the probability of the numbers will add to 4 or less will be 25%
What is the percentage?
A percentage that represents a tenth of a quantity. One percent, denoted by the symbol 1%, is equal to one-hundredth of something; hence, 100 percent denotes the full thing, and 200 percent designates twice the amount specified. A portion per hundred is what the percentage denotes. The percentage refers to one in a hundred. The % sign is used to denote it.
The orange spinner is spun and then the aqua spinner is spun.
The probability that the numbers will add to 4 or less will be of 1 out of 4 that will be 1/4*100
= 25%
Hence the probability of the numbers will add to 4 or less will be 25%
Learn more about percentages, by the following link.
https://brainly.com/question/24304697
#SPJ1
The ratio boys: girls in a park
is 3 : 1
20 girls arrive and the ratio
becomes 1:2
Work out how many boys
there are in the park.
There are 20 boys in the park.
Let's use b to denote the number of boys and g to denote the number of girls at the park prior to the arrival of 20 girls.
We can infer from the statistics provided that there are 3:1 more boys than girls when the first 20 girls arrive. This implies:
b/g = 3/1
By multiplying both sides of this ratio by g, we may make it simpler:
b = 3g
Then it is revealed that 20 more girls arrive, changing the ratio to 1:2. As a result, there are now 40 more persons (boys and girls) in the park overall.
Let's use B to stand for the number of boys in the park following the arrival of 20 girls, and G to stand for the number of girls in the park following the arrival of 20 girls.
After the 20 girls arrive, there are 1:2 more guys than girls, thus we know that:
B/G = 1/2
We also know that (b+20) + (g+20) = (B+G) is the total number of persons in the park once the 20 girls arrive.
To replace b in terms of g, we can utilise the first equation we arrived at as a replacement:
b = 3g
Hence, b+g = 3g+g+g = 4g individuals are present in the park overall prior to the arrival of the 20 girls.
After the 20 girls come, we may solve for the total number of individuals by substituting this expression for b+g into the equation:
(3g + 20) + (g + 20) = B + G
If we simplify, we get:
4g + 40 = B + G
So, in order to delete G from this equation, we can replace it with the second equation we derived:
4g + 40 = B + 2B
More simplification results in:
4g + 40 = 3B
When we multiply both sides by 3, we get:
g + 10 = B
Now, we may solve our first problem by substituting the following expression for B:
b/g = 3/1
3g/g = 3/1
3 = 3
We can see that the validity of the equations we derived is unaffected by the amount of g, thus we are free to use any value of g in our calculations. Let's select g=10 (since it makes the math easy).
The equation we previously derived can then be used to determine B:
g + 10 = B
10 + 10 = B
B = 20
20 boys are so present in the park.
To know more about ratio visit:
brainly.com/question/29209397
#SPJ1
Aaron has 2 pizzas left over from a
He ate of the leftover pizza
sleepover.
for lunch. How much of the pizza did he
eat? How much is left?
Pls help!!
Answer: 1/8
Step-by-step explanation:
I need some help with this
Answer:
sin57= 30/x
x= 30/sin57
x= 25.16
Step-by-step explanation:
A neighborhood depanneur has determined that daily demand for milk cartons has an approximate normal distribution, with a mean of 65 cartons and a standard deviation of 7 cartons. On Saturdays, the demand for milk is known to exceed 71 cartons. On the coming Saturday, what is the probability that it will be at least 81 cartons?
There is a 0.011 = 1.1% probability that the demand will be of at least 81 cartons on the next Saturday.
How to obtain probabilities using the normal distribution?The z-score of a measure X of a variable that has mean symbolized by [tex]\mu[/tex] and standard deviation symbolized by [tex]\sigma[/tex] is obtained by the rule presented as follows:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score represents how many standard deviations the measure X is above or below the mean of the distribution, depending if the obtained z-score is positive or negative.Using the z-score table, the p-value associated with the calculated z-score is found, and it represents the percentile of the measure X in the distribution.The mean and the standard deviation for this problem are given as follows:
[tex]\mu = 65, \sigma = 7[/tex]
The probability that there will be at least 81 cartoons is one subtracted by the p-value of Z when X = 81, hence:
Z = (81 - 65)/7
Z = 2.29
Z = 2.29 has a p-value of 0.989.
(we can consider this for any Saturday as outcomes of the normal distribution are independent).
Hence the probability is obtained as follows:
1 - 0.989 = 0.011 = 1.1%.
