The Fibonacci sequence an is defined as follows: (a) Show that a₁ = a2 = 1, an+2 = an+an+1, n ≥1. an - pn an = α B where a and 3 are roots of x² = x + 1. (b) Compute lim van. n→[infinity]o

Answers

Answer 1

The Fibonacci sequence is defined by the recurrence relation an+2 = an+an+1, with initial conditions a₁ = a₂ = 1. In part (a), it can be shown that the sequence satisfies the equation an - φan = αβⁿ, where φ and α are the roots of the equation x² = x + 1. In part (b), we need to compute the limit of the Fibonacci sequence as n approaches infinity.

(a) To show that the Fibonacci sequence satisfies the equation an - φan = αβⁿ, where φ and α are the roots of x² = x + 1, we can start by assuming that the sequence can be expressed in the form an = αrⁿ + βsⁿ for some constants r and s. By substituting this expression into the recurrence relation an+2 = an+an+1, we can solve for r and s using the initial conditions a₁ = a₂ = 1. This will lead to the equation x² - x - 1 = 0, which has roots φ and α. Therefore, the Fibonacci sequence can be expressed in the form an = αφⁿ + β(-φ)ⁿ, where α and β are determined by the initial conditions.

(b) To compute the limit of the Fibonacci sequence as n approaches infinity, we can consider the behavior of the terms αφⁿ and β(-φ)ⁿ. Since |φ| < 1, as n increases, the term αφⁿ approaches zero. Similarly, since |β(-φ)| < 1, the term β(-φ)ⁿ also approaches zero as n becomes large. Therefore, the limit of the Fibonacci sequence as n approaches infinity is determined by the term αφⁿ, which approaches zero. In other words, the limit of the Fibonacci sequence is zero as n tends to infinity. In conclusion, the Fibonacci sequence satisfies the equation an - φan = αβⁿ, and the limit of the Fibonacci sequence as n approaches infinity is zero.

learn more about Fibonacci sequence here:

https://brainly.com/question/29764204

#SPJ11


Related Questions

My courses
My books
My folder
Career
Life
Expert Q&A
Find solutions to your homework
Find solutions to your homework
Search
Question
(5)
Given the first type of plot indicated in each pair, which of the second plots could not always be generated from it. a). dot plot, box plot b).box plot, histogram c). dot plot, histogram d). stem and leaf, dot plot

Answers

The second plot that could not always be generated from a dot plot is a histogram. Thee correct option is c) dot plot, histogram.

What is histogram?

A histogram is a graphic depiction of a frequency distribution with continuous classes that has been grouped. It is an area diagram, which is described as a collection of rectangles with bases that correspond to the distances between class boundaries and areas that are proportionate to the frequencies in the respective classes.

The second plot that could not always be generated from the first plot in each pair is:

c) dot plot, histogram

A dot plot is a type of plot where each data point is represented by a dot along a number line. It shows the frequency or distribution of a dataset.

A histogram, on the other hand, represents the distribution of a dataset by dividing the data into intervals or bins and displaying the frequencies or relative frequencies of each interval as bars.

While a dot plot can be converted into a histogram by grouping the data points into intervals and representing their frequencies with bars, it is not always possible to reverse the process and generate a dot plot from a histogram. This is because a histogram does not provide the exact positions of individual data points, only the frequencies within intervals.

Therefore, the second plot that could not always be generated from a dot plot is a histogram.

Learn more about histogram on:

https://brainly.com/question/2962546

#SPJ4

Suppose a parabola has focus at (-8, 2), opens downward, has a horizontal directrix, and passes through the point (24, 62). The directrix will have equation (Enter the equation of the directrix) The equation of the parabola will be (Enter the equation of the parabola)

Answers

The standard equation for a parabola with a focus at (a, b) is given by:$[tex](y - b)^2[/tex] = 4p(x - a)$where p is the distance from the vertex to the focus.

If the parabola opens downward, the vertex is the maximum point and is given by (a, b + p).

If the parabola has a horizontal directrix, then it is parallel to the x-axis and is of the form y = k, where k is the distance from the vertex to the directrix.

Since the focus is at (-8, 2) and the parabola opens downward, the vertex is at (-8, 2 + p).

Also, since the directrix is horizontal, the equation of the directrix is of the form y = k.

To find the value of p, we can use the distance formula between the focus and the point (24, 62):

$p = \frac{1}{4}|[tex](-8 - 24)^2[/tex] + [tex](2 - 62)^2[/tex]| = 40$So the vertex is at (-8, 42) and the equation of the directrix is y = -38.

The equation of the parabola is therefore:

$(y - 42)^2 = -160(x + 8)

$Simplifying: $[tex]y^2[/tex] - 84y + 1764 = -160x - 1280$$[tex]y^2[/tex] - 84y + 3044 = -160x$

So the equation of the directrix is y = -38 and the equation of the parabola is $[tex]y^2[/tex] - 84y + 3044 = -160x$.

To know more about parabola

https://brainly.com/question/64712

#SPJ11

Suppose you graduate, begin working full time in your new career and invest $1,300 per month to start your own business after working 10 years in your field. Assuming you get a return on your investment of 6.5%, how much money would you expect to have saved? 6. Given f(x,y)=-3x'y' -5xy', find f.

Answers

The amount of money that can be expected to be saved is $166,140. f(x, y) = -3x'y' - 5xy', and ∂f/∂x = -3(y')(dx'/dy) - 5y(d/dx)(x), and ∂f/∂y = -3(x')(dy/dx) - 5x(d/dy)(y).

Suppose you graduate, begin working full time in your new career and invest $1,300 per month to start your own business after working 10 years in your field.

Assuming you get a return on your investment of 6.5%, the amount of money that can be expected to be saved can be calculated as follows:

Yearly Investment = $1,300 × 12 months= $15,600

Per Annum Return on Investment = 6.5%

Therefore, Annual Return on Investment = 6.5% of $15,600= 0.065 × $15,600= $1,014

Total Amount of Investment = $1,300 × 12 × 10= $156,000

Total Amount of Interest = 10 × $1,014= $10,140

Total Amount Saved = $156,000 + $10,140= $166,140.

Hence, the amount of money that can be expected to be saved is $166,140.

Given f(x, y) = -3x'y' - 5xy', we can find f as follows:

For a given function, f(x, y), partial differentiation is obtained by keeping one variable constant and differentiating the other.

Using the above method, let's find ∂f/∂x

First, we differentiate f(x, y) with respect to x by assuming y to be constant. Here is the step-by-step approach:

∂f/∂x = -3(y')(d/dx)(x') - 5y(d/dx)(x)

Since x is a function of y, we use the chain rule for differentiation to differentiate x.

Therefore, (d/dx)(x') = dx'/dy

Substituting the value of (d/dx)(x') in the above equation, we get

∂f/∂x = -3(y')(dx'/dy) - 5y(d/dx)(x)

Now, we differentiate f(x, y) with respect to y by assuming x to be constant. Here is the step-by-step approach:

∂f/∂y = -3(x')(d/dy)(y') - 5x(d/dy)(y)

Since y is a function of x, we use the chain rule for differentiation to differentiate y.

