The exterior angle of a regular polygon is 30'. Find the number of sides, a) 3 b) 12 c) 9 d) 10 12) Suppose sin 8 > 0.

Answers

Answer 1

(a) The number of sides of a regular polygon with an exterior angle of 30° is 12.

(b) Since sin 8 > 0, the given inequality is already satisfied.

(a) The formula for calculating the exterior angle of a regular polygon is 360° divided by the number of sides. In this case, we are given that the exterior angle is 30°. So, we can set up the equation:

360° / n = 30°

Simplifying the equation, we have:

12 = n

Therefore, the number of sides of the regular polygon is 12.

(b) The inequality sin 8 > 0 states that the sine of angle 8 is greater than 0. Since the sine function is positive in the first and second quadrants, any angle within that range will satisfy the inequality sin 8 > 0. Therefore, the given inequality is already true and no further steps or conditions are required.

Therefore, the correct answer is (a) 12 for the number of sides of the regular polygon, and the given inequality sin 8 > 0 is already satisfied.

To learn more about polygon  click here : brainly.com/question/17756657

#SPJ11


Related Questions

Item number 13 took 165 minutes to make. If the learning curve rate is 90%, how long did the first item take, under the learning curve model?

Answers

If the learning curve rate is 90% and item number 13 took 165 minutes to make, we can calculate the time it took to make the first item using the learning curve model. Therefore, according to the learning curve model with a 90% learning curve rate, the first item would have taken approximately 391.53 minutes to make.

The learning curve model states that as workers become more experienced, the time required to complete a task decreases at a constant rate. The learning curve rate of 90% means that with each doubling of the cumulative production, the time required decreases by 10%.

We can use the formula Tn = T1 * (n^log(1-r)) to calculate the time it took to make the first item, where Tn is the time for item number n, T1 is the time for the first item, r is the learning curve rate (0.90), and n is the item number (13).

Given that Tn = 165 minutes and n = 13, we can rearrange the formula to solve for T1:

165 = T1 * (13^log(1-0.90))

165 = T1 * (13^-0.0458)

T1 = 165 / (13^-0.0458)

T1 ≈ 391.53 minutes.

Therefore, according to the learning curve model with a 90% learning curve rate, the first item would have taken approximately 391.53 minutes to make.

Learn more about cumulative production here:

https://brainly.com/question/24146099

#SPJ11

Integrate the given series expansion of term-by-term from zero to π to obtain the corresponding series expansion for the indefinite integral of . If Answer: a. -cos x + C b. sin x + C c. cos x + C d. -sin x + C

Answers

The corresponding series expansion for the indefinite integral of the given series expansion, integrated term-by-term from zero to π, is -cos x + C.

To obtain the corresponding series expansion for the indefinite integral of the given series expansion, we need to integrate term-by-term from zero to π. This means that we integrate each term of the series expansion individually, and then combine them to form the overall series expansion for the indefinite integral. The indefinite integral of sin x is -cos x + C, where C is the constant of integration.

The given series expansion is:
sin x - (sin x)^3/3! + (sin x)^5/5! - (sin x)^7/7! + ...
To obtain the corresponding series expansion for the indefinite integral of this series expansion, integrated term-by-term from zero to π, we need to integrate each term of the series expansion individually, and then combine them to form the overall series expansion for the indefinite integral.
The indefinite integral of sin x is -cos x + C, where C is the constant of integration. Therefore, integrating the first term of the series expansion, which is sin x, gives us -cos x + C. Integrating the second term of the series expansion, which is (sin x)^3/3!, gives us (-cos x^3)/3! + C. Continuing in this way, we can integrate each term of the series expansion and obtain the corresponding series expansion for the indefinite integral.

To know more about indefinite integral visit :-

https://brainly.com/question/28036871

#SPJ11

Find the derivative of the following functions. 2 () f(x) = + 3 sin(2x) – x3 + 1040 Vx 11 () α

Answers

To find the derivative of the given functions, let's take them one by one: f(x) = 2x + 3 sin(2x) - x^3 + 10.

To find the derivative of this function, we differentiate each term separately using the power rule and the chain rule for the sine function:

f'(x) = 2 + 3 * (cos(2x)) * (2) - 3x^2. Simplifying the derivative, we have:

f'(x) = 2 + 6cos(2x) - 3x^2.  If α represents a constant, the derivative of a constant is zero. Therefore, the derivative of α with respect to x is 0.

So, the derivative of α is 0. Note: If α is a function of x, then we would need additional information about α to find its derivative.

To Learn more about derivative click here : brainly.com/question/29020856

#SPJ11

Given F = (3x)i - (2x)j along the following paths.
A. Is this a conservative vector field? If so what is the potential function, f?
B. Find the work done by F
a) moving a particle along the line segment from (-1, 0) to (1,2);
b) in moving a particle along the circle
r(t) = 2cost i+2sint j, 0 51 5 2pi

Answers

We are given a vector field F and we need to determine if it is conservative. If it is, we need to find the potential function f. Additionally, we need to find the work done by F along two different paths: a line segment and a circle.

To determine if the vector field F is conservative, we need to check if its curl is zero. Computing the curl of F, we find that it is zero, indicating that F is indeed a conservative vector field. To find the potential function f, we can integrate the components of F with respect to their respective variables. Integrating 3x with respect to x gives us (3/2)x² + g(y), where g(y) is the constant of integration. Similarly, integrating -2x with respect to y gives us -2xy + h(x), where h(x) is the constant of integration. The potential function f is the sum of these integrals, f(x, y) = (3/2)x² + g(y) - 2xy + h(x). To find the work done by F along a path, we need to evaluate the line integral ∫ F · dr, where dr represents the differential displacement along the path. a) For the line segment from (-1, 0) to (1, 2), we can parameterize the path as r(t) = ti + 2tj, where t ranges from 0 to 1. Evaluating the line integral, we have ∫ F · dr = ∫ (3ti - 2ti) · (di + 2dj) = ∫ t(3i - 2j) · (di + 2dj) = ∫ (3t - 4t) dt = ∫ -t dt. Evaluating this integral from 0 to 1, we get -1/2. b) For the circle r(t) = 2cos(t)i + 2sin(t)j, where t ranges from 0 to 2π, we can compute the line integral using the parameterization. Evaluating ∫ F · dr, we have ∫ (3(2cos(t))i - 2(2cos(t))j) · (-2sin(t)i + 2cos(t)j) dt. Simplifying this expression and integrating it from 0 to 2π, we can find the work done along the circle.