More can be learned about the normal distribution at https://brainly.com/question/25800303
#SPJ1
Identify the similar triangles
The similar triangles are-
ΔNMQ ≈ ΔNQP ≈ ΔQMP
Explain about the similar triangles?Triangles with the same shape but different sizes are said to be similar triangles.In other words, whenever two triangles appear similar, their corresponding sides are proportionately equal and their corresponding angles remain congruent.Three ways can be used to determine whether two triangles resemble similar: SSS, SAS, and AA
Triangles are similar if they have two identical kinds of angle type, or AA (Angle-Angle).Triangles are identical if they have two sets of proportional sides with equal included angles, or SAS (Side-Angle-Side).Triangles are similar if the ratio of the third side of one triangle to the third side of another triangle is known as SSS (Side-Side-Side).For the given figure:
Thus, the similar triangles are-
ΔNMQ ≈ ΔNQP ≈ ΔQMP
Know more about similar triangles
https://brainly.com/question/14285697
#SPJ1
Please help
A car rental company charges an initial fee plus an additional fee for each mile driven. The charge depends on the type of car: economy or luxury
The charge E (in dollars) to rent an economy car is given by the function E=0.80M+10.95, where M is the number of miles driven. The charge L. (in dollars)
to rent a luxury car is given by the function L-1.25M+17.30
Let C be how much more it costs to rent a luxury car than an economy car (in dollars). Write an equation relating C to M. Simplify your answer as much as
possible.
Given that log_a(5)≈0.76 and log_a(2)≈0.33, evaluate each of the
following. Hint: use the properties of logarithms to rewrite the
given logarithm in terms of the logarithms of 5 and 2.
a) log_a(10)≈
b) log_a(√2)≈
c) log_a(2.5)≈
a)1.09
b) 0.165
c) 0.43
Given that log_a(5)≈0.76 and log_a(2)≈0.33, we need to evaluate the following: log_a(10), log_a(√2), and log_a(2.5).Hint: use the properties of logarithms to rewrite the given logarithm in terms of the logarithms of 5 and 2.a) To evaluate log_a(10), we can use the identity log_a(mn) = log_a(m) + log_a(n). So, we can rewrite log_a(10) as log_a(5 x 2) = log_a(5) + log_a(2). Now, substitute the values for log_a(5) and log_a(2):log_a(10) = 0.76 + 0.33 = 1.09b) To evaluate log_a(√2), we can use the identity log_a(m^n) = n log_a(m). So, we can rewrite log_a(√2) as log_a(2^(1/2)) = (1/2) log_a(2). Now, substitute the value for log_a(2):log_a(√2) = (1/2) x 0.33 = 0.165c) To evaluate log_a(2.5), we can use the identity log_a(m/n) = log_a(m) - log_a(n). So, we can rewrite log_a(2.5) as log_a(5/2) = log_a(5) - log_a(2). Now, substitute the values for log_a(5) and log_a(2):log_a(2.5) = 0.76 - 0.33 = 0.43Therefore, the values for the logarithms are: log_a(10)≈1.09, log_a(√2)≈0.165, and log_a(2.5)≈0.43.
Learn more about Logarithms
brainly.com/question/30085872
#SPJ4
1. Construct (a) a trapezium WXYZ such that |WX|= 10.2cm, |XY| = 5.6cm, |XZ| = 8.3cm, |YZ| = 5.8cm, LWXY = 60°and WX is parallel to YZ. [6] [2] [2] (b) a perpendicular from Z to meet WX at N (c) Measure |WZ| and |ZN| 2. The cost of producing a wooden frame varies directly as the width of the frame and partly as the square root of its length. When the width is 10cm and the length is 25cm, the cost is N115.00 and when the width is 18cm and the length is 36cm, the cost is N240. Find the (a) Law of variation [5] (b) Cost of a frame of width 12cm and the length 49cm. [5] Cambridge 3. (a) Determine the domain D of the mapping f:x→x² + 1, if R = {2, 5, 10] is the range and f defined on D. Hence find the f-¹(5) [5] (b) If f(x) = 0, find the values of x [5]
Answer: Sorry, I cannot provide visual aids or diagrams. However, I can help with the mathematical calculations and solutions to the given problems.
(a) To construct a trapezium WXYZ, follow the steps below:
Draw a straight line segment WX of length 10.2 cm and draw a line segment YZ of length 5.8 cm parallel to WX, such that the distance between them is 8.3 cm.
Draw a line segment XY of length 5.6 cm perpendicular to both WX and YZ, joining their endpoints.
From the endpoint Z, draw a perpendicular line segment ZN to WX.
Angle LWXY is given as 60°, so mark a point L on WX, such that angle WLY is 60°.