Therefore, (d/dy)(y') = dy/dx(d/dy)(y') = d/dx(x)

Substituting the value of (d/dy)(y') in the above equation, we get

∂f/∂y = -3(x')(dy/dx) - 5x(d/dy)(y)

Hence, f(x, y) = -3x'y' - 5xy', and ∂f/∂x = -3(y')(dx'/dy) - 5y(d/dx)(x), and ∂f/∂y = -3(x')(dy/dx) - 5x(d/dy)(y).

Learn more about partial differentiation :

https://brainly.com/question/29081867

#SPJ11

Use part one of the fundamental theorem of calculus to find the derivative of the function. g(s) = ) = [² (t = 1³)² dt g'(s) =

Answers

The derivative of the function g(s) = ∫[1 to s³] t² dt is g'(s) = 3s^8.

Using the first part of the fundamental theorem of calculus, we can find the derivative of the function g(s) = ∫[1 to s³] t² dt. The derivative g'(s) can be obtained by evaluating the integrand at the upper limit of integration s³ and multiplying it by the derivative of the upper limit, which is 3s².

According to the first part of the fundamental theorem of calculus, if we have a function defined as g(s) = ∫[a to b] f(t) dt, where f(t) is a continuous function, then the derivative of g(s) with respect to s is given by g'(s) = f(s) * (ds/ds).

In our case, we have g(s) = ∫[1 to s³] t² dt, where the upper limit of integration is s³. To find the derivative g'(s), we need to evaluate the integrand t² at the upper limit s³ and multiply it by the derivative of the upper limit, which is 3s².

Therefore, g'(s) = (s³)² * 3s² = 3s^8.

Thus, the derivative of the function g(s) = ∫[1 to s³] t² dt is g'(s) = 3s^8.

Note: The first part of the fundamental theorem of calculus allows us to find the derivative of a function defined as an integral by evaluating the integrand at the upper limit and multiplying it by the derivative of the upper limit. In this case, the derivative of g(s) is found by evaluating t² at s³ and multiplying it by the derivative of s³, which gives us 3s^8 as the final result.

Learn more about limit here:

https://brainly.com/question/12207539

#SPJ11

Classify each pair of labeled angles as complementary, supplementary, or neither.



Drag and drop the choices into the boxes to correctly complete the table. Each category may have any number of pair of angles.



Put responses in the correct input to answer the question. Select a response, navigate to the desired input and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. Responses can also be moved by dragging with a mouse.
complementary supplementary neither

Answers

Figure 1: Neither supplementary angles nor complementary

Figure 2: Complementary angles.

Figure 3: Neither supplementary angles nor complementary

Since we know that,

Complementary angles are those whose combined angle is 90 degrees or less. To put it another way, two angles are said to be complimentary if they combine to make a right angle. In this case, we say that the two angles work well together.

And we also know that,

The term "supplementary angles" refers to a pair of angles that always add up to 180°. The term "supplementary" refers to "something that is supplied to complete a thing." As a result, these two perspectives are referred to as supplements.

If two angles add up to 180°, they are considered to be supplementary angles. When supplementary angles are combined, they make a straight angle (180°).

Explanation of figure 1;

The given angles are,

90 + 89 = 179

Since it is neither 180 nor 90

Hence these angles are neither complementary nor supplementary angles.

Explanation of figure 2:

The given angles are,

61 degree and 29 degree

Then 61 + 29  = 90 degree

Therefore,

These are complementary angles.

Explanation of figure 3:

The given angles are,

63 degree and 47 degree

Then 63 + 47  = 110 degree

Therefore,

These are complementary angles.

To learn more about complementary angle visit:

https://brainly.com/question/98924

#SPJ1

Solve the separable differential equation 9 dar dt and find the particular solution satisfying the initial condition z(0) = 9. = x(t) = Question Help: Video Post to forum Add Work Submit Question

Answers

To solve the separable differential equation 9dz/dt = 1 and find the particular solution satisfying the initial condition z(0) = 9, we can follow these steps:

First, let's separate the variables by moving the dz term to one side and the dt term to the other side: dz = dt/9. Now, we can integrate both sides of the equation. Integrating dz gives us z, and integrating dt/9 gives us (1/9)t + C, where C is the constant of integration. Therefore, we have:z = (1/9)t + C.

To find the particular solution satisfying the initial condition z(0) = 9, we substitute t = 0 and z = 9 into the equation: 9 = (1/9)(0) + C, 9 = C. Hence, the constant of integration is C = 9. Substituting this value back into the equation, we have: z = (1/9)t + 9.

Therefore, the particular solution of the separable differential equation 9dz/dt = 1 satisfying the initial condition z(0) = 9 is given by z = (1/9)t + 9.

To learn more about differential equation click here:

brainly.com/question/25731911

#SPJ11

9. (-/1 Points] DETAILS LARCALC11 13.6.015. Find the gradient of the function at the given point. F(x, ) = 3x + 5y2 + 3, (4.1) Vf(4, 1) = Need Help? Read It

Answers

To find the gradient of the function [tex]F(x, y) = 3x + 5y^2 + 3[/tex] at the point (4, 1), we need to calculate the partial derivatives with respect to x and y.

The gradient of a function is a vector that points in the direction of the steepest increase of the function at a given point. It is represented as a vector with its components being the partial derivatives of the function.

First, let's find the partial derivative with respect to x (denoted as ∂F/∂x):

∂F/∂x = 3

Next, let's find the partial derivative with respect to y (denoted as ∂F/∂y):

∂F/∂y = 10y

At the point (4, 1), we can substitute the values into the partial derivatives:

∂F/∂x = 3

∂F/∂y = 10(1) = 10

Therefore, the gradient of the function F(x, y) at the point (4, 1) is represented by the vector (3, 10).

Learn more about function, below:

https://brainly.com/question/30721594

#SPJ11

Verify the following general solutions and find the particular solution. 23. Find the particular solution to the differential equation y' x² = y that passes through (1.2) given that y = Ce is a general solution. 25. Find the particular solution to the differential equation = tanu that passes through (1.2). (1.2). given given that dr u = sin-¹ (eC+¹) is a general solution.

Answers

The general solution of the given differential equation is: [tex]$\frac{dy}{dx} = \tan u$[/tex].

General Solution: [tex]$y = Ce^{x^3/3}$[/tex]

The given differential equation is[tex]$y' = y / x^2$.[/tex]

To find the particular solution, we have to use the initial condition [tex]$y(1) = 2$[/tex].

Integration of the given equation gives us:

[tex]$\int \frac{dy}{y} = \int \frac{dx}{x^2}$or $\ln y = -\frac{1}{x} + C$or $y = e^{-\frac{1}{x}+C}$[/tex].

Applying the initial condition [tex]$y(1) = 2$[/tex], we get:

[tex]$2 = e^{-1 + C}$or $C = 1 + \ln 2$[/tex].