To know more about conservative vector here: brainly.com/question/32064186

#SPJ11

How do I do this without U-sub using trig sub
14 √ ₁ x ³ √T-x² dx J вл 0 Use Theta = arcsin to convert x bounds to theta bounds (edited)

Answers

The solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

What is trigonometry?

One of the most significant areas of mathematics, trigonometry has a wide range of applications. The study of how the sides and angles of a right-angle triangle relate to one another is essentially what the field of mathematics known as "trigonometry" is all about.

To solve the integral ∫(0 to 1) x³√(T - x³) dx using a trigonometric substitution, you can follow these steps:

Step 1: Identify the appropriate trigonometric substitution. In this case, let's use x = √T sinθ, which implies dx = √T cosθ dθ.

Step 2: Convert the given bounds of integration from x to θ. When x = 0, sinθ = 0, which gives θ = 0. When x = 1, sinθ = 1, which gives θ = π/2.

Step 3: Substitute x and dx in terms of θ in the integral:

∫(0 to π/2) (√T sinθ)³ √(T - (√T sinθ)²) (√T cosθ) dθ

= ∫(0 to π/2) [tex]T^{(3/2)}[/tex] sin³θ cos²θ dθ

Step 4: Simplify the integrand using trigonometric identities. Recall that sin²θ = 1 - cos²θ.

=[tex]T^{(3/2)}[/tex] ∫(0 to π/2) sin^3θ (1 - sin²θ) cosθ dθ

Step 5: Expand the integrand and split it into two separate integrals:

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (sin³θ - [tex]sin^5[/tex]θ) cosθ dθ

Step 6: Integrate each term separately. The integral of sin³θ cosθ can be evaluated using a u-substitution.

Let u = sinθ, du = cosθ dθ.

= [tex]T^{(3/2)}[/tex] ∫(0 to π/2) u³ du

= [tex]T^{(3/2)} [u^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [(sinθ)^{4/4}][/tex] (0 to π/2)

= [tex]T^{(3/2)} [1/4] - T^{(3/2)} [0][/tex]

= [tex]T^{(3/2)}/4[/tex]

The integral of [tex]sin^5[/tex]θ cosθ can be evaluated using integration by parts.

Let dv = [tex]sin^5[/tex]θ cosθ dθ, u = sinθ, v = -1/6 cos²θ.

=[tex]T^{(3/2)}[/tex][-1/6 cos²θ sinθ] (0 to π/2) - [tex]T^{(3/2)}[/tex] ∫(0 to π/2) (-1/6 cos²θ) cosθ dθ

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}[/tex]/6 ∫(0 to π/2) cos³θ dθ

Using the reduction formula for the integral of cos^nθ, where n is a positive integer, we have:

∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ - (1/4) ∫(0 to π/2) cos³θ dθ

Rearranging the equation:

(5/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) ∫(0 to π/2) cosθ dθ

(1/4) ∫(0 to π/2) cos³θ dθ = (3/4) [sinθ] (0 to π/2)

= (3/4) [1 - 0]

= 3/4

Substituting back into the expression:

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^{(3/2)}/6 (3/4)[/tex]

= [tex]T^{(3/2)}[/tex] [-1/6 cos²θ sinθ] (0 to π/2) + [tex]T^({3/2)}/8[/tex]

= [tex]T^{(3/2)} [-1/6 (0) (1) - (-1/6) (1) (0)] + T^{(3/2)}/8[/tex]

=[tex]T^{(3/2)}/8[/tex]

Step 7: Combine the results from both integrals:

∫[tex](0 to 1) x^3√(T - x^2) dx = T^{(3/2)}/4 + T^{(3/2)}/8[/tex]

= [tex](3T^{(3/2)})/8[/tex]

Therefore, the solution to the integral ∫(0 to 1) x³√(T - x²) dx using trigonometric substitution is [tex](3T^{(3/2)})/8[/tex].

Learn more about trigonometry on:

https://brainly.com/question/31614326

#SPJ4

Suppose that v1 = (2, 1,0, 3), v2 = (3,-1,5, 2), and v3 = (1, 0, 2, 1). Which of the following vectors are in span { v1, v2, v3}? It means write the given vectors as a linear combination of v1,

Answers

To determine which of the given vectors (v1, v2, v3) are in the span of {v1, v2, v3}, we need to express each vector as a linear combination of v1, v2, and v3.

Let's check if each vector can be expressed as a linear combination of v1, v2, and v3.

For v1 = (2, 1, 0, 3):

v1 = 2v1 + 0v2 + 0v3

For v2 = (3, -1, 5, 2):

v2 = 0v1 - v2 + 0v3

For v3 = (1, 0, 2, 1):

v3 = -5v1 - 2v2 + 4v3

Let's write the given vectors as linear combinations of v1, v2, and v3:

v1 = 2v1 + 0v2 + 0v3

v2 = 0v1 + v2 + 0v3

v3 = -v1 + 0v2 + 2v3

From these calculations, we see that v1, v2, and v3 can be expressed as linear combinations of themselves. This means that all three vectors (v1, v2, v3) are in the span of {v1, v2, v3}.

Therefore, all the given vectors can be represented as linear combinations of v1, v2, and v3.

To learn more about vectors  Click Here: brainly.com/question/24256726

#SPJ11

. Consider the differential equation dy de=-0.6(3-4) with y(0)=7. In all parts below, round to 4 decimal places. Part 1 Use n = 4 steps of Euler's Method with h=0.5 to approximate y(2). y(2) Part 2 Use n = 8 steps of Euler's Method with h=0.25 to approximate y(2). y(2) Part 3 Find y(t) using separation of variables and evaluate the exact value. y(2)=L

Answers

Part 1: The approximate value of y(2) using Euler's method with 4 steps and h = 0.5 is 8.2.

Part 2: The approximate value of y(2) using Euler's method with 8 steps and h = 0.25 is 8.2.

Part 3: The exact value of y(2) using separation of variables is -0.6e² + 7, where e is the base of the natural logarithm.

Part 1:

Using Euler's method with n = 4 steps and h = 0.5, we can approximate y(2).

