The amount of pollutants that are found in waterways near large cities is normally distributed with mean 9.9 ppm and standard deviation 1.8 ppm. 39 randomly selected large cities are studied. Round all answers to 4 decimal places where possible.

The Amount Of Pollutants That Are Found In Waterways Near Large Cities Is Normally Distributed With Mean

Answers

Answer 1

ANSWER:

a. 9.9, 1.8

b. 9.9, 0.2882

c. 0.5239

d. 0.6368

e. No

f.

Q1 = 9.7069

Q3 = 10.0931

IQR = 0.3862

STEP-BY-STEP EXPLANATION:

a.

X ~ N (9.9, 1.8)

b.

x ~ N (9.9, 1.8/√39)

x ~ N (9.9, 0.2882)

c.

P(X > 9.8)

We calculate the probability as follows:

[tex]\begin{gathered} P\left(X>9.8\right)=1-p\left(\frac{X-9.9}{1.8}<\frac{9.8-9.9}{1.8}\right) \\ \\ P\left(X>9.8\right)=1-p(z<-0.06) \\ \\ P\left(X>9.8\right)=1-0.4761 \\ \\ P\left(X>9.8\right)=0.5239 \end{gathered}[/tex]

d.

p (x > 9.8)

We calculate the probability as follows:

[tex]\begin{gathered} P\left(x>9.8\right)=1-p\left(\frac{X-9.9}{\frac{1.8}{\sqrt{39}}}<\frac{9.8-9.9}{\frac{1.8}{\sqrt{39}}}\right) \\ \\ P\left(x>9.8\right)=1-p(z<-0.35) \\ \\ P\left(x>9.8\right)=1-0.3632 \\ \\ P\left(x>9.8\right)=0.6368 \end{gathered}[/tex]

e.

No, you don't need to make the assumption

f.

Q1 = 0.25

In this case the value of z = 0.25, so we look for the closest value in the normal table, like this:

Thanks to this, we make the following equation:

[tex]\begin{gathered} -0.67=\frac{x-9.9}{\frac{1.8}{\sqrt{35}}} \\ \\ x-9.9=-0.19311 \\ \\ x=-0.1931+9.9 \\ \\ x=9.7069 \\ \\ Q_1=9.7069 \end{gathered}[/tex]

Q3 = 0.75

In this case the value of z = 0.75, so we look for the closest value in the normal table, like this:

Therefore:

[tex]\begin{gathered} -0.67=\frac{x-9.9}{\frac{1.8}{\sqrt{39}}} \\ \\ x-9.9=0.1931 \\ \\ x=0.1931+9.9 \\ \\ x=10.0931 \\ \\ Q_3=10.0931-9.7069 \end{gathered}[/tex]

Therefore, the interquartile range would be:

[tex]\begin{gathered} IQR=Q_3-Q_1 \\ \\ IQR=10.0931-9.7069 \\ \\ IQR=0.3862 \end{gathered}[/tex]

The Amount Of Pollutants That Are Found In Waterways Near Large Cities Is Normally Distributed With Mean
The Amount Of Pollutants That Are Found In Waterways Near Large Cities Is Normally Distributed With Mean
The Amount Of Pollutants That Are Found In Waterways Near Large Cities Is Normally Distributed With Mean
The Amount Of Pollutants That Are Found In Waterways Near Large Cities Is Normally Distributed With Mean

Related Questions

Hi I am really confused on this problem and would like help on solving it step by step

Answers

Given:

An exponential function represents the graph of some of the functions given in the option.

Required:

The correct equation represents the given function.

Explanation:

The graph of the function

[tex]y\text{ = 2\lparen}\sqrt{0.3})^x[/tex]

is given as

Also, the graph representing the function

[tex]y=2e^{-x}[/tex]

is given as

Answer:

Thus the correct answer is option B and option D.

There are 152 students at a small school and 45 of them are freshmen. What fraction of the students are freshmen? Use "/" for the
fraction bar. Do not use spaces in your answer.