Thus, the particular solution is:

[tex]$y = e^{-\frac{1}{x} + 1 + \ln 2} = 2e^{-\frac{1}{x}+1}$[/tex]

The general solution of the given differential equation is:

[tex]$\frac{dy}{dx} = \tan u$[/tex]

Rearranging this equation gives us:

[tex]$\frac{dy}{\tan u} = dx$[/tex]

Integrating both sides of the equation:

[tex]$\int \frac{dy}{\tan u} = \int dx$[/tex]

Using the identity [tex]$\sec^2 u = 1 + \tan^2 u$[/tex] we get:

[tex]$\int \frac{\cos u}{\sin u}dy = x + C$[/tex]

Applying the initial condition [tex]$y(1) = 2$[/tex], we have:

[tex]$\int_2^y \frac{\cos u}{\sin u}du = x$[/tex]

Let , [tex]$t = \sin u$[/tex], then [tex]$dt = \cos u du$[/tex]. As [tex]$u = \sin^{-1} t$[/tex] we have:

[tex]$\int_2^y \frac{dt}{t\sqrt{1-t^2}} = x$[/tex]

Using a trigonometric substitution of [tex]$t = \sin\theta$[/tex], the integral on the left side can be evaluated as:

[tex]$\int_0^{\sin^{-1} y} d\theta = \sin^{-1} y$[/tex]

Therefore, the particular solution is:

[tex]$x = \sin^{-1} y$ or $y = \sin x$[/tex]

General Solution: [tex]$r = Ce^{\sin^{-1}e^C}$[/tex]

Differentiating with respect to [tex]$\theta$[/tex], we have:

[tex]$\frac{dr}{d\theta} = \frac{du}{d\theta}\frac{dr}{du} = \frac{du}{d\theta}(e^u)$.Given that $\frac{du}{d\theta} = \sin^{-1}(e^C)$[/tex], the equation becomes:

[tex]$\frac{dr}{d\theta} = (e^u) \sin^{-1}(e^C)$[/tex]

Integrating both sides, we get:

[tex]$r = \int (e^u) \sin^{-1}(e^C) d\theta$[/tex] Let [tex]$t = \sin^{-1}(e^C)$[/tex], so [tex]$\cos t = \sqrt{1-e^{2C}}$[/tex] and [tex]$\sin t = e^C$[/tex]. Substituting these values gives:

[tex]$r = \int e^{r\cos \theta} \sin t d\theta$[/tex]

Using the substitution [tex]$u = r \cos \theta$[/tex], the integral becomes:

[tex]$\int e^{u} \sin t d\theta$[/tex] Integrating this expression we have:

[tex]$-e^{u} \cos t + C = -e^{r\cos\theta}\sqrt{1-e^{2C}} + C$[/tex]

Substituting the value of [tex]$C$[/tex], the particular solution is:

[tex]$r = -e^{r\cos\theta}\sqrt{1-e^{2C}} - \sin^{-1}(e^C) + \sin^{-1}(e^{r \cos \theta})$[/tex]

Learn more about differential equation :

https://brainly.com/question/25731911

#SPJ11

Determine whether series is : absolutely convergent , conditionally convergent , divergent
show work for understanding
n2-2 1. En=1n2+1 η=1 nn 100 2.2 =2 (Inn)

Answers

The given series Σ((n² - 2)/(n² + 1)) is divergent. To determine whether the series is absolutely convergent, conditionally convergent, or divergent, we need to analyze the given series: Σ((n² - 2)/(n² + 1))

Let's break it down and analyze each part separately.

Analyzing the numerator: (n² - 2).

As n approaches infinity, the dominant term in the numerator is n². Thus, we can say that (n² - 2) behaves similarly to n² for large values of n.
Analyzing the denominator: (n² + 1)  

As n approaches infinity, the dominant term in the denominator is also n². Therefore, (n² + 1) behaves similarly to n² for large values of n.

Now, let's consider the ratio of the terms:

En = ((n² - 2)/(n² + 1))

To determine the convergence or divergence of the series, we can analyze the limit of the ratio as n approaches infinity.

η = lim(n→∞) ((n² - 2)/(n² + 1))

We can simplify the ratio by dividing both the numerator and denominator by n²:

η = lim(n→∞) ((1 - 2/n²)/(1 + 1/n²))

As n approaches infinity, the terms involving 1/n² tend to zero. Therefore, we have:

η = lim(n→∞) ((1 - 0)/(1 + 0)) = 1

The ratio η is equal to 1, which means the ratio test is inconclusive. It does not provide enough information to determine the convergence or divergence of the series.

To determine whether the series is absolutely convergent, conditionally convergent, or divergent, we need to explore other convergence tests.

Since the ratio test is inconclusive, let's try using the integral test to determine the convergence or divergence.

Absolute Convergence:

If the integral of the absolute value of the series converges, then the series is absolutely convergent.

Let's consider the integral of the absolute value of the series:

∫[1, ∞] |(n² - 2)/(n² + 1)| dn

Simplifying the absolute value, we have:

∫[1, ∞] ((n² - 2)/(n² + 1)) dn

We can calculate this integral to determine if it converges.

∫[1, ∞] ((n² - 2)/(n² + 1)) dn = ∞

The integral diverges since it results in infinity. Therefore, the series is not absolutely convergent.

    2. Conditional Convergence:

To determine if the series is conditionally convergent, we need to investigate the convergence of the series without considering the absolute value.

Let's consider the series without taking the absolute value:

Σ((n² - 2)/(n² + 1))

To analyze the convergence of this series, we can try applying the limit comparison test.

Let's compare it to a known series, the harmonic series: Σ(1/n).

Taking the limit as n approaches infinity:

lim(n→∞) ((n² - 2)/(n² + 1)) / (1/n)

We simplify this limit:

lim(n→∞) ((n² - 2)/(n² + 1)) * (n/1)

This simplifies further:

lim(n→∞) ((n³ - 2n)/(n² + 1))

As n approaches infinity, the dominant term in the numerator is n³, and the dominant term in the denominator is n².

Therefore, the limit becomes:

lim(n→∞) (n³/n²) = lim(n→∞) n = ∞

The limit is divergent, as it approaches infinity. This implies that the given series also diverges.

In conclusion, the given series Σ((n² - 2)/(n² + 1)) is divergent.

To learn more about convergent or divergent visit:

brainly.com/question/31990142

#SPJ11

(q3) Find the x-coordinates of the points of intersection of the curves y = x3 + 2x and y = x3 + 6x – 4.

Answers

The x - coordinate of the point of intersection of the curves is

x = 1.

How to determine he points of intersection of the curves

To find the x-coordinates of the points of intersection of the curves

y = x³ + 2x and

y = x³ + 6x - 4  

we equate both equations and solve for x.

