Answer:
hi the answer is true
Step-by-step explanation:
hope it helps
The triangle can be formed using the given line segments. Therefore, the given statement is true.
What is the triangle inequality theorem?The triangle inequality theorem describes the relationship between the three sides of a triangle. According to this theorem, for any triangle, the sum of lengths of two sides is always greater than the third side.
Given that, line segments AC=9 units, BC=4 units and AB=11 units.
If a, b and c are the lengths of the sides of a triangle then
If a ≤ b ≤ c, then a + b > c.
9+4>11
13>11
Therefore, the given statement is true.
To learn more about the triangle inequality theorem visit:
https://brainly.com/question/1163433.
#SPJ7
In making a budget, a person should spend about one-third of his or her salary on
rent or housing, should put about one-tenth into a savings account, and should
plan to have about one-third taken out in taxes. What fraction of a person’s salary
is then left for everything else?
Lets see
One-third on rentOne tenth on savingsOne third for taxesLeft:-
1-(1/3+1/10+1/3)1-(20+20+3/30)1-43/3030-43/10-13/10Not left anything
Consider the sum 7+(-11)+4
Answer:
0
Step-by-step explanation:
7-11=-4
-4+4=0
For f(x) = 2 – 2x2, evaluate f(-4).
Answer:
x = 1 ± [tex]\sqrt2[/tex]
Step-by-step explanation:
Hope this helped! Have a nice day!
Please give Brainliest when you can.
- King Jaron
Point B (1 -3) is reflected across the x-axis to point D. What are the coordinates of point D?
Answer:
D (1;3).
Step-by-step explanation:
1) the condition 'across the X-axis' means the x-coordinate is not changed, the y-coordinate is changed to positive value. Then
2) the required coordinates of point D are (1; 3).
note, the suggested option is not the only one.
Solve using the square root property.X^2=-12
Answer:
x = ± 2i[tex]\sqrt{3}[/tex]
Step-by-step explanation:
note that [tex]\sqrt{-1}[/tex] = i
x² = - 12 ( take square root of both sides )
x = ± [tex]\sqrt{-12}[/tex] = ± [tex]\sqrt{4(3)(-1)}[/tex] = ± 2i[tex]\sqrt{3}[/tex]
Compare the functions shown below:
g(x)
f(x) = −3x + 2 cosine function with y intercept at 0, negative 3 h(x) = 4 sin(2x + π) + 3
Using complete sentences, explain which function has the greatest y-intercept.
Answer:
I know 3 h(x)=4sin(2x+pi)+3 is the correct option.
Step-by-step explanation:
I don't exactly know why but based on examples in this class I made this conclusion.
Answer:
all are -3
Step-by-step explanation:
substitue 0
na conta de adição (soma) representa a seguir
Step-by-step explanation:
I only understand English i am sorry
PLEASE HELP: A random sample of 200 students are chosen from a student population of 1200 students. which sample do you think is more likely to be representative of the population
Answer:
random sampling is more accurate
The probability that a randomly selected 25-year-old male will survive the year is 0.9984 according to a report on vital
statistics. If three randomly selected 25-year-old males are selected from the general population, explain how to find the
probability that all three will survive the year. Follow the rules for significant figures.
Answer:
0.9952076759
Step-by-step explanation:
Probability that all three survive
= 0.9984 × 0.9984 × 0.9984
= 0.9952076759
A student is interested in the depth of the water off the
end of the local pier. Starting at midnight, he measures
the depth of the water every three hours for an entire
day and records the results in the table.
The equation of the least-squares regression line is
9 = 13.0 -0.259x, where y is the depth of the water
and x is the number of hours past midnight. Which
shows the residual plot?
For edge
The residual plot regarding the depth of the water is the difference between the observed response and the fitted response values.
What is a residual plot?Your information is incomplete. Therefore, an overview of a residual plot will be given. A residual plot is a graph that shows the residual on the vertical axis while the independent variable is on the horizontal axis.