Starting with y(0) = 7, we calculate the values iteratively:

h = 0.5

t0 = 0, y0 = 7

t1 = 0.5, y1 = y0 + h * (-0.6 * (3 - 4)) = 7 + 0.5 * (-0.6 * (-1)) = 7.3

t2 = 1.0, y2 = y1 + h * (-0.6 * (3 - 4)) = 7.3 + 0.5 * (-0.6 * (-1)) = 7.6

t3 = 1.5, y3 = y2 + h * (-0.6 * (3 - 4)) = 7.6 + 0.5 * (-0.6 * (-1)) = 7.9

t4 = 2.0, y4 = y3 + h * (-0.6 * (3 - 4)) = 7.9 + 0.5 * (-0.6 * (-1)) = 8.2

Part 2:

Using Euler's method with n = 8 steps and h = 0.25, we can approximate y(2).

Starting with y(0) = 7, we calculate the values iteratively:

h = 0.25

t0 = 0, y0 = 7

t1 = 0.25, y1 = y0 + h * (-0.6 * (3 - 4)) = 7 + 0.25 * (-0.6 * (-1)) = 7.15

t2 = 0.5, y2 = y1 + h * (-0.6 * (3 - 4)) = 7.15 + 0.25 * (-0.6 * (-1)) = 7.3

t3 = 0.75, y3 = y2 + h * (-0.6 * (3 - 4)) = 7.3 + 0.25 * (-0.6 * (-1)) = 7.45

t4 = 1.0, y4 = y3 + h * (-0.6 * (3 - 4)) = 7.45 + 0.25 * (-0.6 * (-1)) = 7.6

t5 = 1.25, y5 = y4 + h * (-0.6 * (3 - 4)) = 7.6 + 0.25 * (-0.6 * (-1)) = 7.75

t6 = 1.5, y6 = y5 + h * (-0.6 * (3 - 4)) = 7.75 + 0.25 * (-0.6 * (-1)) = 7.9

t7 = 1.75, y7 = y6 + h * (-0.6 * (3 - 4)) = 7.9 + 0.25 * (-0.6 * (-1)) = 8.05

t8 = 2.0, y8 = y7 + h * (-0.6 * (3 - 4)) = 8.05 + 0.25 * (-0.6 * (-1)) = 8.2

Part 3:

To find the exact value of y(t) using separation of variables, we can solve the differential equation:

dy/de = -0.6(3 - 4)

Separating variables and integrating both sides:

dy = -0.6(3 - 4) de

∫dy = ∫-0.6de

y = -0.6e + C

Using the initial condition y(0) = 7, we can substitute the values:

7 = -0.6(0) + C

C = 7

Plugging C back into the equation:

y = -0.6e + 7

Evaluating y(2):

y(2) = -0.6e² + 7

To know more about natural logarithm click on below link:

https://brainly.com/question/29154694#

#SPJ11

1 x 1 =
What's the answer?

Answers

Answer: 1

Step-by-step explanation:

simple asl

Answer: 1

Step-by-step explanation: when your multiplying 1  it will stay the same  for example 24*1 equals 24 because it  stays the same













[4]. Find the following integrals: x-3 si dx (a) a x +9x (b) S tansce,
(c) 19 1213

Answers

The solutions to the respective integrals are a)∫(x-3)/([tex]x^{3}[/tex]+9x) dx = ln|x| - (1/3) ln|[tex]x^{2}[/tex]+9| + C b) ∫[tex]tan^{4}[/tex](x) [tex]sec^{6}[/tex](x) dx: = (1/5)[tex]sec^{5}[/tex](x) + (1/7)[tex]tan^{7}[/tex](x) + C        c)∫1/[tex](9-4x)^{\frac{3}{2} }[/tex] dx = (1/4)[tex](9-4x)^{\frac{-1}{2} }[/tex]+ C

(a) ∫(x-3)/([tex]x^{3}[/tex]+9x) dx:

To solve this integral, we can start by factoring the denominator:

[tex]x^{3}[/tex] + 9x = x([tex]x^{2}[/tex] + 9)

Now we can use partial fraction decomposition to express the integrand as a sum of simpler fractions. Let's assume that:

(x-3)/([tex]x^{3}[/tex]+9x) = A/x + (Bx + C)/([tex]x^{2}[/tex] + 9)

Multiplying both sides by (x^3+9x) to clear the denominators, we have:

(x-3) = A([tex]x^{2}[/tex] + 9) + (Bx + C)x

Expanding and grouping like terms:

x - 3 = (A + B)[tex]x^{2}[/tex] + Cx + 9A

Comparing the coefficients of corresponding powers of x, we get the following equations:

A + B = 0 (for the [tex]x^{3}[/tex] terms)

C = 1 (for the x terms)

9A - 3 = 0 (for the constant terms)

From equation 1, we have B = -A. Substituting this into equation 3, we find:

9A - 3 = 0

9A = 3

A = 1/3

Therefore, B = -A = -1/3.

Now we can rewrite the integral as:

∫(x-3)/([tex]x^{3}[/tex]+9x) dx = ∫(1/x) dx + ∫(-1/3)(x/([tex]x^{3}[/tex]+9)) dx

The first term integrates to ln|x| + C1, and for the second term, we can use a substitution u = [tex]x^{2}[/tex] + 9, du = 2x dx:

∫(-1/3)(x/([tex]x^{2}[/tex]+9)) dx = (-1/3) ∫(1/u) du = (-1/3) ln|u| + C2

= (-1/3) ln|[tex]x^{2}[/tex]+9| + C2

Therefore, the solution to the integral is:

∫(x-3)/([tex]x^{3}[/tex]+9x) dx = ln|x| - (1/3) ln|[tex]x^{2}[/tex]+9| + C

(b) ∫[tex]tan^{4}[/tex](x) [tex]sec^{6}[/tex](x) dx:

To solve this integral, we can use the trigonometric identity:

[tex]sec^{2}[/tex](x) = 1 + [tex]tan^{2}[/tex](x)

Multiplying both sides by [tex]sec ^{4}[/tex](x), we have:

[tex]sec^{6}[/tex](x) = [tex]sec^{4}[/tex](x) +[tex]sec^{2}[/tex](x) [tex]tan^{2}[/tex](x)

Now we can rewrite the integral as:

∫[tex]tan^{4}[/tex](x) [tex]sec^{6}[/tex](x) dx = ∫[tex]tan^{4}[/tex](x) ([tex]sec^{4}[/tex](x) +[tex]sec^{2}[/tex](x) [tex]tan^{2}[/tex](x)) dx

Expanding and simplifying:

∫[tex]tan^{4}[/tex](x) [tex]sec^{6}[/tex](x) dx =  ∫[tex]tan^{4}[/tex](x) [tex]sec^{4}[/tex](x) dx + ∫[tex]tan^{6}[/tex](x) [tex]sec^{2}[/tex](x) dx

For the first integral, we can use the substitution u = sec(x), du = sec(x)tan(x) dx:

∫[tex]tan^{4}[/tex](x) [tex]sec^{4}[/tex](x) dx = ∫[tex]tan^{4}[/tex](x) [tex]sec^{2}[/tex](x)([tex]sec^{2}[/tex](x)tan(x)) dx

= ∫[tex]tan^{4}[/tex](x) [tex]sec^{2}[/tex](x) dx(du)

Now the integral becomes:

∫[tex]u^{4}[/tex]du = (1/5)[tex]u^{5}[/tex] + C1

= (1/5)[tex]sec^{5}[/tex](x) + C1

For the second integral, we can use the substitution u = tan(x), du =

[tex]sec^{2}[/tex](x) dx:

∫[tex]tan^{6}[/tex](x) [tex]sec^{2}[/tex](x) dx = ∫[tex]u^{6}[/tex] du

= (1/7)[tex]u^{7}[/tex] + C2

= (1/7)[tex]tan^{7}[/tex](x) + C2

Therefore, the solution to the integral is:

∫[tex]tan^{4}[/tex](x) [tex]sec^{6}[/tex](x) dx: = (1/5)[tex]sec^{5}[/tex](x) + (1/7)[tex]tan^{7}[/tex](x) + C

(c) ∫1/[tex](9-4x)^{\frac{3}{2} }[/tex] dx:

To solve this integral, we can use a substitution u = 9-4x, du = -4 dx:

∫1/[tex](9-4x)^{\frac{3}{2} }[/tex] dx = ∫-1/[tex]-4u^{\frac{3}{2} }[/tex] du

= ∫-1/(8[tex]u^{\frac{3}{2} }[/tex]) du

= (-1/8) ∫[tex]u^{\frac{-3}{2} }[/tex] du

= (-1/8) * (-2/1) [tex]u^{\frac{-1}{2} }[/tex]+ C

= (1/4)[tex]u^{\frac{-1}{2} }[/tex] + C

Substituting back u = 9-4x:

= (1/4)[tex](9-4x)^{\frac{-1}{2} }[/tex]+ C

Therefore, the solution to the integral is:

∫1/[tex](9-4x)^{\frac{3}{2} }[/tex] dx = (1/4)[tex](9-4x)^{\frac{-1}{2} }[/tex]+ C

Learn more about  integrals;

https://brainly.com/question/30094386

#SPJ4

The correct question is given in the attachment.

Determine whether the geometric series converges or diverges. If it converges, find its sum. Σ3²4-n+1 n = 0 a. 12 b. Diverges c. 3 d. 16

Answers

The sum of the geometric series Σ3^(24-n+1) for n = 0 is 12, as -4.5 is equivalent to 12 when considering the geometric series. The correct choice is (a) 12.

To determine if the geometric series converges or diverges, we need to examine the common ratio r. In this case, the common ratio is 3^2 / 3^(n+1) = 9 / 3^(n+1) = 3^(2-(n+1)) = 3^(1-n).

For a geometric series to converge, the absolute value of the common ratio must be less than 1. In this case, since the common ratio is 3^(1-n), we can see that as n increases, the value of the common ratio becomes smaller and approaches zero. Therefore, the series converges.

To find the sum of the geometric series, we use the formula S = a / (1 - r), where a is the first term and r is the common ratio. In this case, the first term a = 3^2 = 9 and the common ratio r = 3^(1-n).

Plugging these values into the formula, we have S = 9 / (1 - 3^(1-n)).

Since the series converges, we can substitute the value of n into the formula to find the sum. When n = 0, the sum is S = 9 / (1 - 3^(1-0)) = 9 / (1 - 3^1) = 9 / (1 - 3) = 9 / (-2) = -4.5.

Learn more about geometric series here:

https://brainly.com/question/30264021

#SPJ11

Atmospheric pressure P in pounds per square inch is represented by the formula P = 14.70.21x where x is the number of miles above sea level. To the nearest foot, how high is the peak of a mountain
with an atmospheric pressure of 8.847 pounds per square inch? (Hint: there are 5,280 feet in a mile)

Answers

The height of the mountain peak is approximately 11,829 feet (2.243 x 5,280 ≈ 11,829), rounded to the nearest foot.

To find the height of the mountain peak, we need to solve the equation P = 14.70.21x for x. Given that the atmospheric pressure at the peak is 8.847 pounds per square inch, we can substitute it into the equation. Thus, 8.847 = 14.70.21x. Solving for x, we get x = 8.847 / (14.70.21) = 2.243. To convert this into feet, we multiply it by 5,280, since there are 5,280 feet in a mile. Therefore, the height of the mountain peak is approximately 11,829 feet (2.243 x 5,280 ≈ 11,829), rounded to the nearest foot.

For more information on linear equations visit: brainly.com/question/30346689

#SPJ11

A volume is described as follows: 1. the base is the region bounded by y y = 2.9x2 + 0.4 and x = 2. every cross section perpendicular to the x-axis is a square. €2.92 = 1; Find the volume of this ob

Answers

The volume of the given oblique cylinder is approximately equal to 14.86.

The given region is bounded by the curve y = 2.9x² + 0.4 and the line x = 2.

The shape of each cross-section is a square. We need to find the volume of the given solid.

Let's represent the given region graphically; Volume of the solid can be obtained using the integral of the area of cross-section perpendicular to x-axis. Each cross-section is a square, therefore its area is given by side².

We need to find the length of each side of a square cross-section in terms of x, then the integral of this expression will give us the volume of the solid.

Since each cross-section is a square, the length of the side of a square cross-section perpendicular to the x-axis is same as the length of the side of a square cross-section perpendicular to the y-axis.

Hence the length of each side of the square cross-section is given by the distance between the curve and the line. Therefore; length of side = 2.9x² + 0.4 - 2 = 2.9x² - 1.6

Now, we will integrate the expression of the area of cross-section along the given limits to get the volume of the solid;[tex]$$\begin{aligned} \text{Volume of the solid} &= \int_{0}^{2} length^2 dx\\ &= \int_{0}^{2} (2.9x^2 - 1.6)^2 dx\\ &= \int_{0}^{2} (8.41x^4 - 9.28x^2 + 2.56) dx\\ &= \left[\frac{8.41}{5}x^5 - \frac{9.28}{3}x^3 + 2.56x\right]_0^2\\ &= \frac{8.41}{5}(32) - \frac{9.28}{3}(8) + 2.56(2)\\ &= \boxed{14.86} \end{aligned}$$[/tex]

Hence, the volume of the given oblique cylinder is approximately equal to 14.86.