Setting the equations equal

x³ + 2x = x³ + 6x - 4  

2x = 6x - 4

Subtracting 6x from both sides

-4x = -4

Dividing both sides by -4, we find:

x = 1

Learn more about points of intersection at

https://brainly.com/question/29185601

#SPJ1

The population of fish in a lake is determined by the function P(t) where "t" represents the time in weeks and P(t) represents the number of fish. If the derivative dPldt is negative, this means that: a) The fish population decreases as the weeks go by. b) The fish population increases as the weeks go by c) The fish population is the same at any time.

Answers

If the derivative dP/dt of the population function P(t) is negative, it means that the fish population decreases as the weeks go by.

The derivative dP/dt represents the rate of change of the fish population with respect to time. When the derivative is negative, it indicates that the population is decreasing. This means that as time progresses, the number of fish in the lake is decreasing.

In mathematical terms, a negative derivative implies that the slope of the population function is negative, indicating a downward trend. This can occur due to factors such as natural predation, disease, lack of food, or environmental changes that negatively impact the fish population.

Therefore, option (a) is correct: if the derivative dP/dt is negative, it means that the fish population decreases as the weeks go by. It is important to monitor the population dynamics of fish in a lake to ensure their sustainability and implement appropriate measures if the population is declining.

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Determine the domain and range of the function f(x) = –|x| + 2.



The domain of the function is
.

The range of the function is

Answers

The domain of the function f(x) = –|x| + 2 is (-∞, ∞) because there are no restrictions on the input values x.The Range of the function is [2, ∞) because the function is shifted upwards by 2 units, resulting in non-negative output values starting from 2.

The domain of a function refers to the set of all possible input values for the function. In this case, the function is f(x) = –|x| + 2. The absolute value function |x| is defined for all real numbers, so there are no restrictions on the input values for x. Therefore, the domain of f(x) is the set of all real numbers, which can be represented as (-∞, ∞).

The range of a function refers to the set of all possible output values. In this case, the function f(x) = –|x| + 2 involves the absolute value of x, which can only yield non-negative values. The negative sign in front of the absolute value implies that the output values will be negated. However, the constant term 2 ensures that the function will be shifted upwards by 2 units.

Considering these factors, we can determine the range of f(x) by finding the maximum value of –|x| and adding 2. The maximum value of –|x| occurs when x = 0, where the absolute value is 0. Therefore, f(0) = –|0| + 2 = 2. Adding 2 to the maximum value, we get a range of [2, ∞).

In summary:

- The domain of the function f(x) = –|x| + 2 is (-∞, ∞) because there are no restrictions on the input values x.

- The range of the function is [2, ∞) because the function is shifted upwards by 2 units, resulting in non-negative output values starting from 2.

To know more about Range .

https://brainly.com/question/24326172

#SPJ8

3. For what value(s) of k will|A| = 1 k 2 - 2 0 - 0? 3 1 [3 marks]

Answers

The value of k that satisfies the condition |A| = 1 is k = 1/3.

To find the value(s) of k for which the determinant of matrix A equals 1, we set up the equation:

|A| = 1

Using the given matrix:

|k 2|

|0 3|

The determinant of a 2x2 matrix is calculated as the product of the diagonal elements minus the product of the off-diagonal elements:

|A| = (k * 3) - (2 * 0)

Simplifying the equation, we have:

|A| = 3k - 0 = 3k

We set 3k equal to 1:

3k = 1

Dividing both sides by 3, we find:

k = 1/3

Therefore, the value of k for which the determinant of matrix A is equal to 1 is k = 1/3.

Explanation:

The determinant of a matrix is a scalar value that provides information about the matrix's properties. In this case, we are given a 2x2 matrix A and need to find the value of k for which the determinant equals 1.

We apply the formula for the determinant of a 2x2 matrix and set it equal to 1. By expanding the determinant expression and simplifying, we obtain the equation 3k = 1.

To isolate k, we divide both sides of the equation by 3, resulting in k = 1/3.

To know more about determinant click on below link:

https://brainly.com/question/29574958#

#SPJ11

Find the radius of convergence and the interval of convergence in #19-20: 19.) Ex-1(-1) 32n (2x - 1) − 20.) = (x + 4)" n=0 n6n n+1 1)

Answers

The radius of convergence for the given power series is 1/2, and the interval of convergence is (-1/2, 3/2).

The ratio test can be used to determine the radius of convergence. Applying the ratio test to the given power series, we take the limit of the absolute value of the ratio of consecutive terms as n approaches infinity:

lim(n→∞) |((Ex-1(-1) 32n (2x - 1)) / (n6n n+1)) / (((Ex-1(-1) 32n (2x - 1)) / (n6n n+1)))|

Simplifying the expression, we get:

lim(n→∞) |(Ex-1(-1) 32n (2x - 1)) / (Ex-1(-1) 32n (2x - 1))|

Taking the absolute value of the limit, we have:

lim(n→∞) 1

Since the limit evaluates to 1, the series converges for values of x within a distance of 1/2 from the center of the power series, which is x = 1. As a result, the radius of convergence is 1/2.

To determine the interval of convergence, we consider the endpoints of the interval. Plugging in the endpoints x = -1/2 and x = 3/2 into the power series, we find that the series converges at x = -1/2 and diverges at x = 3/2. As a result, the convergence interval is (-1/2, 3/2).

In summary, the given power series has a radius of convergence of 1/2 and an interval of convergence of (-1/2, 3/2).

To learn more about Interval of convergence, visit:

https://brainly.com/question/23558817

#SPJ11

Given points A(-2;1;3),
B(2;5;-1), C(3;-1;2), D(2;-1;0). Find...
Given points A(-2; 1:3), B(2:5; -1), C(3; -1;2), D(2; -1; 0). Find... 1. Scalar product of vectors AB and AC 2. Angle between the vectors AB and AC 3. Vector product of the vectors AB and AC 4. Area o

Answers

To solve the given problem, we need to calculate several quantities based on the given points A(-2, 1, 3), B(2, 5, -1), C(3, -1, 2), and D(2, -1, 0).

Scalar product of vectors AB and AC:

The scalar product (also known as the dot product) of two vectors is found by multiplying the corresponding components of the vectors and then summing them. In this case, we need to calculate AB · AC. Using the coordinates of the points, we can find the vectors AB and AC and then calculate their dot product.

Angle between the vectors AB and AC:

The angle between two vectors can be found using the dot product. The formula is given by the arccosine of the scalar product divided by the product of the magnitudes of the vectors. So, we can calculate the angle between AB and AC using the scalar product calculated in the previous step.

Vector product of the vectors AB and AC:

The vector product (also known as the cross product) of two vectors is found by taking the determinant of a matrix composed of the unit vectors i, j, and k along with the components of the vectors. We can calculate the vector product AB x AC using the given points.

Area of the parallelogram:

The area of a parallelogram formed by two vectors can be found by taking the magnitude of their vector product. In this case, we can find the area of the parallelogram formed by AB and AC using the vector product calculated earlier.