Here, the equation of the least-squares regression line is 9 = 13.0 -0.259x, where y is the depth of the water and x is the number of hours past midnight.
In this case, the residual plot regarding the depth of the water is the difference between the observed response and the fitted response values.
Learn more about residual plot on:
https://brainly.com/question/3297603
Answer: C
Step-by-step explanation: Edge '23 Trust me
Six divided by one thirds
Answer:
18/1
Step-by-step explanation:
Answer:
1/2. I think if I'm wrong I'm sorry
Can yo solve this ones, please? in adittion, can you put answers and the process. The topic are area down the curve
1) The net area between the two functions is 2.
2) The net area between the two functions is 4/3.
3) The net area between the two functions is 17/6.
4) The net area between the two functions is approximately 1.218.
5) The net area between the two functions is 1/2.
How to determine the area between two functions by definite integrals
The area between the two curves is determined by definite integrals for a interval between two values of x. A general formula for the definite integral is presented below:
[tex]A = \int\limits^{b}_{a} {[f(x) - g(x)]} \, dx[/tex] (1)
Where:
a - Lower limitb - Upper limitf(x) - "Upper" functiong(x) - "Lower" functionNow we proceed to solve each integral:
Case I - [tex]f(x) = \sqrt{x}[/tex] and [tex]g(x) = x^{2}[/tex]The lower and upper limits between the two functions are 0 and 1, respectively. The definite integral is described below:
[tex]A = \int\limits^1_0 {x^{0.5}} \, dx - \int\limits^1_0 {x^{2}} \, dx[/tex]
[tex]A = 2\cdot (1^{1.5}-0^{1.5})-\frac{1}{3}\cdot (1^{3}-0^{3})[/tex]
[tex]A = 2[/tex]
The net area between the two functions is 2. [tex]\blacksquare[/tex]
Case II - [tex]f(x) = -4\cdot x[/tex] and [tex]g(x) = x^{2}+3[/tex]The lower and upper limits between the two functions are -3 and -1, respectively. The definite integral is described below:
[tex]A = - 4 \int\limits^{-1}_{-3} {x} \, dx - \int\limits^{-1}_{-3} {x^{2}} \, dx - 3 \int\limits^{-1}_{-3}\, dx[/tex]
[tex]A = -2\cdot [(-1)^{2}-(-3)^{2}]-\frac{1}{3}\cdot [(-1)^{3}-(-3)^{3}] -3\cdot [(-1)-(-3)][/tex]
[tex]A = \frac{4}{3}[/tex]
The net area between the two functions is 4/3. [tex]\blacksquare[/tex]
Case III - [tex]f(x) = x^{2}+2[/tex] and [tex]g(x) = -x[/tex]The definite integral is described below:
[tex]A = \int\limits^{1}_{0} {x^{2}} \, dx + 2\int\limits^{1}_{0}\, dx + \int\limits^{1}_{0} {x} \, dx[/tex]
[tex]A = \frac{1}{3}\cdot (1^{3}-0^{3}) + 2\cdot (1-0) +\frac{1}{2}\cdot (1^{2}-0^{2})[/tex]
[tex]A = \frac{17}{6}[/tex]
The net area between the two functions is 17/6. [tex]\blacksquare[/tex]
Case IV - [tex]f(x) = e^{-x}[/tex] and [tex]g(x) = -x[/tex]The definite integral is described below:
[tex]A = \int\limits^{0}_{-1} {e^{-x}} \, dx+ \int\limits^{0}_{-1} {x} \, dx[/tex]
[tex]A = -(e^{0}-e^{1}) + \frac{1}{2}\cdot [0^{2}-(-1)^{2}][/tex]
[tex]A \approx 1.218[/tex]
The net area between the two functions is approximately 1.218. [tex]\blacksquare[/tex]
Case V - [tex]f(x) = \sin 2x[/tex] and [tex]g(x) = \sin x[/tex]This case requires a combination of definite integrals, as f(x) may be higher that g(x) in some subintervals. The combination of definite integrals is:
[tex]A = \int\limits^{\frac{\pi}{3} }_0 {\sin 2x} \, dx - \int\limits^{\frac{\pi}{3} }_{0} {\sin x} \, dx + \int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin x} \, dx -\int\limits^{\frac{\pi}{2} }_{\frac{\pi}{3} } {\sin 2x} \, dx[/tex]