Therefore, the trapezium WXYZ is constructed.
(b) From the diagram, we can see that ZN is perpendicular to WX, so triangles ZWX and ZYN are similar.
Using the similar triangles ZWX and ZYN, we can write:
WX/WY = ZN/XY
10.2/5.6 = ZN/5.8
ZN = (10.2/5.6) * 5.8
ZN ≈ 10.57 cm
(c) Using Pythagoras' theorem, we can find the length of WZ:
WZ² = WX² - XZ²
WZ² = 10.2² - 8.3²
WZ ≈ 4.3 cm
Therefore, |WZ| ≈ 4.3 cm and |ZN| ≈ 10.57 cm.
(a) Let the width of the frame be w and the length be l. Then, according to the problem,
cost ∝ w * √l
cost = k * w * √l, where k is the constant of proportionality.
Using the given information, we can find the value of k as follows:
N115 = k * 10 * √25
k = N115 / 50
k = N2.3
Therefore, the law of variation is cost = N2.3 * w * √l.
(b) For a frame of width 12 cm and length 49 cm,
cost = N2.3 * 12 * √49
cost = N2.3 * 12 * 7
cost = N193.2
(a) Since the range R = {2, 5, 10}, we know that f(x) can take only these three values. Therefore,
x² + 1 = 2 or x² + 1 = 5 or x² + 1 = 10
Solving each of these equations for x, we get:
x = ±√1 or x = ±√4 or x = ±√9
x = ±1 or x = ±2 or x = ±3
Therefore, the domain D = {-3, -2, -1, 1, 2, 3}.
To find f-¹(5), we need to find the values of x for which f(x) = 5. From the equation x² + 1 = 5, we get:
x² = 4
x = ±2
Therefore, f-¹(5) = {-2, 2}.
Step-by-step explanation:
Sammy brought $28.25 to the state fair. She bought a burger, a souvenir, and a pass. The burger was 1 6 as much as the souvenir, and the souvenir cost 3 4 the cost of the pass. Sammy had $2.00 left over after buying these items.
The cost of each of the items are calculated as:
Cost of pass = $14
Cost of souvenir = $10.5
Cost of burger = $1.75
How to solve Algebra Word Problems?Let us define the parameters first:
p = cost of pass
³/₄p = cost of souvenir (which is three quarters of the cost of the pass)
¹/₈p = cost of burger (multiply ³/₄p by ¹/₆)
all costs are in dollars
Adding p, ³/₄p, and ¹/₈p leads to
p + ³/₄p + ¹/₈p
(8p/8) + (6p/8) + (p)/8
(8p + 6p + p)/8
15p/8
This expression represents the total Sammy spent.
We know he started with $28.25 and has $2.00 left over, so he spent 28.25 - 2.00 = 26.25 dollars. Set this equal to 15p/8 and solve for p to get:
15p/8 = 26.25 dollars
15p = 8 * 26.25
15p = 210
p = 210/15
p = $14
³/₄p = cost of souvenir = ³/₄ * 14 = $10.5
¹/₈p = cost of burger = ¹/₈ * 14 = $1.75
Read more about Algebra Word Problems at; https://brainly.com/question/21405634
#SPJ1
13. The front wheels of a toy truck are 9 cm in circumference. The back wheels are 12 cm in circumference. If the truck travels down a long slope, in a straight line and without slipping, how far will the truck have travelled when the front wheels have made 10 more revolutions than the back wheels?
If the front wheels have made 10 more revolutions than the back wheels, the truck travels 360 cm.
Given that The front and back wheels of a toy truck are 9 cm and 12 cm in circumference respectively.
Let the one revolution of wheel be "R"
So, the Rear wheels revolution = 12R
and the Front = 9(R+10)
Thus, revolution of both wheels should be comparatively equal :-
So, 12R = 9(R+10)
12R = 9R + 90
3R = 90
R= 90/3
R = 30 cm
The value of one revolution would be 30cm.
Distance travelled by truck would be distance travelled by wheels = 12 × 30 = 360 cm
So, the distance travelled by truck would be 360cm.
Visit here to learn more about the circumference: https://brainly.com/question/28757341
#SPJ4
car A travelled 315km for 3 hours . if car B uses the same speed as Car A ,calculate how far Car B will travell for 2hrs 30 Minutes
In response to the given question, we can state that As a result, at the expressions same pace as automobile A, car B will go 262.5 kilometres in 2 hours and 30 minutes.
what is expression ?In mathematics, you can multiply, divide, add, or subtract. An expression is formed as follows: Expression, number, and math operator Numbers, parameters, and functions make up a mathematical expression. It is possible to contrast phrases and expressions. Every mathematical statement that comprises variables, numbers, and a mathematical action between them is referred to as an expression. For example, the phrase 4m + 5 is made up of the phrases 4m and 5, as well as the variable m from the provided equation, all separated by the mathematical symbol +.