In summary, we need to calculate the scalar product of vectors AB and AC, the angle between vectors AB and AC, the vector product of AB and AC, and the area of the parallelogram formed by AB and AC. These calculations involve finding the coordinates of the vectors, performing the necessary operations, and applying relevant formulas to obtain the results.

To learn more about parallelogram click here:

brainly.com/question/28854514

#SPJ11




1. Find the following limits. x-1 (a). lim x→-2+ x²(x+2) x²-2x-8 x2+x²–5x+6 (b). lim (c). lim x-5 x²-6x+5 x-5 x²+3x x -3x²-x-12 (d). lim

Answers

we determine the limit of x²(x+2)/(x²-2x-8) as x approaches -2 from the right. In part (b), we find the limit of (x²+x²–5x+6)/(x-5) as x approaches 5. In part (c), we calculate the limit of (x-3x²-x-12)/(x²+3x) as x approaches infinity. Lastly, in part (d), we determine the limit of x as x approaches negative infinity.

In part (a), as x approaches -2 from the right, the expression x²(x+2)/(x²-2x-8) is undefined because it results in division by zero. Thus, the limit does not exist.

In part (b), as x approaches 5, the expression (x²+x²–5x+6)/(x-5) is of the form 0/0. By factoring the numerator and simplifying, we get (2x-1)(x-3)/(x-5). When x approaches 5, the denominator becomes zero, but the numerator does not. Therefore, we can use the limit laws to simplify the expression and find that the limit is 7.

In part (c), as x approaches infinity, the expression (x-3x²-x-12)/(x²+3x) can be simplified by dividing each term by x². This results in (-3/x-1-1/x-12/x²)/(1+3/x). As x approaches infinity, the terms with 1/x or 1/x² tend to zero, and we are left with -3/1. Therefore, the limit is -3.

In part (d), as x approaches negative infinity, the expression x approaches negative infinity itself. Thus, the limit is negative infinity.

To learn more about limit: -brainly.com/question/12211820#SPJ11

A can of soda at 34 F is removed from a refrigerator and placed in a room where the air temperature is 73 * F. After 16 minutes, the temperature of the can has risen to 51 'F. How many minutes after the can is removed from the refrigerator will its temperature reach 62 F? Round your answer to the nearest whole minute.

Answers

Rounding to the nearest whole minute, we find that it will take approximately 26 minutes for the can's temperature to reach 62 °F after being removed from the refrigerator.

The temperature of a can of soda, initially at 34 °F, increases to 51 °F in 16 minutes when placed in a room at 73 °F. To determine how many minutes it takes for the can's temperature to reach 62 °F after being removed from the refrigerator, we can use the concept of thermal equilibrium and calculate the time using a linear approximation.

When the can is removed from the refrigerator, it starts to warm up due to the higher temperature of the room. To reach thermal equilibrium, the can's temperature will gradually increase until it matches the room temperature. We can assume that the temperature change is linear within this time frame.

From the given information, we know that the temperature increased by 17 °F (51 °F - 34 °F) over 16 minutes. This implies that the temperature increases at a rate of 1.06 °F per minute (17 °F / 16 minutes).

To find the time it takes for the can's temperature to reach 62 °F, we can set up a proportion. The difference between the final temperature (62 °F) and the initial temperature (34 °F) is 28 °F.

Using the rate of 1.06 °F per minute, we can calculate the time needed as follows:

28 °F / 1.06 °F per minute = 26.42 minutes.

Learn more about Rounding to the nearest whole number:

https://brainly.com/question/29161476

#SPJ11

Find the following quantity if v = 4i - 5j + 3k and w= - 41 + 3- 2k. 2v - 3w k 2v- 3w=i+Di+ (Simplify your answer.) Find the given quantity if v = 4i - 3j + 4k and w= - 31+ 3j - 4k. [v-wl ||v-w=0 (S

Answers

The given quantities are vectors v = 4i - 5j + 3k and w = -41 + 3 - 2k. By calculating 2v - 3w, we find the resulting vector to be i + Di. For the second part, if v = 4i - 3j + 4k and w = -31 + 3j - 4k, we calculate the quantity ||v - w|| and find that it is equal to 0.

First, let's calculate 2v - 3w using the given vectors v = 4i - 5j + 3k and w = -41 + 3 - 2k. Multiplying each vector by their respective scalar and subtracting, we get:

2v - 3w = 2(4i - 5j + 3k) - 3(-41 + 3 - 2k)

= 8i - 10j + 6k + 123 - 9 + 6k

= 8i - 10j + 12k + 114

Therefore, 2v - 3w simplifies to i + Di, where D = 12.

Moving on to the second part, given v = 4i - 3j + 4k and w = -31 + 3j - 4k, we need to calculate the quantity ||v - w||. Subtracting w from v, we have:

v - w = (4i - 3j + 4k) - (-31 + 3j - 4k)

= 4i - 3j + 4k + 31 - 3j + 4k

= 4i - 6j + 8k + 31

To find the magnitude, we use the formula ||v - w|| = √(a^2 + b^2 + c^2), where a, b, and c are the components of v - w. In this case, a = 4, b = -6, and c = 8. Therefore:

||v - w|| = √((4)^2 + (-6)^2 + (8)^2)

= √(16 + 36 + 64)

= √116

= 2√29

Hence, the quantity ||v - w|| simplifies to 2√29, and it is equal to 0.

To learn more about vectors: -brainly.com/question/14447709#SPJ11

2) Use the properties of limits to help decide whether the limit exists. If the limit exists, find its value. 2) lim √x - 4 x-16 x - 16 A) BO C)4 D) 8

Answers

Answer:

The correct answer is D) 1/8.

Step-by-step explanation:

To determine whether the limit of the given expression exists and find its value, we can simplify the expression and evaluate it.

The expression is:

lim (x → 16) (√x - 4) / (x - 16)

Let's simplify the expression by factoring the denominator as a difference of squares:

lim (x → 16) (√x - 4) / [(√x + 4)(√x - 4)]

Notice that (√x - 4) in the numerator and (√x - 4) in the denominator cancel each other out.

lim (x → 16) 1 / (√x + 4)

Now, we can directly evaluate the limit by substituting x = 16:

lim (x → 16) 1 / (√16 + 4)

√16 = 4, so the expression becomes:

lim (x → 16) 1 / (4 + 4)

lim (x → 16) 1 / 8

The limit is:

1 / 8

Therefore, the correct answer is D) 1/8.

Learn more about denominator:https://brainly.com/question/1217611

#SPJ11

PLS
HELP!!!
Due Tue 05/17/2022 11:59 pm Use the method of Lagrange multipliers to find the minimum of the function f(x,y) = 1 + 11y subject to the constraint x - y = 18. giving a function minimum of The critical

Answers

we cannot find a minimum of the function f(x, y) = 1 + 11y subject to the constraint x - y = 18 using the method of Lagrange multipliers.