Answers

44/152 students are freshmen

Course ListScore! OU TUUTUTZu anisweredQuestion 11In A XYZ, the sum of the measures of ZX and Y are 55°. What is the measure of ZZ?ZZ=?

Answers

To solve that question we must remember that the sum of all internal angles of a triangle is 180°, we can say that

[tex]\angle X+\angle Y+\angle Z=180[/tex]

That's a rule! it's always true.

The problem says that

[tex]\angle X+\angle Y=55[/tex]

Then let's use it in our equation!

[tex]\begin{gathered} \operatorname{\angle}X+\operatorname{\angle}Y+\operatorname{\angle}Z=180 \\ \\ 55+\operatorname{\angle}Z=180 \end{gathered}[/tex]

Now we can solve it for Z

[tex]\begin{gathered} 55+\angle Z=180 \\ \\ \angle Z=180-55 \\ \\ \angle Z=125° \end{gathered}[/tex]

Therefore the measure of Z is 125°

resents "three lessWrite the expression -- 5x(4 + 3x) using words,the sum of negative five times a number andfour minus three times the numberthe product of negative five times a numberand the quantity four plus three times thenumberthe product of three times a number plus thequantity four and five times the numberpresents "thetwo less than theDONE

Answers

Given:

[tex]=-5x(3x+4)[/tex]

Sol:.

The product of negative five times a number and the quantity four plus three times the number.

A motor scooter travels 22 mi in the same time that a bicycle covers 8 mi. If the rate of the scooter is 6 mph more than twice the rate of the bicycle, find both rates.The scooter’s rate is ____ mph. (Type an integer or a decimal)

Answers

Let's use the variable x to represent the speed of the scooter and y to represent the speed of the bicycle.

For a same time t, the scooter travels 22 mi and the bicycle travels 8 mi, so we can write the following equation:

[tex]\begin{gathered} distance=speed\cdot time\\ \\ 22=x\cdot t\\ \\ t=\frac{22}{x}\\ \\ 8=y\cdot t\\ \\ t=\frac{8}{y}\\ \\ \frac{22}{x}=\frac{8}{y} \end{gathered}[/tex]

Then, if the rate of the scooter is 6 mph more than twice the rate of the bicycle, we have the following equation:

[tex]x=2y+6\\[/tex]

Using this value of x in the first equation, let's solve it for y:

[tex]\begin{gathered} \frac{22}{2y+6}=\frac{8}{y}\\ \\ 22y=8(2y+6)\\ \\ 22y=16y+48\\ \\ 6y=48\\ \\ y=8\text{ mph} \end{gathered}[/tex]

Now, calculating the value of x, we have:

[tex]\begin{gathered} x=2y+6\\ \\ x=16+6\\ \\ x=22\text{ mph} \end{gathered}[/tex]

Therefore the scooter's rate is 22 mph and the bicycle's rate is 8 mph.

Write a formula for the function in the image below.

Answers

The vertex form of a quadratic function is:

[tex]f(x)=a(x-h)^2+k[/tex]

Where (h, k) is the vertex. Looking at the graph, the vertex is at (-1, 2), then:

[tex]\begin{gathered} h=-1 \\ k=2 \\ \Rightarrow f(x)=a(x+1)^2+2 \end{gathered}[/tex]

Finally, to find "a" we use the fact that 1 is the y-intercept of the graph (where the function is evaluated at x = 0). Then:

[tex]\begin{gathered} f(0)=1\Rightarrow a(0+1)^2+2=1 \\ a=1-2 \\ \Rightarrow a=-1 \end{gathered}[/tex]

The final form of the function is:

[tex]f(x)=-(x+1)^2+2[/tex]

is the number 6.35 a whole number and a integer

Answers

Natural numbers are all numbers 1, 2, 3, 4… They are the numbers you usually count and they will continue on into infinity. This includes all numbers that can be written as a decimal.

Hence, 6.35 is a natural number. It is natural number, whole number, integer, and rational number.

Problem Solving
20. A city is building 3 parks in a new subdivision. Each park
will be 1.25 acres. How many total acres will the 3 parks
be?