We can use the following formula:
distance = time x speed
We know the distance is 315 km and the time is 3 hours for automobile A. As a result, we can compute its speed as follows:
speed = distance / time = 315 kilometres / 3 hours = 105 kilometres per hour
So we know that car B has the same speed as automobile A, which is 105 km/h. Car B takes 2 hours and 30 minutes, which is comparable to 2.5 hours. Hence, we can apply the same procedure to calculate the distance travelled by automobile B:
Distance is speed multiplied by time = 105 km/h multiplied by 2.5 hours = 262.5 kilometres
As a result, at the same pace as automobile A, car B will go 262.5 kilometres in 2 hours and 30 minutes.
To know more about expressions visit :-
https://brainly.com/question/14083225
#SPJ1
4. Tshering claims that if she triples the side length of a square (s), the area of the square will also be tripled. Do you agree? Explain your thinking.
Tshering's claim is incorrect because the area is not trippled, but it is multiplied by a factor of 9
How to determine if Tshering's claim is correctGiven the the side length is
Side length, s = s
So, the area is
Area = s²
When the side length is trippled, we have
New side length, S = 3s
So, the area is
New area = (3s²)
New area = 9s²
Divide the new area by the initial area
Factor = 9s²/s²
So, we have
Factor = 9
This means that the area is multiplied by 9 and not tripled
Read more about square at
https://brainly.com/question/654982
#SPJ1
Determine the period
Answer:
14
Step-by-step explanation:
Answer:
I believe your answer would be 14
5. Erin has a balance of $182. 73 in her
savings account. She makes a deposit of
$12. 50 in her account each week
a) Write an algebraic expression that
represents the amount of money in
Erin's savings account after nine weeks
The algebraic expression that represents the amount of money in Erin's savings account after nine weeks is therefore; A(9) = 182.73 + 12.50 × 9
What is an algebraic expression?An algebraic expression consists of variables, constants and terms, and algebraic operators.
The balance in Erin's savings account = $182.73
The amount Erin deposits in her account each week = $12.50
Let A represent the amount of money Erin has in her savings account after n weeks, we get;
After one week, the amount Erin will have in her account can be found using the following equation;
A = 182.73 + 12.50 × 1
The amount she will have after two weeks is therefore;
A = 182.73 + 12.50 × 2
The general equation for the amount Erin will have in her savings account after n weeks is therefore;
A = 182.73 + 12.50 × n = 182.73 + 12.50·n
The algebraic expression that represents the amount of money in Erin's savings account after nine weeks can be found as follows;
The amount of money Erin will have in her savings account after 9 weeks can be obtained by plugging in n = 9, therefore;
A(9) = 182.73 + 12.50 × 9
Learn more on writing algebraic expressions here: https://brainly.com/question/30340686
#SPJ1
One edge of a painting is 6 in. longer than the other edge. The painting has a 2-inch-wide frame. The function f(x) = x2 + 14x + 40 represents the total area of the painting and frame. Find the total area of the painting and the frame if the longer side of the frame is 14 inches long.
A rectangle that has a length of X plus 6 and a width of X, surrounded by a 2 inch frame on all sides.
area: _____in.2
The total area of the painting and frame is 248 inches squared.
What is area?Area is the size of a two-dimensional surface, typically defined by its length and width. It is an important concept in mathematics and is used to measure different shapes and figures. Area is also commonly used to measure the size of land, such as a city block or a region of a country. Areas can be measured in square meters, square kilometers, hectares, square feet, and many other units. Knowing the area of a shape or space can be helpful when planning a project or understanding how much space something requires.
Using the given equation, f(x) = x2 + 14x + 40, we can solve for the area of the painting and frame.
f(x) = x2 + 14x + 40
f(x) = (x + 6)2 + 2(x + 6)(2) + 2(2)(2)
f(x) = x2 + 12x + 36 + 4x + 24 + 16
f(x) = x2 + 16x + 56
We are told that the longer side of the frame is 14 inches long, so x = 8.
f(8) = 8^2 + 16(8) + 56
f(8) = 64 + 128 + 56
f(8) = 248 in.2
Therefore, the total area of the painting and frame is 248 inches squared.