[tex]A = -\frac{1}{2}\cdot (\cos \frac{2\pi}{3}-\cos 0)+(\cos \frac{\pi}{3}-\cos 0 ) -(\cos \frac{\pi}{2}-\cos \frac{\pi}{3} )+\frac{1}{2}\cdot (\cos \pi-\cos \frac{2\pi}{3} )[/tex]
[tex]A = \frac{1}{2}[/tex]
The net area between the two functions is 1/2. [tex]\blacksquare[/tex]
To learn more on definite integrals, we kindly invite to check this verified question: https://brainly.com/question/14279102
Given mn, find the value of x. + (10N+2)" ION-18)"
Answer:
16
Step-by-step explanation:
equal both using corresponding law
Simplify the expression with nested parentheses.
4 30+ 26+6 −33
Answer:
not sure if the 4 is seperate but if it is then (30+26)+(6-33)
Step-by-step explanation:
A rock is dropped from the top of a building and hits the ground at a velocity of
–72ft/sec. If the acceleration due to gravity is – 32ft /sec², what is the height of the
building?
Answer:
81 [ft].
Step-by-step explanation:
1) the basic formula is: h=gt²/2, where g - acceleration due to gravity, t - elapsed time;
2) if the final velocity is 72, g=32, then it is possible to calculate elapsed time:
[tex]t=\frac{V}{g}=\frac{72}{32}=\frac{9}{4} [sec].[/tex]
3) if g=32, t=9/4, then the required height is:
[tex]h=\frac{32*(\frac{9}{4} )^{2} }{2}=\frac{16*81}{16}=81[ft].[/tex]
The height of the building comes to be 81 feet.
Initial velocity u= 0 feet/sec
Final velocity v= 72 feet/sec
The acceleration due to gravity g =32ft /sec²
Height of the building h= suppose h
What is the equation of motion?The equation of a motion is:
[tex]v^{2} =u^{2} +2gh[/tex]
Where u and v are the initial and final velocities.
[tex]72^{2} =0+2*32*h\\144 = 64h\\h=81[/tex]
So, the height of the building = 81 feet.
Therefore, the height of the building comes to be 81 feet.
To get more about motion visit:
https://brainly.com/question/453639
rom the sample space S={1, 2, 3, 4,..., 15} a single number is to be selected at random. Given the following events, find the indicated probability. A: The selected number is even. B: The selected number is a multiple of 4. C: The selected number is a prime number. P(C∣A)
The probability that the selected number is even, multiple of 4 and prime are 7/15, 1/5 and 2/5 respectively
What is Probability?Probability is the likelihood or chance that an event will occur.
Probability = Expected outcome/Total outcome
Given the following set
S={1, 2, 3, 4,..., 15}
n(S) = 15
If the selected number is even
E = {2, 4, 6, 8, 10, 12, 14}
n(E) = 7
Pr(selecting even number) = n(E)/n(S)
Pr(selecting even number) = 7/15
If the selected number is a multiple of 4
E = {4, 8, 12}
n(E) = 3
Pr(multiple of 4) = n(E)/n(S)
Pr(multiple of 4) = 3/15 = 1/5
If the selected number is a prime number
E = {2, 3, 5, 7, 11, 13}
n(E) = 6
Pr(prime number) = n(E)/n(S)
Pr(prime number) = 6/15 = 2/5
Learn more on probability here: https://brainly.com/question/25870256
PLEASE HELP PLEASE PLEASE HELP PLEASE
Answer:
True
Step-by-step explanation:
like pirates, the stars were their navagation
PLEASE HELP ILL GIVE BRAINLIESTTTT
Answer:
50, 30 and 20
Step-by-step explanation:
Check out the attached photo
Which values are in the solution set of the compound inequality –8 < 3x + 7 ≤ 10? Select three options. –15 –5 –3 0 1
Answer:
Your answers: -5, 0, 1
Step-by-step explanation:
–8 < 3x + 7 ≤ 10 That is the original compount inequality given.