To find the minimum of the function f(x, y) = 1 + 11y subject to the constraint x - y = 18 using the method of Lagrange multipliers, we need to set up the following system of equations:

1. ∇f(x, y) = λ∇g(x, y)

2. g(x, y) = 0

where ∇f(x, y) and ∇g(x, y) are the gradients of the functions f and g, respectively, and λ is the Lagrange multiplier.

Let's begin by calculating the gradients of f(x, y) and g(x, y):

∇f(x, y) = (∂f/∂x, ∂f/∂y) = (0, 11)

∇g(x, y) = (∂g/∂x, ∂g/∂y) = (1, -1)

Setting up the system of equations:

1. (0, 11) = λ(1, -1)

2. x - y = 18

From equation 1, we have two equations:

0 = λ   ... (3)

11 = -λ   ... (4)

Since λ cannot be both 0 and -11 simultaneously, we can conclude that there is no solution for λ that satisfies both equations.

To know more about function visit:

brainly.com/question/31062578

#SPJ11

we have four wedding invitation cards and accompanying envelopes. but oops — we’ve randomly mixed the cards and the envelopes ! what’s the probability that we’ll get at least one correct match ?
a) 1/8
b) 3/8
c) 5/8
d) 7/8

Answers

The probability of getting at least one correct match when randomly mixing the cards and envelopes is 5/8 (option c).

There are a total of 4! = 24 possible ways to match the cards and envelopes. Out of these, only one way is the correct matching where all the cards are paired correctly with their corresponding envelopes.

The probability of not getting any correct match is the number of permutations with no correct match divided by the total number of permutations. To calculate this, we can use the principle of derangements. The number of derangements of 4 objects is given by D(4) = 4! (1/0! - 1/1! + 1/2! - 1/3! + 1/4!) = 9.

Therefore, the probability of not getting any correct match is 9/24 = 3/8.

Finally, the probability of getting at least one correct match is the complement of the probability of not getting any correct match. Thus, the probability of getting at least one correct match is 1 - 3/8 = 5/8.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

You have decided that you are going to start saving money, so you decided to open an
account to start putting money into for your savings. You started with $300, and you
are going to put back $30 a week from your paycheck.
Write an equation to represent the situation.
How long have you been saving in order to have $720 in your account?
Weeks.

Answers

Answer:

y=30x+300

14 weeks

Step-by-step explanation:

Part A:

To begin, we are asked to write an equation.  We are given the amount you start with, which is $300, and you put $30 in every week.

We can write an equation that looks like:

y=30x+300

with x being the number of weeks you put in money.

Part B:

Part B asks us to find x, the number of weeks that you had to put in money to save a total of $720.

We have the equation:

y=30x+300

with x being the number of weeks, and y being the total amount, $720.  This means we can substitute:

720=30x+300

subtract 300 from both sides

420=30x

divide both sides by 30

14=x

So, you had to have been saving for 14 weeks.

Hope this helps! :)

Find the equation of the curve that passes through (2,3) if its
slope is given by the following equation. dy/dx=6x-7

Answers

The equation of the curve that passes through (2, 3) if its slope is given by dy/dx = 6x - 7 is y = 3x² - 7x + 5. We are given that the slope is given by the equation dy/dx = 6x - 7. We need to find the equation of the curve that passes through (2, 3).To find the equation of the curve, we need to integrate the given equation with respect to x, so that we can get the equation of the curve. We have: y' = 6x - 7

Integrating with respect to x, we get: y = ∫(6x - 7) dx= 3x² - 7x + c Where c is the constant of integration. We can find the value of c by using the point (2, 3).Substituting the value of x and y in the above equation, we get:3 = 3(2)² - 7(2) + c3 = 12 - 14 + c3 = -2 + c5 = c Hence, the value of c is 5. Substituting the value of c in the equation, we get the final equation: y = 3x² - 7x + 5. Therefore, the equation of the curve that passes through (2, 3) if its slope is given by dy/dx = 6x - 7 is y = 3x² - 7x + 5.

Learn more about slope: https://brainly.com/question/29044610

#SPJ11

Please help, I don't understand! Find the area of the region
bound by y = f(x) = (x+3)2, the x-axis, and the lines x
= -3 and x = 0. Use limit of sums for any credit.

Answers

The limit of sums method can be used to determine the area of the region enclosed by the x-axis, the lines x = -3 and x = 0, and the function y = f(x) = (x+3)2.

We create narrow subintervals of width x within the range [-3, 0] on the x-axis. Suppose there are n subintervals, in which case x = (0 - (-3))/n = 3/n.

We can approximate the area under the curve using rectangles within each subinterval. Each rectangle has a width of x and a height determined by the function f(x).

Each rectangle has an area of f(x) * x = (x+3)2 * (3/n).

As n approaches infinity, we take the limit and add the areas of all the rectangles to determine the total area:

learn more about limit here :

https://brainly.com/question/12211820

#SPJ11

9. (15 points) Evaluate the integral √4-7 +√4-2³-y (x² + y² +22)³/2dzdydz

Answers

The value of the integral is given as 5225/32 (14π/3 + 8), which is the answer to the problem.

The given integral to be evaluated is:

∫∫∫[√(4 - 7 + x² + y²) + √(4 - 2³ - y)][(x² + y² + 22)³/2] dz dy dx or, ∫∫∫[√(x² + y² - 3) + √(1 - y)][(x² + y² + 22)³/2] dz dy dx

Now, let's compute the integral using cylindrical coordinates.

The conversion formula from cylindrical coordinates to rectangular coordinates is:

x = r cos θ, y = r sin θ and z = z

Hence, the given integral is:

∫∫∫[√(r² - 3) + √(1 - r sin θ)][r³(cos²θ + sin²θ + 22)³/2] rdz dr dθ

Bounds of the integral:

z: 0 to √(3 - r²) and r: 1 to √3 and θ: 0 to 2π∫₀²π ∫₁ᵣ √3 ∫₀^√(3-r²) [√(r² - 3) + √(1 - r sin θ)][r³(cos²θ + sin²θ + 22)³/2] dz dr dθ

We can evaluate the integral by performing the following substitutions:

Let u = 3 - r² → du = -2rdr

Let v = rsinθ → dv = rcosθdθ

Now, the integral becomes:

∫₀²π ∫₀¹ ∫₀√(3-r²) [√(r² - 3) + √(1 - v)][(r² + v² + 22)³/2] rdv du dθ

Using the partial fraction method, we can evaluate the second integral:

∫₀²π ∫₀¹ [1/2(√r² - 3 - √(1 - v))] + [(r² + v² + 22)³/2] dv du dθ

For the first integral, let's make a substitution, u = r² - 3; this implies du = 2r dr.∫₀²π ∫₀¹ [1/2(√u - √(1 - v))] + [(u + v² + 25)³/2] dv du dθ

On solving, the value of the integral is given as 5225/32 (14π/3 + 8), which is the answer to the problem.