To know more about area click-
https://brainly.com/question/28012687
#SPJ1
Line 2: y-2x-2. This system of equations is:
A) consistent dependent
B) consistent independent
C) Inconsistent
The given system of equations, line 1: y=x+3 and line 2: y-2x-2, is an inconsistent system of linear equations.
What is an inconsistent system of equations?A system of linear equations is said to be inconsistent if there is no solution. It means that the two lines do not intersect and are parallel to each other.
In the given system of equations, line 1: y=x+3 is in the slope-intercept form y=mx+b where the slope, m=1 and the y-intercept, b=3. The first line, y=x+3 has a slope of 1 and a y-intercept of 3, which means the line passes through (0, 3).
To find a second point, use the slope. Since the slope is 1, go up one and over one. This means the line passes through (1, 4).
Next, line 2: y-2x-2. To do so, we need to rewrite it in slope-intercept form.
y-2x-2 = 0
y=2x+2
The second line has a slope of 2 and a y-intercept of 2, which means the line passes through (0, 2).To find a second point, use the slope. Since the slope is 2, go up two and over one. This means the line passes through (1, 4).
The two lines are parallel to each other and do not intersect. Therefore, there is no solution. The system of equations, line 1: y=x+3 and line 2: y-2x-2, is inconsistent.
Learn more about Linear Equation here: brainly.com/question/29739212
#SPJ11
Construct a tanget to a circle at a given point whose radius is 4 cm
The construction process for drawing a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measuring its length.
To construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm, follow the steps below:
Draw the two concentric circles with radii of 6 cm and 4 cm, respectively.
Mark a point on the outer circle, which will serve as the point of tangency.
Draw a line from the center of the circle to the point of tangency.
Draw a perpendicular line to the first line, passing through the point of tangency. This line will be the tangent line to the circle.
Measure the length of the tangent line using a ruler.
To verify the measurement of the tangent line, we can use the following formula:
Length of tangent line = sqrt(r^2 - d^2)
where r is the radius of the circle and d is the distance between the center of the circle and the point of tangency.
In this case, r = 4 cm and d = 6 cm - 4 cm = 2 cm.
Therefore, the length of the tangent line is:
sqrt(4^2 - 2^2) = sqrt(12) = 2sqrt(3) cm
Comparing this result with the measured length of the tangent line from the construction, we can see that they match, verifying the measurement.
Complete question:
Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation.
To learn more about concentric circles
https://brainly.com/question/30451430
#SPJ4
find the missing angle
answer as soon as possible <3
ANSWER
31 is answer !!!!
Answer:
31
Step-by-step explanation:
180-35-23=122
180-122-27=31
I need help with my math homework please
Answer:
C, D and E
Step-by-step explanation:
2(4f+2g)
8f+4g
so it's C, D and E
. Lila spent 72 minutes on the phone while routing 24 phone calls. In all, how many phone calls does Lila have to route to spend a total of 90 minutes on the phone? Solve using unit rates.
Answer:
To solve the problem using unit rates, we can first find Lila's rate of phone calls per minute, which is given by:
rate = number of phone calls / time spent on the phone
Using the values given in the problem, we get:
rate = 24 phone calls / 72 minutes
rate = 1/3 phone calls per minute
This means that Lila routes 1/3 phone call per minute.
To find how many phone calls Lila needs to route to spend a total of 90 minutes on the phone, we can use the same rate and the formula:
number of phone calls = rate x time
Substituting the values, we get:
number of phone calls = (1/3 phone calls per minute) x (90 minutes)
number of phone calls = 30 phone calls
Therefore, Lila needs to route a total of 30 phone calls to spend a total of 90 minutes on the phone.
It takes 8 blocks with a side lengths of one fourths meter to fill a rectangular prism The rectangular prism has a volume of
cubic meter
It takes 8 blocks with a side length of 1/4 m to fill a rectangular prism with a volume of 1 m3.
The volume of a rectangular prism is calculated by the formula V = l * w * h, where l is the length, w is the width, and h is the height. To calculate the volume of a rectangular prism with 8 blocks (each with a side length of 1/4 m), we need to determine the length, width, and height of the rectangular prism.
Since each block has a side length of 1/4 m, the length, width, and height of the rectangular prism must be a multiple of that. Therefore, the length, width, and height of the rectangular prism must be 4/4 m, 8/4 m, and 8/4 m, respectively.
Substituting this into the formula, the volume of the rectangular prism is (4/4 m) * (8/4 m) * (8/4 m) = 64/64 m3 = 1 m3. Therefore, it takes 8 blocks with a side length of 1/4 m to fill a rectangular prism with a volume of 1 m3.