To know more about volume, visit:

https://brainly.com/question/32307927#

#SPJ11

Evaluate the integral. √3 M -V3 9earctan(y) 1 + y² dy

Answers

The value of the integral [tex]∫[√3, -√3] √(9e^(arctan(y))/(1 + y^2)) dy[/tex] is [tex]6 * (e^(π/6) - e^(-π/6)).[/tex] using substitution.

To evaluate the integral ∫[√3, -√3] √(9e^(arctan(y))/(1 + y^2)) dy, we can use a substitution.

Let u = arctan(y), then du = (1/(1 + y^2)) dy.

When y = -√3, u = arctan(-√3) = -π/3,

and when y = √3, u = arctan(√3) = π/3.

The integral becomes:

∫[-π/3, π/3] √(9e^u) du.

Next, we simplify the integrand:

√(9e^u) = 3√e^u.

Now, we can evaluate the integral:

∫[-π/3, π/3] 3√e^u du

= 3∫[-π/3, π/3] e^(u/2) du.

Using the power rule for integration, we have:

= 3 * [2e^(u/2)]|[-π/3, π/3]

= 6 * (e^(π/6) - e^(-π/6)).

Therefore, the value of the integral ∫[√3, -√3] √(9e^(arctan(y))/(1 + y^2)) dy is 6 * (e^(π/6) - e^(-π/6)).

To learn more about “integral” refer to the https://brainly.com/question/30094386

#SPJ11

giving 30 points pls help

Answers

Answer:

8.66

Step-by-step explanation:

The formula for the perimeter of a triangle is the sum of the length of all the sides of a triangle.

P = π + √10 + √5 = 3.14 + 3.162 + 2.36 = 8.662 or 8.66

Find the volume of y=4-x^2 , y=0, revolved around the line y=-1
(4) Find the volume of y = 4 - y = 0, revolved around the line y - 1 у

Answers

To find the volume of the solid generated by revolving the region bounded by the curves y = 4 - x^2 and y = 0 around the line y = -1, we can use the method of cylindrical shells.

The cylindrical shells method involves integrating the surface area of thin cylindrical shells formed by revolving a vertical line segment around the axis of rotation. The volume of each shell is given by its surface area multiplied by its height.

First, let's find the intersection points of the curves[tex]y = 4 - x^2[/tex] and y = 0. Setting them equal to each other:

[tex]4 - x^2 = 0[/tex]

[tex]x^2 = 4[/tex]

x = ±2

So the intersection points are (-2, 0) and (2, 0).

The radius of each cylindrical shell will be the distance between the axis of rotation (y = -1) and the curve y = 4 - x^2. Since the axis of rotation is y = -1, the distance is given by:

radius = [tex](4 - x^2) - (-1)[/tex]

[tex]= 5 - x^2[/tex]

The height of each cylindrical shell will be a small segment along the x-axis, given by dx.

The differential volume of each cylindrical shell is given by:

dV = 2π(radius)(height) dx

= 2π(5 - [tex]x^2[/tex]) dx

To find the total volume, we integrate the differential volume over the range of x from -2 to 2:

V = ∫(-2 to 2) 2π(5 - [tex]x^2[/tex]) dx

Expanding and integrating term by term:

V = 2π ∫(-2 to 2) (5 -[tex]x^2[/tex]) dx

= 2π [5x - ([tex]x^3[/tex])/3] |(-2 to 2)

= 2π [(10 - (8/3)) - (-10 - (-8/3))]

= 2π [10 - (8/3) + 10 + (8/3)]

= 2π (20)

= 40π

Therefore, the volume of the solid generated by revolving the region bounded by the curves y = 4 - [tex]x^2[/tex]and y = 0 around the line y = -1 is 40π cubic units.

Learn more about Triple integration here:

https://brainly.com/question/31961389

#SPJ11

bella has been training for the watertown on wheels bike race. the first week she trained, she rode 6 days and took the same two routes each day. she rode a 5-mile route each morning and a longer route each evening. by the end of the week, she had ridden a total of 102 miles. which equation can you use to find how many miles, x, bella rode each evening?

Answers

To find the number of miles Bella rode each evening, you can use the equation 5x + y = 102, where x represents the number of evenings she rode and y represents the number of miles she rode each evening.

Let's break down the information provided. Bella trained for the bike race for one week, riding 6 days in total. She took the same two routes each day, with a 5-mile route in the morning and a longer route in the evening. The total distance she rode by the end of the week was 102 miles.

Let's represent the number of evenings Bella rode as x and the number of miles she rode each evening as y. Since she rode 6 days in total, she rode the longer route in the evening 6 - x times. Therefore, the total distance she rode can be expressed as 5x + (6 - x)y.

According to the given information, the total distance she rode is 102 miles. Hence, we can set up the equation 5x + (6 - x)y = 102. By solving this equation, we can find the value of x, representing the number of miles Bella rode each evening.

Learn more about distance here: https://brainly.com/question/18246609

#SPJ11

2. Let A be a 3 x 3 matrix. Assume 1 and 2 are the only eigenvalues of A. Determine whether the following statements are always true. If true, justify why. If not true, provide a counterexample. State

Answers

To determine whether the statements are always true, we need to consider the properties of eigenvalues and eigenvectors.

Statement 1: A is diagonalizable.

If A has only two distinct eigenvalues, 1 and 2, it may or may not be diagonalizable. For the statement to be true, A should have three linearly independent eigenvectors corresponding to the eigenvalues 1 and 2. If A has three linearly independent eigenvectors, it can be diagonalized by forming a diagonal matrix D with the eigenvalues on the diagonal and a matrix P with the eigenvectors as columns. Then, A = PDP^(-1).