Learn more about partial fraction  :

https://brainly.com/question/30763571

#SPJ11

CarCoCo (CCC) and AceAuto(AA) are competing auto body shops that specialize in painting cars. Three types of labor are required to complete a paint job: Sanding/Filling, Masking, and Spraying. The number of hours required to complete each job at the two shops are given in the first table and the matrix L. Labor costs, in dollars per hour, are given in the second table and the matrix C. Hours to Complete Each Job Sanding Masking Filling Spraying CCC 8 5 2 AA 6 5 4 Labor Costs (in dollars per hour) Sanding/Filling 16 Masking 11 Spraying 25 The labor-hours and wage information is summarized in the following matrices: [8 5 2 L= 6 5 4 11 25 a. Compute the product LC. Preview Hours to Complete Each Job Sanding Masking Spraying Filling ССС 8 5 2 AA 6 5 4 Labor Costs (in dollars per hour) Sanding/Filling 16 Masking 11 Spraying 25 The labor-hours and wage information is summarized in the following matrices: [16 18 5 21 L= [ 6 5 4 C= 25 a. Compute the product LC. E Preview 6. What is the (2, 1)-entry of matrix LC? (LC)21 Preview c. What does the (2, 1)-entry of matrix (LC) mean? Select an answer Get Help: VIDEO Written Example

Answers

The product of matrices L and C, denoted as LC, can be computed by multiplying the corresponding elements of the matrices.

In this case, LC represents the total labor costs for each type of labor required for each shop. The (2, 1)-entry of matrix LC is a specific value in the resulting matrix that corresponds to the labor cost for Masking at the AceAuto (AA) shop.

To compute the product LC, we multiply the elements of the rows of matrix L by the corresponding elements of the columns of matrix C and sum the products. The resulting matrix LC will have the same number of rows as matrix L and the same number of columns as matrix C.

In this particular case, the (2, 1)-entry of matrix LC refers to the value obtained by multiplying the second row of matrix L (representing the hours required for each job at AceAuto) with the first column of matrix C (representing the labor costs for each type of labor). This entry specifically corresponds to the labor cost for Masking at the AceAuto shop.

By evaluating the product LC, we can determine the specific labor costs for each type of labor at each shop.

Learn more about matrix here:

https://brainly.com/question/29000721

#SPJ11








5) Find the volume of the solid of revolution generated when the region bounded by the following functions is revolved around the line x = 2. y=-de I y=x-2 X axis

Answers

To find the volume of the solid of revolution generated when the region bounded by the functions y = -x^2 and y = x - 2 is revolved around the line x = 2, we can use the method of cylindrical shells.

The volume can be calculated by integrating the product of the circumference of a cylindrical shell, the height of the shell, and the thickness of the shell.

To begin, let's find the points of intersection of the two functions. Setting -x^2 = x - 2, we can rearrange the equation to x^2 + x - 2 = 0. Solving this quadratic equation, we find two solutions: x = 1 and x = -2. Therefore, the region bounded by the functions is between x = -2 and x = 1.

To calculate the volume using cylindrical shells, we imagine slicing the region into thin vertical strips. Each strip can be thought of as a cylindrical shell with radius (2 - x) (distance from the axis of revolution to the strip) and height (x - (-x^2)) (the difference in the y-coordinates of the functions). The thickness of each shell is dx.

The volume of each shell is given by V = 2π(2 - x)(x - (-x^2))dx. To find the total volume, we integrate this expression from x = -2 to x = 1:

V = ∫[from -2 to 1] 2π(2 - x)(x - (-x^2))dx.

Evaluating this integral will give us the volume of the solid of revolution.

Learn more about volume here:

https://brainly.com/question/28742603

#SPJ11

Solve and graph the solution set on the number line.
-45-х < - 24

Answers

Tο graph the sοlutiοn set οn the number line, we mark a filled-in circle at -21 (since x is greater than -21) and draw an arrοw tο the right tο represent all values greater than -21.

How tο sοlve the inequality?

Tο sοlve the inequality -45 - x < -24, we can fοllοw these steps:

Subtract -45 frοm bοth sides οf the inequality:

-45 - x - (-45) < -24 - (-45)

-x < -24 + 45

-x < 21

Multiply bοth sides οf the inequality by -1. Since we are multiplying by a negative number, the directiοn οf the inequality will flip:

-x*(-1) > 21*(-1)

x > -21

Sο the sοlutiοn tο the inequality is x > -21.

Tο graph the sοlutiοn set οn the number line, we mark a filled-in circle at -21 (since x is greater than -21) and draw an arrοw tο the right tο represent all values greater than -21.

The interval nοtatiοn fοr the sοlutiοn set is (-21, +∞), which means all values greater than -21.

Learn more about graph

https://brainly.com/question/17267403

#SPJ4

Let S be the solid of revolution obtained by revolving about the z-axis the bounded region Renclosed by the curve y = x²(6 - 1) and the India. The goal of this exercise is to compute the volume of us

Answers

To compute the volume of the solid of revolution S, obtained by revolving the bounded region R enclosed by the curve y = x^2(6 - x) and the x-axis about the z-axis, we can use the method of cylindrical shells. The volume of the solid of revolution S is approximately 2440.98 cubic units. First, let's find the limits of integration for x. The curve y = x^2(6 - x) intersects the x-axis at x = 0 and x = 6.

So, the limits of integration for x will be from 0 to 6. Now, let's consider a vertical strip of thickness dx at a given x-value. The height of this strip will be the distance between the curve y = x^2(6 - x) and the x-axis, which is simply y = x^2(6 - x). To find the circumference of the cylindrical shell at this x-value, we use the formula for circumference, which is 2πr, where r is the distance from the axis of revolution to the curve. In this case, the distance from the z-axis to the curve is x, so the circumference is 2πx.

The volume of this cylindrical shell is the product of its circumference, height, and thickness. Therefore, the volume of the shell is given by dV = 2πx * x^2(6 - x) * dx. To find the total volume of the solid of revolution S, we integrate the expression for dV over the limits of x: V = ∫[0 to 6] 2πx * x^2(6 - x) dx.

Simplifying the integrand, we have: V = 2π ∫[0 to 6] x^3(6 - x) dx.

Evaluating this integral will give us the volume of the solid of revolution S. To evaluate the integral V = 2π ∫[0 to 6] x^3(6 - x) dx, we can expand and simplify the integrand, and then integrate with respect to x.

V = 2π ∫[0 to 6] (6x^3 - x^4) dx

Now, we can integrate term by term:

V = 2π [(6/4)x^4 - (1/5)x^5] evaluated from 0 to 6

V = 2π [(6/4)(6^4) - (1/5)(6^5)] - [(6/4)(0^4) - (1/5)(0^5)]

V = 2π [(3/2)(1296) - (1/5)(7776)]

V = 2π [(1944) - (1555.2)]

V = 2π (388.8)

V ≈ 2π * 388.8

V ≈ 2440.98

Therefore, the volume of the solid of revolution S is approximately 2440.98 cubic units.

Learn more about integration here: https://brainly.com/question/31040425

#SPJ11

The vector ū has initial point P(-3,2) and terminal point Q(4, -3). Write Ū in terms of ai + that is, find its position vector. Graph the vector PQ and the position vector ū.