Learn more about volume of a rectangular prism here:
https://brainly.com/question/21308574
#SPJ4
Assume that adults have IQ scores that are normally distributed with a mean of 100. 3 and a standard deviation of 17. 6. Find the probability that a randomly selected adult has an IQ greater than 132. 7. ( Round to four decimals please )
Assume that adults have IQ scores that are normally distributed with a mean of 101. 8 and a standard deviation of 15. 7. Find the first Q1 , which is separating the bottom 25%from the top 75%. ( type an integer or decimal rounded to one decimal place as needed )
The probability that an arbitrarily chosen adult has an IQ higher than 132.7 is 0.0322, or roughly 3.22%.
Using a standard normal distribution table, we can find the z-score corresponding to an IQ of 132.7:
z = (132.7 - 100.3) / 17.6 = 1.84
The probability of a randomly selected adult having an IQ greater than 132.7 is equal to the area to the right of the z-score of 1.84 on the standard normal distribution curve:
P(Z > 1.84) = 0.0322 (rounded to four decimals)
Therefore, the probability of a randomly selected adult having an IQ greater than 132.7 is 0.0322 or about 3.22%.
The Value of first quartile Q1 is 91.2.
For the second part, we need to find the IQ score that separates the bottom 25% from the top 75%. Using a standard normal distribution table, we can find the z-score corresponding to the 25th percentile:
z = invNorm(0.25) = -0.6745
Now we can solve for the IQ score using the formula:
z = (x - μ) / σ
-0.6745 = (x - 101.8) / 15.7
x - 101.8 = -10.603
x = 91.197
Rounded to one decimal place, the first quartile Q1 is 91.2.
To learn more about standard deviation refer to:
brainly.com/question/23907081
#SPJ4
The standard normal distribution table used in this course list the cumulative area under the standard normal curve to the ___ of a given z-score
The standard normal distribution table used in this course list the cumulative area under the standard normal curve to the left or right of a given z-score.
The standard normal distribution is a probability distribution, so the area under the curve between two points tells you the probability of variables taking on a range of values. Every z score has an associated p value that tells you the probability of all values below or above that z score occuring. The area under the normal curve is equal to 100% that is 1. Normal distributions area denser in the center and less dense in the tails. The z score is the test statistic used in a z test. The z test is used to compare the means of two groups, once you have a z score, you can look up the corresponding probability in a z table. In a z table, the area under the curve is reported for every z value between -4 and 4 at intervals of 0.01.
For more information about Z-score, refer :
https://brainly.com/question/25638875
#SPJ4
if a rectangle the area of 16 square unit, would could the measure of the sides be?
Answer:
See below.
Step-by-step explanation:
We are asked to find measures of the unknown sides for the given area.
Let's keep in mind that a rectangle's area is; [tex]Area = (width) \times (height)[/tex]
One simple way to find all of the possible side lengths is to find all of the factors of 16.
What are Factors?
Factors are 2 whole numbers that multiply together to have the product of that given number.
Think of how many ways we can get to 16 by multiplying 2 numbers.
[tex]f_{1} \times f_{2} = 16\\f \ represents \ a \ factor.[/tex]
Here's all of the possible ways we can get to 16 with whole numbers.
[tex]8 \times 2 = 16\\4 \times 4 = 16\\2 \times 8 = 16\\1 \times 16 = 16\\16 \times 1 = 16[/tex]
Remember that the Width and Length of a Rectangle can have different values even with the same numbers multiplied.
[tex](8 \times 2) \ and \ (2 \times 8)\\Length \ can \ equal \ 2, \ or \ 8.\\Width \ can \ equal \ 8, \ or \ 2.[/tex]
These are all of the possible answers.
find end behavior of the polynomial
[tex] - 2x^4 - 3x^2 + x - 5[/tex]
the end behavior of the polynomial [tex]$-2 x^4-3 x^2-x+5$[/tex] is: The polynomial decreases without bound as [tex]$x$[/tex] get closer to positive infinity. The polynomial grows without bound as [tex]$x$[/tex] gets closer to negative infinity.
what is a polynomial?Algebraic expressions called polynomials include coefficients and variables. Indeterminates are another name for variables. For polynomial expressions, we can do mathematical operations like addition, subtraction, multiplication, and positive integer exponents but not division by variables. [tex]$x^2+x-12$[/tex] is an illustration of a polynomial with a single variable.
from the question:
The degree and leading coefficient of the polynomial [tex]$-2 x^4-3 x^2-x+5$[/tex]must be examined in order to determine its final behavior.