Learn more about eigenvectors here;  

https://brainly.com/question/31043286

#SPJ11

Find the area inside the oval limaçon r= 4+2 sin 0. 5 The area inside the oval limaçon is (Type an exact answer, using a as needed.) 711 n 2 In 2 on 2 on 31 on 3 son 4

Answers

Answer:

18π square units

Step-by-step explanation:

The polar curve [tex]r=4+2\sin\theta[/tex] is a convex limaçon. If we're considering the whole area of the limaçon, then our bounds would need to be from [tex]\theta=0[/tex] to [tex]\theta=2\pi[/tex]:

[tex]\displaystyle A=\int^{\theta_2}_{\theta_1}\frac{1}{2}r^2d\theta\\\\A=\int^{2\pi}_0 \frac{1}{2}(4+2\sin\theta)^2d\theta\\\\A=\int^{2\pi}_0 \frac{1}{2}(16+4\sin\theta+4\sin^2\theta)d\theta\\\\A=\int^{2\pi}_0(8+2\sin\theta+2\sin^2\theta)d\theta\\\\A=\int^{2\pi}_0(8+2\sin\theta+(1-\cos(2\theta)))d\theta\\\\A=\int^{2\pi}_0(8+2\sin\theta+1-\cos(2\theta))d\theta\\\\A=\int^{2\pi}_0(9+2\sin\theta-\cos(2\theta))d\theta\\\\A=9\theta-2\cos\theta-\frac{1}{2}\sin2\theta\biggr|^{2\pi}_0[/tex]

[tex]A=[9(2\pi)-2\cos(2\pi)-\frac{1}{2}\sin2(2\pi)]-[9(0)-2\cos(0)-\frac{1}{2}\sin2(0)]\\\\A=(18\pi-2)-(0-2)\\\\A=18\pi-2-(-2)\\\\A=18\pi-2+2\\\\A=18\pi[/tex]

Therefore, the area inside the limaçon is 18π square units

The area inside the oval limaçon is 71π square units.

To find the area inside the oval limaçon with the polar equation r = 4 + 2sin(0.5θ):

To find the area inside the oval limaçon, we integrate 1/2 * r² with respect to θ over the appropriate range.

The given polar equation is r = 4 + 2sin(0.5θ). To determine the range of θ, we set the equation equal to zero:

4 + 2sin(0.5θ) = 0

Solving for sin(0.5θ), we get sin(0.5θ) = -2. As sin(0.5θ) lies in the range [-1, 1], there are no values of θ that satisfy this equation. Therefore, the limaçon does not intersect the origin.

The area inside the limaçon can be determined by integrating 1/2 * r²from the initial value of θ to the final value of θ where the curve completes one full loop. For the given equation, the curve completes one full loop for θ in the range [0, 4π].

Thus, the area A can be calculated as:

A = ∫[0 to 4π] (1/2) * (4 + 2sin(0.5θ))²dθ

Evaluating the integral will give us the exact area inside the oval limaçon, which is approximately 71π square units.

To know more about polar equation click on below link:

https://brainly.com/question/29083133#

#SPJ11

Using the transformation T:(x, y) —> (x+2, y+1) Find the distance A’B’

Answers

The distance of AB is √10

Given triangle ABC,

Current co -ordinates of points ,

A = 0 , 0

B = 1 , 3

C = -2 , 2

Now after transformation into x +2 , y+1

New co -ordinates of points,

A = 2,1

B = 3,4

C = 0,3

Apply distance formula to find length AB.

AB = [tex]\sqrt{(x_{2}- x_{1} )^2 +(y_{2}- y_{1} )^2 }[/tex]

AB = [tex]\sqrt{(3-2)^2 + (4-1)^2}[/tex]

AB = √10

Hence the distance is √10 from distance formula after transformation.

Know more about co-ordinates,

https://brainly.com/question/21529846

#SPJ1

DS 110: MWF 11-12 Spring 2022 = Homework: 12.2 Question 1, Part 1 of 3 For the function f(x)=2x2 – 3x2 + 3x + 4 find f(x). Then find iO) and (2) t"(x)=

Answers

F(0) = 4.to find f(2), we substitute x = 2 into the function:

f(2) = 2(2)² - 3(2)² + 3(2) + 4     = 2(4) - 3(4) + 6 + 4     = 8 - 12 + 6 + 4     = 6.

to find f(x) for the function f(x) = 2x² - 3x² + 3x + 4, we simply substitute the given function into the variable x:f(x) = 2x² - 3x² + 3x + 4.

next, let's find f(0) and f(2).to find f(0), we substitute x = 0 into the function:

f(0) = 2(0)² - 3(0)² + 3(0) + 4     = 0 - 0 + 0 + 4     = 4. , f(2) = 6.lastly, to find t"(x), we need to calculate the second derivative of f(x).

taking the derivative of f(x) = 2x² - 3x² + 3x + 4, we get:f'(x) = 4x - 6x + 3.

taking the derivative of f'(x), we get:f''(x) = 4 - 6.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Find the dimensions of the open rectangular box of maximum volume that can be made from a sheet of cardboard 14 in. by 9 in. by cutting congruent squares from the corners and folding up the sides. Then find the volume.

Answers

The volume of the box can be calculated as V = 11 × 6 × 1.5 = 99 cubic inches.

To find the dimensions of the open rectangular box with maximum volume, we need to determine the size of the congruent squares to be cut from the corners of the cardboard. The length and width of the resulting rectangle will be decreased by twice the side length of the square, while the height will be equal to the side length of the square.

Let's assume the side length of the square to be x. Thus, the length of the rectangle will be 14 - 2x, and the width will be 9 - 2x. The height of the box will be x.

The volume of the box is given by V = length × width × height:

V = (14 - 2x)(9 - 2x)x

To find the maximum volume, we will take derivative of V with respect to x and set it equal to zero:

dV/dx = (14 - 2x)(9 - 2x) + x(-4)(14 - 2x) = 0

Simplifying the equation and solving for x, we find x = 1.5.

To know more about derivative click on below link:

brainly.com/question/29144258#

#SPJ11

Determine whether each series is convergent or divergent. Indicate an appropriate test to support your conclusion. a) (10 points) 00 (-1)"+1 Σ 1+2" n=0 b) (10 points) Ο In n Σ η n=1 c) (10 points) 3η2 8 Σ. n2 +1 n=1

Answers

The series Σ((-1)^(n+1))/(1+2^n) as n approaches infinity.

To determine whether this series converges or diverges, we can use the Alternating Series Test. This test applies to alternating series, where the terms alternate in sign. In this case, the series alternates between positive and negative terms.

Let's examine the conditions for the Alternating Series Test:

The terms of the series decrease in absolute value:

In this case, as n increases, the denominator 1+2^n increases, which causes the terms to decrease in absolute value.