Answers

According to the solving all three parks will cover surface of 37.5 acres in total.

How much area of land is in acres?

The imperial and US customary systems both utilize the acre as a unit of land area. An acre is approximately equal to  approximately 4,047 [tex]m^{2}[/tex].

How much area will 3 parks cover?

Area covered by 3 parks can be calculated by multiplying the area of one park by three.

so,   area covered by 3 parks=3×1.25

        area covered by 3 parks=3.75

As you know multiplication is the repeated addition so we can obtain the same results by adding 1.25 three times to itself.

These three parks will cover total area of 3.75acres.

To know more about area visit:

https://brainly.com/question/27683633

#SPJ13

3. For the polynomial: ()=−2(+19)3(−14)(+3)2, do the following:A. Create a table of values that have the x-intercepts of p(x) in the first column and their multiplicities in the second column.B. State the degree and end behavior for p(x). C. Hand sketch a rough graph of p(x). You should have the x-int labeled, but you do not need tick marks for all numbers in between.

Answers

Part A. We are given the following polynomial:

[tex]\mleft(\mright)=-2\mleft(+19\mright)^3\mleft(-14\mright)\mleft(+3\mright)^2[/tex]

This is a polynomial of the form:

[tex]p=k(x-a)^b(x-c)^d\ldots(x-e)^f[/tex]

The x-intercepts are the numbers that make the polynomial zero, that is:

[tex]\begin{gathered} p=0 \\ (x-a)^b(x-c)^d\ldots(x-e)^f=0 \end{gathered}[/tex]

The values of x are then found by setting each factor to zero:

[tex]\begin{gathered} (x-a)=0 \\ (x-c)=0 \\ \text{.} \\ \text{.} \\ (x-e)=0 \end{gathered}[/tex]

Therefore, this values are:

[tex]\begin{gathered} x=a \\ x=c \\ \text{.} \\ \text{.} \\ x=e \end{gathered}[/tex]

In this case, the x-intercepts are:

[tex]\begin{gathered} x=-19 \\ x=14 \\ x=-3 \end{gathered}[/tex]

The multiplicity are the exponents of the factor where we got the x-intercept, therefore, the multiplicities are:

Part B. The degree of a polynomial is the sum of its multiplicities, therefore, the degree in this case is:

[tex]\begin{gathered} n=3+1+2 \\ n=6 \end{gathered}[/tex]

To determine the end behavior of the polynomial we need to know the sign of the leading coefficient that is, the sign of the coefficient of the term with the highest power. In this case, the leading coefficient is -2, since the degree of the polynomial is an even number this means that both ends are down. If the leading coefficient were a positive number then both ends would go up. In the case that the leading coefficient was positive and the degree and odd number then the left end would be down and the right end would be up, and if the leading coefficient were a negative number and the degree an odd number then the left end would be up and the right end would be down.

Part C. A sketch of the graph is the following:

If the multiplicity is an odd number the graph will cross the x-axis at that x-intercept and if the multiplicity is an even number it will tangent to the x-axis at that x-intercept.

Which graph represents the equation X =2?

Answers

ANSWER and EXPLANATION

We are given x = 2.

To plot the graph of x = 2, it is important to note that the value of x does not change for this equation.

x is always 2 regardless of the value of y.

This means that we are going to plot a straight line that will straight up (and down as well) at x = 2.

The graph therefore is:

If RT = 36, RS = 2x + 3 and ST = 7x + 6, find RSand ST.

Answers

We know that RT=36 and that RS=2x+3 and ST=7x+6. We notice that

[tex]RT=RS+ST[/tex]

Then, plugging the corresponding values and expressions we have

[tex]36=(2x+3)+(7x+6)[/tex]

Solving this equation for x,

[tex]\begin{gathered} 36=(2x+3)+(7x+6) \\ 36=2x+3+7x+6 \\ 36=9x+9 \\ 36-9=9x \\ 27=9x \\ x=\frac{27}{9} \\ x=3 \end{gathered}[/tex]

Then te value of x is 3.