As the polynomial has a degree of 4 , it will expand or decay at a pace dictated by the leading coefficient as x gets closer to positive or negative infinity. The negative (leading) coefficient is -2 .
As in this instance, the final behavior of a polynomial with a negative leading coefficient and an even degree is as follows:
- The polynomial will decrement without bound as x approaches positive infinity, causing the y values to decrement steadily. This is due to the fact that as x increases significantly, the term with the highest degree takes over the polynomial, and since the leading coefficient is negative, the polynomial reduces.
- The polynomial will grow without bound as x gets closer to negative infinity, which causes the y-values to get steadily increasingly positive. This is because as x gets very tiny and negative, the term with the highest degree dominates the polynomial, and since the leading coefficient is negative, the polynomial rises.
Hence, the polynomial [tex]$-2 x^4-3 x^2-x+5$[/tex] has the following final behavior:
- The polynomial decreases without bound as x get closer to positive infinity.
- The polynomial grows without bound as x gets closer to negative infinity.
To know more about polynomials visit:
brainly.com/question/11536910
\#SPJ1
Bonsoir pouvez vous maider, merci d'avance.
On s’intéresse à la partie III. de l’activité Python « Vecteurs et repérage ». Écrire une fonction triangle_rectangle qui prend en arguments les coordonnées de trois points A, B etC et affiche, selon les
cas, le message « Le triangle ABC est rectangle en A. », « Le triangle ABC est rectangle en
B. », « Le triangle ABC est rectangle en C. » ou « Le triangle ABC n’est pas rectangle. ».
Pour A(2;−2), B(7;3) et C(5; 5), vérifier, avec votre programme, que le triangle ABC est rectangle en B.
Answer:
Voici une solution possible en Python:
def triangle_rectangle(A, B, C):
# Calcul des carrés des longueurs des côtés
AB2 = (B[0] - A[0])**2 + (B[1] - A[1])**2
BC2 = (C[0] - B[0])**2 + (C[1] - B[1])**2
AC2 = (C[0] - A[0])**2 + (C[1] - A[1])**2
# Vérification si le triangle est rectangle et affichage du résultat
if AB2 + BC2 == AC2 or AB2 + AC2 == BC2 or BC2 + AC2 == AB2:
if AB2 + BC2 == AC2:
print("Le triangle ABC est rectangle en A.")
elif AB2 + AC2 == BC2:
print("Le triangle ABC est rectangle en C.")
else:
print("Le triangle ABC est rectangle en B.")
else:
print("Le triangle ABC n'est pas rectangle.")
# Exemple avec A(2,-2), B(7,3) et C(5,5)
A = (2,-2)
B = (7,3)
C = (5,5)
triangle_rectangle(A, B, C) # affiche "Le triangle ABC est rectangle en B."
-
Explications :
La fonction triangle_rectangle prend en argument les coordonnées des points A, B et C sous forme de tuples (x,y). Elle commence par calculer les carrés des longueurs des côtés AB, BC et AC à l'aide de la formule de distance entre deux points.
Ensuite, elle vérifie si le triangle est rectangle en comparant la somme des carrés des longueurs de deux côtés avec le carré de la longueur du troisième côté. Si c'est le cas, elle affiche le message correspondant en précisant le point d'angle droit. Sinon, elle affiche le message indiquant que le triangle n'est pas rectangle.
Finalement, un exemple est donné avec les points A(2,-2), B(7,3) et C(5,5) pour vérifier que le triangle est rectangle en B, conformément à l'énoncé.
Using the circle below, find each arc length. Round to the nearest hundredth.
ST = ____
RPT = ____
arcST and arcRPT of the given circle are measured at 55 and 208 degrees, respectively.
What is circle?
Every point in a plane that is at a certain distance from the center point forms a circle. In order to go around a curve while maintaining a constant distance from another point, a moving point in a plane must follow a specific path.
The following expression will be used to determine the length of the arc ST:
arcPS = arcPT + arcST
Already given,
• arcPT = 125 degrees
• arc PS = 180 degrees
Putting the value in equation
arcST = arcPS - arcPT
arcST = 180 - 125
arcST = 55 degrees
Following the same steps we can get
arcPR = 180 - arcRS
arcPR = 180 - 97
arcPR = 83 degrees
and also
arcRPT = arcPR + arcPT
arcRPT = 83 + 125
arcRPT = 208 degrees
Hence the measurement of arcST and arcRPT are 55 and 208 degree respectively.
