that with a saturation level of spending, the annual acquisition rate would increase to 10 percent and the annual retention rate would increase to 85 percent. a. Determine the value of a customer and the profi t maximizing annual level of acquisition and retention spending. b. Use SolverTable to determine how the optimal level of retention and acquisition spending in Exercise 1 varies with an increase in annual profi t. Given the following demand data,1 422 393. 444. 405. 47Given the following demand data, Period Demand 1 42 2 39 3 44 40 47 a. Compute a weighted average forecast using a weight of 0.4 for the recent, 0.2 for the next, and 0.1 for the next. (Round all your To what extent does the approach to time management at McDonalddisplay features of strategic human resource management? assume that cullumber company will continue to use this copyright in the future. as of december 31, 2020, the copyright is estimated to have a remaining useful life of 10 years. x2 Evaluate da. (22 + 1)(x2 + 4) Hint:Consider C the following contour, where Lu+12 YR -R R Six annual deposits in the amounts of $12,000 $10,000, $8,000, $6,000, $4,000, and $2,000, in that order, are made into a fund that pays interest at a rate of 10% compounded annually. Determine the amount in the fund immediately after the sixth deposit a. $18,090 04 Ob. $20.264.68 O $21,723.52 Od. $58,275 12 e. $52,888 32 Of $49 546 44 Noahs recipe for sparkling orange juice uses 4 liters of orange juice and 5 liters of soda water. a.Noah prepares large batches of sparkling orange juice for school parties. He usually knows the total number of liters, , that he needs to prepare. Write an equation that shows how Noah can find , the number of liters of soda water, if he knows . b.Sometimes the school purchases a certain number, , of liters of orange juice and Noah needs to figure out how much sparkling orange juice he can make. Write an equation that Noah can use to find if he knows . Complete a cause-and-effect diagram to reflect "student dissatisfied with university registration process Cack the icon to view the partially completed cause-and-effect diagram. Match each number in the diagram with the comesponding reason Number E 11 101 IV Reason Faculty not available Forms that can't be found Tasks that don't make sense Registration computers break down Complete a cause-and-effect diagram to reflect "student dissatisfied with university registration process Click the icon to view the partially completed cause-and-effect diagram Match each number in the diagram with the coresponding reason. Number 1 11 11 W Reason Faculty not available Tasks that don't make Registration computers break down Forms that can't be found O Points: 0 of 3 Complete a cause-and-effect diagram to reflect "student dissatisfied with university registration process." Click the icon to view the partially completed cause-and-effect diagram, Match each number in the diagram with the corresponding reason. Number 1 11 III IV Reason Faculty not available Tasks that don't make sense Forms that can't be found Registration computers break down estior fo, Prodiem 6.10 Reason Forms that can't be found Tasks that don't make sense Faculty not available Registration computers break down Completa a cause-and-effect diagram to refect "student dissatisfied with university registration process le Click the icon to view the partially completed cause-and-effect diagram Match each number in the diagram with the coresponding reason Number I 11 III N O Points: 0 of 3 correspo Graph/chart Material 1 Too few classes at selected hours 111 Excessive red tape ethods. Printer issues Print 11 Lateness IV Done Machinery Manpower Dissatisfied student I X You start backing out of your garage before the garage door is fully up. The top of your car hits the garage door, breaking the door and damaging your car. It costs $1100 to repair your car and $1600 to repair the garage door. Your policy will pay: A. 0 B. $1,100 C. $1,600 D. $2,600 E. $1,000 Steam Workshop Downloader