Once we have the value of x we are able to find the value of RS and ST, we just have to substitute said value in the expressions. Then

[tex]\begin{gathered} RS=2(3)+3=6+3=9 \\ ST=7(3)+6=21+6=27 \end{gathered}[/tex]

Therefore RS=9 and ST=27.

what is the effect on the graph of the function f(x) = x² when f(x) is changed to f(x + 8) ?A) shifted up B) shifted left C) shifted right D) shifted down

Answers

Solution

- In order to solve the question, we need to understand the rules guiding the translation of graphs. This rule is given below:

[tex]\begin{gathered} f(x)\to f(x+h) \\ \text{ If h is positive, then, the graph is shifted to the left} \\ \text{ If h is negative, then, the graph is shifted to the right} \end{gathered}[/tex]

- The question given to us has h = 8. This means that h is positive, therefore, the graph of f(x) must be shifted to the left by 8 units

Final Answer

The answer is "Shifted Left" (OPTION B)

When point A'(-2,4) is reflected over they-axis, where is the image A"?(2,-4)(2,4)(4,-2)

Answers

Answer:

Explanation

Given a coordinate (x, y), If this coordinate reflected over y axis, the resulting coordinate will be expressed as (-x, y). Note that only the sign of the x coordinate axis was

Two planes fly in opposite directions. One travels 450 mi/h and the other 550 mi/h. How long will it take before they are 4,000 mi apart? The planes must fly Answer hours before they will be 4,000 mi apart.

Answers

Given,

The speed of first plane is 450 miles per hour.

The speed of second plane is 550 miles per hour.

The total distance between plane required is 4000 miles.

As, the planes are moving in opposite direction, then distance cover by both is must be added.

Number of distance both plane becomes apart in one hour is,

[tex]\text{Number of distance = 450+550=1000 miles.}[/tex]

The Number of hours required to complete 4000 miles is,

[tex]\text{Time=}\frac{4000}{\text{1}000}=4\text{ hours}[/tex]

Hence, it will take 4 hours before they are 4,000 miles apart.

What is the GCF of 42 and 70

Answers

To find the GCF of 42 and 70,

List the prime factors of each numbers,

The prime factors of 42 and 70 is

[tex]\begin{gathered} 42\Rightarrow2\times3\times7 \\ 70\Rightarrow2\times5\times7 \end{gathered}[/tex]

42 and 70 share the common factors below

[tex]2\text{ and 7}[/tex]

Multiply the common factors to find the GCF

The GCF of 42 and 70 will be

[tex]\text{GCF}=2\times7=14[/tex]

Hence, the GCF of 42 and 70 is 14

Kui Software tinite Algebra 2 Compound Inequalities Solve each compound inequality and graph its solution. Name Samanthace ballos Date valgan 1) n+15-3 or-in- Perut k 2) ohs- n2-3-1

Answers

n<4 or n>8

10) Let's solve that compound inequality:

12 + 4n> 44 or 10 -12n> -38

2) Solving each one separately

12 + 4n > 44 Subtracting 12 from both sides

4n > 44 -12

4n > 32 Divide both sides by 4

n> 8

10 -12n> -38 Subtracting 10 from both sides

-12n > -38 -10

-12n > -48 Divide both sides by -1 and flipping the sign

n < 4

3) Graphing the solution, we have:

Notice that for that, we'll use open dots since 4 and 8 are not included.

write a quadratic fuction f whose zeros are -3 and -13

Answers

The zeros of a quadratic function are the points where the graph cuts the x axis.

If one zero is - 3, it means that

x = - 3

x + 3 = 0

Thus, one of the factors is (x + 3)

If another zero is - 13, it means that

x = - 13

x + 13 = 0

Thus, one of the factors is (x + 13)

Thus, the quadratic function would be

(x + 3)(x + 13)

We would open the brackets by multiplyingeach term inside one bracket by each term inside the other. Thus, we have

x * x + x * 13 + 3 * x + 3 * 13

x^2 + 13x + 3x + 39

x^2 + 16x + 39

Thus, the quadratic function is

f(x) = x^2 + 16x + 39

Write the expression as a sum and/or difference of logarithms. Express powers as factors.log7(343x)

Answers

[tex]\begin{gathered} \text{Given} \\ \log _7(343x) \end{gathered}[/tex]

Recall the product rule of logarithms

[tex]\log _b(xy)=\log _b(x)+\log _b(y)[/tex]

Apply the product rule to the given and we get

[tex]\log _7(343x)=\log _7(343)+\log _7(x)[/tex]

use the quadratic formula to solve the equation2x^2-1=11xthe solution(s) are/is x=?