Answers

The position vector ū can be obtained by subtracting the initial point P from the terminal point Q. So, ū = Q - P = (4, -3) - (-3, 2).

To find ū in terms of ai + bj form, we subtract the corresponding components: ū = (4 - (-3), -3 - 2) = (7, -5). Therefore, the position vector ū is given by ū = 7i - 5j.

Graphically, we can represent the vector PQ by drawing an arrow from point P(-3, 2) to point Q(4, -3), indicating the direction and magnitude. Similarly, we can represent the position vector ū by drawing an arrow from the origin (0, 0) to the point (7, -5). The vector PQ represents the displacement from point P to point Q, while the vector ū represents the position of the terminal point Q with respect to the initial point P.

To learn more about vector click here:

brainly.com/question/24256726

#SPJ11

Other Questions
how can i create a dynamic list of sheet names with cell contents for each in their own column header using sheets? Use the properties of logarithms to solve the equation forx.log 4 (5x 29) = 22)Rewrite the expression as a single logarithm.1/2 ln x 5 ln(x 4)3)Find the indicated value.Iff(x) = Functional imaging studies indicate that panic attack is accompanied by activation of thea. hippocampus.b. thalamus.c. cingulated cortex.d. amygdala.e. corpus callosum. what qualities of microorganisms make them difficult to study Use our definition of multiplication and math drawingstodetermine the answer to the multiplication problem. Explainclearly." T/F most incarcerated juvenile offenders are held for status offenses f(x) = x + 7A 2-column table with 4 rows. The first column is labeled x with entries negative 3, negative 1, 1, 3. The second column is labeled f of x with entries 8, StartFraction 22 Over 3 EndFraction, StartFraction 20 Over 3 EndFraction, 6.Determine the input that would give an output value of . = x + 7 = x a dollar today is worth more than a dollar to be received in the future becausemultiple choicea stated rate of return is guaranteed on all investment dollar can be invested today and earn interest.inflation will increase the purchasing power of a future of these options are true. Please answer all part in full. I will leave a like only if itis done fullyWrite the correct formula for each derivative. d (sin x) dx (b) r (cos x) b) -( dx (c) Home (tan x) (csc) dx x (e) d (sec x) dx non se (f) (cot x) () Find the equation of the tangent line to the cur MOVERS TANAPCALC10 2.4.014.MI. Complete the table by computing f(x) at the given values of x. FX) 1 X - 3 2.9 2.99 2.999 3.001 3.01 3.1 f(x) Use these results to estimate the indicated limit (if it exists). (If an answer does not exist, enter DNE.) lim Rx) DNE Submit Answol 64F Partly doudy a O you pour a small amount of water into the bottom of a beaker. you then carefully pour all of liquid a on top of the water. after all the liquid a is added, which liquid will be the top layer? For the following exercises, determine the slope of the tangent line, then find the equation of the tangent line at the given value of the parameter. 66. r = 3 sint, y = 3 cost, 1= 4 67. r = cost, y = 8 sin 1, 1 = 5 68. r = 21, y=p, t= -1 69. x=1+1, y=:-1, r= 1 70. x=vi, y = 21, 1 = 4 Seven numbers out of a set of nine numbers are 16, 17, 19, 19, 21, 21, and 25. If the mode of the eight numbers is 19 and the mean is 20, what are the other two numbers? Show your work describe how the apparitions prophecies are fulfilled in act 5 traditional racial classification assumed that biological characteristics such as skin color were determined by heredity and remained stable over many generations. we now know that 13 Acompuler manulacturer wants to improve qualily. To do so, the manufacturer first naads to determine the most important factors that affect the quality of is products. Whieh tool should the manufacturerue to schleve this? Flowchart Control chart Histograms Pareto analysis Check sheet BOOKMARK label applied to music released by 70s mainstream record companies in the traditional organizational development model work is done In public Greek life, a man had to make his way at every step through the immediate persuasion of the spoken word. Whether it be addressing an assembly, a law-court or a more restricted body, his oratory would be a public affair rather than under the purview of a quiet committee, without the support of circulated commentary, and with no backcloth of daily reportage to make his own or others views familiar to his hearers. The oratory's immediate effect was all-important; it would be naive to expect that mere reasonableness or an inherently good case would equate to a satisfactory appeal. Therefore, it was early realized that persuasion was an art, up to a point teachable, and a variety of specific pedagogy was well established in the second half of the fifth century. When the sophists claimed to teach their pupils how to succeed in public life, rhetoric was a large part of what they meant, though, to do them justice, it was not the whole.Skill naturally bred mistrust. If a man of good will had need of expression advanced of mere twaddle, to learn how to expound his contention effectively, the truculent or pugnacious could be taught to dress their case in well-seeming guise. It was a standing charge against the sophists that they made the worse appear the better cause, and it was this immoral lesson which the hero of Aristophanes Clouds went to learn from, of all people, Socrates. Again, the charge is often made in court that the opponent is an adroit orator and the jury must be circumspect so as not to let him delude them. From the frequency with which this crops up, it is patent that the accusation of cleverness might damage a man. In Greece, juries, of course, were familiar with the style, and would recognize the more evident artifices, but it was worth a litigants while to get his speech written for him by an expert. Persuasive oratory was certainly one of the pressures that would be effective in an Athenian law-court.A more insidious danger was the inevitable desire to display this art as an art. It is not easy to define the point at which a legitimate concern with style shades off into preoccupation with manner at the expense of matter, but it is easy to perceive that many Greek writers of the fourth and later centuries passed that danger point. The most influential was Isocrates, who polished for long years his pamphlets, written in the form of speeches, and taught to many pupils the smooth and easy periods he had perfected. Isocrates took to the written word in compensation for his inadequacy in live oratory; the tough and nervous tones of a Demosthenes were far removed from his, though they, too, were based on study and practice. The exaltation of virtuosity did palpable harm. The balance was always delicate, between style as a vehicle and style as an end in itself.We must not try to pinpoint a specific moment when it, once and for all, tipped over; but certainly, as time went on, virtuosity weighed heavier. While Greek freedom lasted, and it mattered what course of action a Greek city decided to take, rhetoric was a necessary preparation for public life, whatever its side effects. It had been a source of strength for Greek civilization that its problems, of all kinds, were thrashed out very much in public. The shallowness which the study of rhetoric might (not must) encourage was the corresponding weakness. Directions: Read the above paragraph and answer the followingQ.If the author of the passage travelled to a political convention and saw various candidates speak he would most likely have the highest regard for an orator who: a)roused his hearers to immediate and decisive action. b)understood that rhetoric serves an aesthetic as well as a practical purpose. c)relied on facts and reason rather than on rhetorical devices in making his case. d)passed on the techniques he had perfected to many students. e)made use of flowery and inflated words the most common type of eyewash stations are plumbed eyewash stations, which use tap water from pipes connected to municipal water lines. Steam Workshop Downloader