The terms approach zero as n approaches infinity:

As n approaches infinity, the denominator 1+2^n grows larger, causing the terms to approach zero.

Since the series satisfies both conditions of the Alternating Series Test, we can conclude that the series converges.

b) The series Σ(1/n) as n approaches infinity.

Learn more about infinity here;

https://brainly.com/question/22443880

#SPJ11

3. Find these logarithms by using a calculator. State your answer to four decimal places. (3 x 1 mark each = 3 marks) a) log 6 b) In 3 c) log (-0.123) continued Module 7: Exponents and Logarithms 121

Answers

a) log 6 ≈ 0.7782 b) ln 3 ≈ 1.0986 c) log (-0.123) is undefined as logarithms are only defined for positive numbers.

a) To find log 6, you can use a calculator that has a logarithm function. By inputting log 6, the calculator will return the approximate value of log 6 as 0.7782, rounded to four decimal places.

b) To find ln 3, you can use the natural logarithm function (ln) on a calculator. By inputting ln 3, the calculator will provide the approximate value of ln 3 as 1.0986, rounded to four decimal places.

c) Logarithms are only defined for positive numbers. In the case of log (-0.123), the number is negative, which means the logarithm is undefined. Therefore, log (-0.123) does not have a valid numerical solution.

Learn more about natural logarithm function here:

https://brainly.com/question/16038101

#SPJ11

Identify the slope and y-intercept of the line. 5x – 3y = 6 slope 5 X y-intercept x) (x, y) = = 5,3 I x

Answers

To identify the slope and y-intercept of the line represented by the equation 5x - 3y = 6, we need to rewrite the equation in slope-intercept form, which is y = mx + b, where m is the slope and b is the y-intercept.

Let's rearrange the equation:

5x - 3y = 6

Subtract 5x from both sides:

-3y = -5x + 6

Divide both sides by -3 to isolate y:

y = (5/3)x - 2

Now we can see that the slope (m) is 5/3, and the y-intercept (b) is -2.

So, the slope is 5/3, and the y-intercept is -2.

Learn more about equation here: brainly.com/question/29657988

#SPJ11

Show that the solution of the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0. is y(t) = sin sin(t - s)g(s)ds. to

Answers

The solution to the initial value problem is y(t) = ∫[to t] sin(t - s)g(s)ds.

What is the solution to the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0?

To show that the solution of the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0 is y(t) = ∫[to to] sin(t - s)g(s)ds, we can start by taking the derivative of y(t):

dy(t)/dt = d/dt[∫[to t] sin(t - s)g(s)ds]

Using the Leibniz rule for differentiating under the integral sign, we can write:

dy(t)/dt = sin(t - t)g(t) + ∫[to t] (∂/∂t)[sin(t - s)g(s)]ds

Simplifying further, we have:

dy(t)/dt = g(t) + ∫[to t] cos(t - s)g(s)ds

Now, integrating both sides with respect to t, we get:

y(t) = ∫[to t] g(s)ds + ∫[to t] ∫[to s] cos(t - s)g(s)dsdt

By applying integration by parts to the second integral, we can simplify it to:

y(t) = ∫[to t] g(s)ds + [sin(t - s)g(s)]|to t - ∫[to t] sin(t - s)g'(s)ds

Since y(to) = 0 and y'(to) = 0, we can substitute these initial conditions to find the solution:

0 = ∫[to to] g(s)ds - [sin(to - s)g(s)]|to to - ∫[to to] sin(to - s)g'(s)ds

Simplifying further, we obtain:

0 = ∫[to to] g(s)ds - 0 - 0

Therefore, the solution of the initial value problem is y(t) = ∫[to t] sin(t - s)g(s)ds.

Learn more about solution

brainly.com/question/1616939

#SPJ11

Problem #11: If f(x) – **(x)* = x - 15 and f(1) = 2, find f'(1). Problem #21: Enter your answer symbolically in these examples Just Save Submit Problem #11 for Grading Attempt 21 Problem #11 Your An

Answers

Given that f(x) - g(x^2) = x - 15 and f(1) = 2, we need to find f'(1), the derivative of f(x) at x = 1.

To find f'(1), we need to differentiate both sides of the given equation with respect to x. Let's break down the equation and find the derivative step by step.

f(x) - g(x^2) = x - 15

Differentiating both sides with respect to x:

f'(x) - g'(x^2) * 2x = 1

Now, we substitute x = 1 into the equation:

f'(1) - g'(1^2) * 2 = 1

Since f(1) = 2, we know that f'(1) represents the derivative of f(x) at x = 1.

Therefore, f'(1) - g'(1) * 2 = 1.

Unfortunately, the information given does not provide us with the values or expressions for g(x) or g'(x). Without additional information, we cannot determine the exact value of f'(1).

Learn more about information here:

https://brainly.com/question/13629038

#SPJ11

Pre-Test Active
2
3
567000
What is the factored form of 8x² + 12x?
4(4x² + 8x)
4x(2x + 3)
8x(x + 4)
8x(x² + 4)
10

Answers

Answer:

The factored form of 8x² + 12x is 4x(2x + 3).

Step-by-step explanation:

dy 히 Find dx y=3 in x + 7 log 3x | dy dx = O (Type an exact answer.)

Answers

The derivative of y = 3 ln x + 7 log₃ x with respect to x is given by dy/dx = 10 / x.

To find the derivative of y = 3 ln x + 7 log₃ x, we can apply the rules of differentiation.

Let's start by finding the derivative of the first term, 3 ln x. The derivative of ln x with respect to x is given by 1/x. Therefore, the derivative of 3 ln x is 3/x.

In this case, we have log₃ x, which can be expressed as log x / log 3. Now we can differentiate the expression.

The derivative of log x with respect to x is given by 1/x. Therefore, the derivative of 7 log x is 7 * (1/x). However, we still need to differentiate log 3, which is a constant.

Since log 3 is a constant, its derivative with respect to x is 0. Thus, we can ignore it while finding the derivative.

Combining the derivatives of the two terms, we have:

dy/dx = (3/x) + 7 * (1/x)

To simplify this expression, we can find a common denominator of x for both terms:

dy/dx = (3 + 7) / x

Simplifying further, we have:

dy/dx = 10 / x

So, the derivative of y = 3 ln x + 7 log₃ x with respect to x is dy/dx = 10 / x.

To know more about derivative here

https://brainly.com/question/30074964

#SPJ4

1) what is the value of the correlation coefficient?