We need to solve it in order to get an easy option.
-15, -5, -3, 0, 1 are the options.
_________________________________________________
Steps to solve:
–8 < 3x + 7 ≤ 10
Subtract 7 from both sides
–8 < 3x ≤ 10 - 7
Now do 10-7
–8 < 3x ≤ 3
Do 3x divided by 3
–8 < x ≤ 1
________________________________________________________
Evaluation and Answer Explanation:
–8 < x ≤ 1
That is your inequality statement.
The inequality statement states that "x" is greater than -8 but less than or equal to 1.
We can automatically choose 0 and 1 because 0 is greater than -8 and less than or equal to 1.
1 is correct because it is greater than -8 and less than or equal to 1
Now, there are two answers remaining: -15; -5.
Let's try -15.
-15 isn't greater than -8 but is less than 1. This is incorrect because it follows one inequality but doesn't follow both.
**Rule: the bigger you go on the negatives like -20 or -99 your numbers get smaller. If you go more towards the 0 like -1, -5, -3 your numbers get bigger.
-5 works because it is greater than -8 and less than or equal to 1.
Your answers: -5, 0, 1
Factor out the greatest common factor 45d^3-18d^2
Answer:
9d^2(5d−2)
Step-by-step explanation:
Pls help I cant figure it out ;-;
Answer:
coke red
Step-by-step explanation:
correct me if im wrong
I WILL GIVE BRAINLYEST
Rectangle PQRS is plotted on a coordinate plane. The coordinates of P are (– 1, 4) and the
coordinates of Q are (– 1, – 4). Each unit on the coordinate plane represents 1 centimeter, and
the area of Rectangle PQRS is 64 square centimeters. Find the coordinates of Points R and S
given these conditions:.aPoints R and S are to the left of Points P and Q.bPoints R and S are to the right of Points P and Q
Answer:
See belowStep-by-step explanation:
Given points P and Q have same x-coordinate but different y- coordinates.
The distance between P and Q is the difference of y- coordinates:
PQ = 4 - (-4) = 8 units = 8 cmThe area is 64 cm², it means the adjacent sides are
PS = QR = 64/8 = 8 cma)
If the points R and S are to the left, their coordinates are
S = (-1 - 8, 4- 0) = (- 9, 4)R = (-1 - 8, - 4 - 0) = (- 9, -4)b)
If the points R and S are to the right, their coordinates are
S = (-1 + 8, 4 + 0) = (7, 4)R = (-1 + 8, - 4 + 0) = (7, -4)Answer:
Points R and S are to the left of Points P and Q
R = (-9, 4)
S = (-9, -4)
Points R and S are to the right of Points P and Q
R = (7, 4)
S = (7, -4)
Step-by-step explanation:
Given coordinates:
P = (-1, 4)Q = (-1, -4)Points P and Q have the same x-value.
The vertical distance between these two points is:
[tex]\begin{aligned}\implies \sf y_P-y_Q & =\sf 4-(-4)\\ & =\sf 4+4\\ & =\sf 8\:units \\ & =\sf 8\:cm\end{aligned}[/tex]
Area of a rectangle = width × length
If the area of the rectangle PQRS is 64 cm² then:
[tex]\begin{aligned} \implies \sf 64 & = \sf width \times 8\\\implies \sf width & = \sf \dfrac{64}{8}\\\implies \sf width& = \sf 8 \: cm \end{aligned}[/tex]
This means that the y-values of points R and S will be the same as points P and Q, but the x-values will either be 8 less or 8 more.