Answers

Answer:

[tex]\begin{gathered} x=\frac{1}{4}(11-\sqrt[]{129}) \\ \\ x=\frac{1}{4}(11+\sqrt[]{129}) \end{gathered}[/tex]

Explanation:

To solve the equation we first subtract 11x from both sides to write

[tex]2x^2-11x-1=0[/tex]

Now we use the quadratic formula in which a = 2, b = -11, and c = -1

[tex]x=\frac{11\pm\sqrt[]{11^2-4(2)(-1)}}{2\cdot2}[/tex][tex]x=\frac{11\pm\sqrt[]{11^2-4(2)(-1)}}{2\cdot2}[/tex]

which gives

[tex]\begin{gathered} x=\frac{1}{4}(11-\sqrt[]{129}) \\ x=\frac{1}{4}(11+\sqrt[]{129}) \end{gathered}[/tex]

which are our solutions!

10 in.What is the volume of atriangular pyramid that is10 in. tall and has a basearea of 9 square in.?9cubic inchesVolume of a pyramid: V = {Bh (Where "B" is the area of the pyramid's base.)=

Answers

You have to calculate the volume of a pyramid with a height of 10in and a base area of 9 in²

The volume of a pyramid is equal to one third the product of the area of the base (B) and the height (h), following the formula:

[tex]V=\frac{1}{3}Bh[/tex]

Replace the values on the formula and calculate the volume:

[tex]\begin{gathered} V=\frac{1}{3}\cdot9\cdot10 \\ V=30in^3 \end{gathered}[/tex]

The volume is equal to 30 cubic inches.

A manufacturer knows that their items have a normally distributed length, with a mean of 8.4 inches, and standard deviation of 1.4 inches.If one item is chosen at random, what is the probability that it is less than 11.8 inches long?

Answers

We will make use of the z-score to calculate the probability. The z-score is calculated using the formula:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

where x is the score, μ is the mean, and σ is the standard deviation.

From the question, we have the following parameters:

[tex]\begin{gathered} x=11.8 \\ \mu=8.4 \\ \sigma=1.4 \end{gathered}[/tex]

Therefore, we have the z-score to be:

[tex]\begin{gathered} z=\frac{11.8-8.4}{1.4} \\ z=2.43 \end{gathered}[/tex]

Using a calculator, we can get the probability value to be:

[tex]P=0.9925[/tex]

The probability is 0.9925 or 99.25%.

Hi I am the mom can you help me on this question so I can show my daughter too because I am confused

Answers

Using the area method in finding the quotient.

The values of A and B are as follows,

A = C/6

B = D/6

A is the quotient of C and 6,

B is the quotient of D and 6.

From the problem, we only have choices of number to input in the boxes.

48, 9, 90, 8, 540, 36 and 0

We will select one to number to be the value of C and the value A must be in the given numbers to be used.

Let's say C = 48

A = 48/6 = 8

Since 8 is included in the list of numbers. This is applicable.

Now for D and B,

Note that the sum of C and D must be equal to the given dividend, the dividend from the problem is 588

Since we already have the value of C = 48, the value of D must be :

588 - C = D

588 - 48 = 540

And 540 is also included in the list of numbers, so D = 540

The value of B will be :

B = D/6

B = 540/6

B = 90

90 is also included in the list of numbers.

The final diagram will be :

For part B, the quotient is the sum of A and B

A = 8, B = 90

Quotient = A + B

= 8 + 90

Quotient = 98

Plot the Trapezoid ABCD with vertices A(-8,-4),B(-5, -1), C(0, -2), and D(-4,-8) in the x-axis.