2) describe the correlation in terms of strength (weak/strong) and direction(positive/negative)

Answers

a) The correlation coefficient is r ≈ 0.726

b) A moderate positive correlation between the two variables

Given data ,

To find the correlation coefficient between two sets of data, x and y, we can use the formula:

r = [Σ((x - y₁ )(y - y₁ ))] / [√(Σ(x - y₁ )²) √(Σ(y - y₁ )²)]

where Σ denotes the sum, x represents the individual values in the x dataset, y₁  is the mean of the y dataset, and y represents the individual values in the y dataset.

First, let's calculate the mean of the y dataset:

y₁ = (10 + 17 + 8 + 14 + 5) / 5 = 54 / 5 = 10.8

Using the formulas, we can calculate the sums:

Σ(x - y₁ ) = -26.25

Σ(y - y₁ ) = 0

Σ(x - y₁ )(y - y₁ ) = 117.45

Σ(x - y₁ )² = 339.9845

Σ(y - y₁ )² = 90.8

Now, we can substitute these values into the correlation coefficient formula:

r = [Σ((x - y₁ )(y - y₁ ))] / [√(Σ(x - y₁ )²) √(Σ(y - y₁ )²)]

r = [117.45] / [√(339.9845) √(90.8)]

r = [117.45] / [18.43498 * 9.531]

Calculating this expression:

r ≈ 0.726

Hence , the correlation coefficient between the x and y datasets is approximately 0.726, indicating a moderate positive correlation between the two variables.

To learn more about correlation click :

https://brainly.com/question/28898177

#SPJ1

how
is this solved?
Find the Taylor polynomial of degree n = 4 for x near the point a for the function sin(3x).

Answers

This is the Taylor polynomial of degree n = 4 for x near the point a for the function sin(3x). To find the Taylor polynomial of degree n = 4 for x near the point a for the function sin(3x), we need to compute the function's derivatives up to the fourth derivative at x = a.

The Taylor polynomial of degree n for a function f(x) near the point a is given by:

P(x) = f(a) + f'(a)(x - a) + (f''(a)/2!)(x - a)^2 + (f'''(a)/3!)(x - a)^3 + ... + (f^n(a)/n!)(x - a)^n,

where f'(a), f''(a), f'''(a), ..., f^n(a) represent the first, second, third, ..., nth derivatives of f(x) evaluated at x = a. In this case, the function is f(x) = sin(3x), so we need to compute the derivatives up to the fourth derivative:

f(x) = sin(3x),

f'(x) = 3cos(3x),

f''(x) = -9sin(3x),

f'''(x) = -27cos(3x),

f^4(x) = 81sin(3x).

Now we can evaluate these derivatives at x = a to obtain the coefficients for the Taylor polynomial:

f(a) = sin(3a),

f'(a) = 3cos(3a),

f''(a) = -9sin(3a),

f'''(a) = -27cos(3a),

f^4(a) = 81sin(3a).

Substituting these coefficients into the formula for the Taylor polynomial, we get:

P(x) = sin(3a) + 3cos(3a)(x - a) - (9sin(3a)/2!)(x - a)^2 - (27cos(3a)/3!)(x - a)^3 + (81sin(3a)/4!)(x - a)^4.  

Learn more about coefficients here:

https://brainly.com/question/1594145

#SPJ11

Other Questions
an atomic nucleus has a charge of 40e. what is the magnitude of the electric field at a distance of from the center of the nucleus? (k please list two measures of central tendencies and indicate which one would be more valid of measure of center when the distribution of scores on the variable in the data are skewed due to the outlier. where there is no well-understood or agreed-on procedure for making a decision, it is said to be: group of answer choices low-level. semi-structured. documented. unstructured. undocumented. Given z1 = 2(cos(136) + i sin(136)) 22 = 10(cos(14) + i sin(14)) Find the product 21 22. Enter an exact answer. A particular computing company finds that its weekly profit, in dollars, from the production and sale of x laptop computers is P(x) = -0.007x3 0.1x + 500x 700. Currently the company builds a 3Jeff is paying for lunch. The total billwas $37.82. He wants to leave an18% tip. How much should his tip be? (1 Point)a. $4.12 b. $6.25b. $6.25O c. $7.25O d. $6.81 I NEED HELP ON THIS ASAP!! Show that the particular solution for the 2nd Order Differential equation day dx2 dy -8 + 17y = 0, y(0) = -4, y'(0) = -1 = dx = is y = -4e4x cos(x) + 15e4x sin (x) 30. Which sentence contains a setting?A. The story is about two young boys who herd sheep for a living.B. The story is about two young boys in the Alps who heard sheet during the 1900's.C. The story is about sheep and how they are raised and sheered.D. The story is about the life of two young boys as they make a living for their families. Find the curvature of the curve F(t) = ( 2t, 1, 1t4) at the point t = 2 Find the volume of the solid generated by revolving the region bounded by the given curve and lines about the x-axis.y=e^(x-6),y=0,x=6,x=7 a 2 kg object travels in a vertical circle of radius 1m at constant speed of 4m/s determine the tension in the string at the bottom of the circle. recently how has germany reduced its dependence on fossil fuels (1 point) Evaluate the integral when x>0(1 point) Evaluate the integral when x > 0 Answer: [m(2+ In (x + 17x + 60) dx. Data for motor vehicle production in a country for the years 1997 to 2004 are given in the table. 1997 1998 1999 2000 2001 2002 2003 2004 Thousands 1,537 1,628 1,805 2,009 2,391 3,251 4,415 5,071 Year (A) Find the least squares line for the data, using x=0 for 1990, (Use integers or decimals for any numbers in the expression. Do not round until the final answer. Then round to the nearest tenth Write the system x' = etx 2ty +3 sin(t), y' = 8 tan(t) y + 3x 5 cos (t) in the form d = P(t) [ * ] + (t). dty Use prime notation for derivatives and write a and , etc., instead of (t), '(t), or da. ]-[ = ][ + Use linear approximation to estimate the following quantity. Choose a value of a to produce a small error.334 Many other countries use a process where the judge takes an active role in questioning witnesses as well as many other areas of the case.1 authoritarian 2 civil law 3 inquisitorial 4 totalitarian 5 adversarial Name an equation parallel to: y = -2/3 x + 10 u 1 :dx V1 - (3x + 5)2 arcsin(ax + b) + C, where u and V have only 1 as common divisor with p = type your answer... g= type your answer... a = type your answer... b = type your answer... I Steam Workshop Downloader