Points R and S are to the left of Points P and Q
R = (-1 - 8, 4) = (-9, 4)
S = (-1 - 8, -4) = (-9, -4)
Points R and S are to the right of Points P and Q
R = (-1 + 8, 4) = (7, 4)
S = (-1 + 8, -4) = (7, -4)
2x + y = 7 - 9x + 6y = 0
x=2
Step-by-step explanation:
y=7-2x -------(1)
6y=9x
y=9x/6 = 3x/2------(2)
Now,
Equation equation 1 and 2
7-2x= 3x /2
2(7-2x)=3x
14-4x=3x
14=4x+3x
14=7x
14/7=x
x=2
How to solve this 2 question?
8. For brevity, let U = unemployed, E = employed, M = male, F = female. We're given that
P(M) = P(F) = 50/100 = 1/2
P(U) = 60/100 = 3/5
P(M | U) = 2/3
P(E) = 40/100 = 2/5
P(F | E) = 3/4
8a. This follows immediately from the given information. Specifically,
P(E) = 1 - P(U) = 1 - 3/5 = 2/5
8b. By definition of conditional probability,
P(A | B) = P(A and B) / P(B) ⇒ P(A and B) = P(A | B) P(B)
It follows that
P(M and U) = P(M | U) P(U) = 2/3 • 3/5 = 2/5
8c. Using Bayes' rule/the definition of conditional probability,
P(U | F) = P(U and F) / P(F) = P(F | U) P(U) / P(F)
Since F and M are mutually exclusive,
P(F | U) = 1 - P(M | U)
and so
P(U | F) = (1 - 2/3) • 3/5 / [(1 - 2/3) • 3/5 + 3/4 • 2/5] = 2/5
8d. Here we assume gender and employment status are independent, so for instance
P(F and E) = P(F) P(E)
We then have by the inclusion/exclusion principle that
P(F or U) = P(F) + P(U) - P(F and U) = P(F) + P(U) - P(F) P(U)
We also have by the law of total probability
P(F) = P(F and U) + P(F and E)
so
P(F or U) = P(F and U) + P(F and E) + P(U) - P(F) P(U)
By the assumed independence,
P(F or U) = P(F) P(U) + P(F) P(E) + P(U) - P(F) P(U)
P(F or U) = P(F) P(E) + P(U)
P(F or U) = 1/2 • 2/5 + 3/5 = 4/5
9.
a. This is mostly a matter of counting the ways a given type of stamp can fall out.
[tex]P(A) = \dfrac{\dbinom{20}3}{\dbinom{24}3} = \dfrac{285}{506}[/tex]
since there are 20 non-green stamps.
[tex]P(B) = \dfrac{\dbinom21 \dbinom{22}2}{\dbinom{24}3} = \dfrac{21}{92}[/tex]
since there are 2 red and unused stamps, 1 of which we want; the other 2 stamps come from the remaining 22 non-red-and-unused stamps.
[tex]P(A \cap B) = \dfrac{\dbinom21 \dbinom{18}2}{\dbinom{24}3} = \dfrac{153}{1012}[/tex]
since exactly 1 of the stamps must be red and unused, and the other 2 stamps that fall out can be neither green nor red and unused.