To learn more about circle from the given link
https://brainly.com/question/24375372
#SPJ1
In the rolling of two fair dice calculate the following: P( Sum of the two dice is 8 )= P( Sum of the two dice is 6 )= P( Sum of the two dice is not 4 )= P(Sum of the two dice is 5 or 9 )= P( Sum of the two dice is not 10 and not 7 )= Note: You can earn partial credit on this problem. You have attempted this problem 0 times. You have unlimited attempts remaining.
(Sum of the two dice is not 10 and not 7) = 1 - P(3, 4) - P(4, 3) - P(5, 2) - P(2, 5)= 1 - (2/36) - (2/36) - (4/36) - (4/36)= 20/36.
In the rolling of two fair dice, the following probabilities are calculated: P(Sum of the two dice is 8) = 5/36P(Sum of the two dice is 6) = 5/36P(Sum of the two dice is not 4) = 33/36P(Sum of the two dice is 5 or 9) = 10/36P(Sum of the two dice is not 10 and not 7) = 20/36
Note: We can earn partial credit on this problem. We have attempted this problem 0 times. We have unlimited attempts remaining.The step-by-step explanation of how these probabilities are calculated is given below:P(Sum of the two dice is 8) = P(2, 6) + P(3, 5) + P(4, 4) + P(5, 3) + P(6, 2)= (1/36) + (2/36) + (1/36) + (2/36) + (1/36)= 5/36P(Sum of the two dice is 6) = P(1, 5) + P(2, 4) + P(3, 3) + P(4, 2) + P(5, 1)= (1/36) + (1/36) + (1/36) + (1/36) + (1/36)= 5/36P(Sum of the two dice is not 4) = 1 - P(1, 3) - P(2, 2) - P(3, 1)= 1 - (1/36) - (1/36) - (1/36)= 33/36P(Sum of the two dice is 5 or 9) = P(1, 4) + P(2, 3) + P(3, 2) + P(4, 1) + P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3)= (1/36) + (2/36) + (2/36) + (1/36) + (2/36) + (1/36) + (1/36) + (2/36)= 10/36P(Sum of the two dice is not 10 and not 7) = 1 - P(3, 4) - P(4, 3) - P(5, 2) - P(2, 5)= 1 - (2/36) - (2/36) - (4/36) - (4/36)= 20/36.
Learn more about Sum
brainly.com/question/13013054
#SPJ4
mia rides her bike 18.5 miles in 5 days is she rides her bike the same nubmber of miles each day how many miles does she ride in a day
Answer:
3.7 miles
Step-by-step explanation:
Answer:3.7
Step-by-step explanation:
Find the work done by the force field F on a particle moving along the given path.
F(x, y) = x^2i − xyj
C: x = cos^3(t), y = sin^3(t) from (1, 0) to (0, 1)
The answer of the given question based on the finding the work done by the force, is field F on a particle moving along the path C is 1/6.
What is Force?A force is defined as influence that causes object to undergo change in motion. It is vector quantity, means it has both magnitude and direction.
To find the work done by the force field F on a particle moving along the given path, we need to evaluate the line integral of F along the path C.
The line integral of a vector field F along a curve C parameterized by r(t) is given by:
∫ F(r(t)) ⋅ r'(t) dt
where r'(t) is the derivative of r(t) with respect to t.
In this case, the force field F(x, y) = x²i − xyj, and the path C is given by x = cos³(t), y = sin³(t) from (1, 0) to (0, 1).
First, we need to parameterize the path C in terms of t. Since x = cos³(t) and y = sin³(t), we can express the path C as a vector function r(t) = ⟨cos³(t), sin³(t)⟩, where t goes from 0 to π/2.
we need to find derivative of r(t) with the respect of t:
r'(t) = ⟨-3cos³(t)sin(t), 3sin²(t)cos(t)⟩
Now, we can evaluate the line integral of F along C:∫ F(r(t)) ⋅ r'(t) dt
= ∫ (cos⁶(t)i - cos³(t)sin⁴(t)j) ⋅ (-3cos²(t)sin(t)i + 3sin²(t)cos(t)j) dt
= ∫ (-3cos⁸(t)sin(t) + 3cos³(t)sin⁵(t)) dt
= [-3/9cos⁹(t) - 3/6cos⁴(t)cos²(t)]_0^(π/2)
= 0 - (-3/9 - 3/12)
= 1/6
Therefore, the work done by the force field F on a particle moving along the path C is 1/6.
To know more about Magnitude visit:
https://brainly.com/question/2596740
#SPJ1