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B) = \dfrac{162}{253}[/tex]
which follows from the inclusion/exclusion principle.
b. There is a total of 10 used stamps, so the probability of at least 1 going missing is
[tex]P(C) = \dfrac{\dbinom{10}1\dbinom{14}2 + \dbinom{10}2\dbinom{14}1 + \dbinom{10}3}{\dbinom{24}3} = \dfrac{415}{506}[/tex]
By definition of conditional probability,
[tex]P(C \mid A) = \dfrac{P(C \cap A)}{P(A)}[/tex]
However, there are no used green stamps; any used stamp that goes missing must be red, blue or yellow. So the event A ∩ C is really just the event C, and
[tex]P(C \mid A) = P(C) = \dfrac{415}{506}[/tex]
c. A and C are independent if and only if
[tex]P(A \cap C) = P(A) P(C)[/tex]
We know
[tex]P(C \cap A) = P(C)[/tex]
so if A and C are independent, then
[tex]P(C) = P(A) P(C)[/tex]
but this would imply P(A) = 1, which is clearly not the case as we found in 9.a. So A and C are not independent.
Express the repeating decimal 0.3 as a fraction
The answer is 1/3.
If you're still not sure (and math teachers will appreciate you doing this), you can check. Divide 1 by 3 and you will get 0.333333333333...
I hope this answers your question.
To choose the three players fairly, Coach Bennet decides to set up a free throw contest. The three players who make the most consecutive free throws will get to go to the summer basketball clinic.
Part A
Question
How many different orders of top-three finishers are possible?
Drag the tiles to the correct locations on the equation. Not all tiles will be used.
Using the arrangements formula, it is found that 6 different orders of top-three finishers are possible.
What is the arrangements formula?The number of possible arrangements of n elements is given by the factorial of n, that is:
[tex]A_n = n![/tex]
In this problem, the possible orders are arrangements of 3 elements, hence, the number of orders is given by:
[tex]A_3 = 3! = 6[/tex]
More can be learned about the arrangements formula at https://brainly.com/question/25925367
#SPJ1
A car is travelling down a highway away from its starting location with a distance function with d(t) = 8(t? – 6t2 +12t) where t is in hours and d is in kilometres.
a. What is the average velocity over [1, 3]?
(5 marks]
The average velocity is the rate of the distance function over time
The average velocity over the interval [1, 3] is 8 kilometers per hour
How to determine the average velocity?The distance function is given as:
d(t) = 8(t³ - 6t² + 12t)
The interval is given as: [1,3]
Calculate d(1) and d(3)
d(3) = 8(3³ - 6 * 3² + 12 * 3)
Evaluate
d(3) = 72
d(1) = 8(1³ - 6 * 1² + 12 * 1)
Evaluate
d(1) = 56
The average velocity (v) is the calculated as:
v = (d(3) - d(1))/(3 - 1)
Substitute known values
v = (72 - 56)/(3 - 1)
Evaluate
v = 8
Hence, the average velocity over [1, 3] is 8 kilometers per hour
Read more about velocity at:
https://brainly.com/question/4931057
BRAINLIEST?! :D
You look up at a 70°
angle and see a plane directly above a building that is 30 meters away from you. How high is the plane flying? Round your answer to the nearest tenth.
Answer:
tan 70 times thirty gives you -1.70
You can buy 1 pound of chocolate for 7.99 how much is a chocolate pronounce round your answer to the nearest cent
Answer:
Step-by-step explanation:
1 pound = 16 ounces
16 ounces = $7.99
1 ounce = $0.50 (about)
How do I do show my work using Brainly math?
Step-by-step explanation: please see attached to PDF document.
Answer:
a) 6
b) 1/3
c) 2
Step-by-step explanation:
a) 3 ( x + 1 ) - x = 15. expand the bracket
3x + 3 - x = 15
2x + 3 = 15. collect the like terms
2x = 15 - 3.
2x = 12.
x = 12/2 = 6
b) 5 ( x + 2 ) - 2x = 11. expand the bracket
5x + 10 - 2x = 11
3x + 10 = 11. collect the like terms
3x = 11 - 10
3x = 1
x = 1/3
c) 6 ( 1 - 2x ) = - 4 - 7x. expand the bracket
6 - 12x = -4 -7x. collect the like terms
6 + 4 = -7x + 12x
10 = 5x
or
5x =. 10
x = 10/5 = 2
PLEASE MARK ME BRAINLIEST