Answers

Let's begin by listing out the information given to us:

ABCD is a trapezoid

A (-8, -4); B (-5, -1); C (0, -2); D (-4, -8)

We will proceed to plotting this points on a Cartesian plane, we have:

What is 120 plus 5% sales tax

Answers

Answer:

126

Step-by-step explanation:

Hello!

Since you are adding 5% of 120 to 120, we can simply find 105% of 120.

To do that, we can multiply 120 by the number value of the percentage.

Find the Total Price105% of 1201.05 * 120126

The total price after the sales tax is 126.

The product of two integers is -24. The difference between the two integers is 14. The sum of two integers is 10. What are the two integers?

Answers

Answer:

12 & -2

Step-by-step explanation:

m^3n^-6p^0 i dont understand how to solve this problem it has exponents

Answers

ANSWER:

[tex]\frac{m^3}{n^6}[/tex]

STEP-BY-STEP EXPLANATION:

We have the following expression:

[tex]m^3n^{-6}p^0\:\:[/tex]

We simplify as follows:

[tex]\begin{gathered} a^{-b}=\frac{1}{a^b}\rightarrow n^{-6}=\frac{1}{n^6} \\ \\ p^{0}=1 \\ \\ \text{ We replacing:} \\ \\ m^3n^{-6}p^0\:\:=m^3\cdot\frac{1}{n^6}\cdot\:1=\frac{m^3}{n^6} \end{gathered}[/tex]

-1514,2 – 30r2y3 + 45ryjent of517is 3(x^3)y + 6x(y^2) - 3.1. Whe3(x^3)y - 6x(y^2) +9Res-3(x^3)y + 6x(y^2) - 33(x^2)y + 5x(y^2) - 93(x^3)y + 5x(y^2) + 3

Answers

To find the quotient of the first part, we can start by noticing that all the factors on the denominator are present in all terms of the numerator, so we can factor those out and cancel with the denominator ones:

[tex]\frac{15x^4y^2-30x^2y^3+45xy}{5xy}=\frac{5xy\cdot3x^3y+5xy\cdot(-6xy^2)+5xy\cdot9}{5xy}=\frac{5xy\cdot(3x^3y-6xy^2+9)}{5xy}=3x^3y-6xy^2+9[/tex]

So, the first dropdown option is

[tex]3x^3y-6xy^2+9[/tex]

Also, this is the quotient, so we will use it for the second part.

The second part says that if we divide by one of the options (let's call it a), we will get:

[tex]\frac{3x^3y-6xy+9}{a}=x^3y-2xy^2+3[/tex]

As we can see, no terms on the final result has fractional coefficient, so the number a has to be a common factor of all the terms coefficients. the coefficients are 3, -6 and 9, so the only common factors are 1 and 3, so the answer should be 3:

[tex]\frac{3x^3y-6xy+9}{3}=\frac{3(x^3y-2xy+3)}{3}=x^3y-2xy^2+3[/tex]

So, the second dropdown option is 3.

i need help with my homework PLEASE CHECK WORK WHEN DONE

Answers

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given data

[tex]\begin{gathered} \mu=27 \\ \sigma=2 \\ x=25 \end{gathered}[/tex]

STEP 2: Write the formula for calculating the z-score

[tex]z=\frac{x-\mu}{\sigma}[/tex]

STEP 3: Calculate the z-score

[tex]z=\frac{25-27}{2}=-\frac{2}{2}=-1[/tex]

STEP 4: Find the probability

Using the z-score calculator,

Hello! I need some assistance with this homework question for precalculus, please?HW Q5

Answers

Explanation:

We were given the function:

[tex]g(x)=-1+4^{x-1}[/tex]

We are to determine its domain, range and horizontal asymptote. This is shown below:

Domain:

[tex]\begin{gathered} g(x)=-1+4^{x-1} \\ 4^{x-1} \\ when:x=-10 \\ 4^{-10-1}=4^{-11} \\ when:x=1 \\ 4^^{1-1}=4^0=1 \\ when:x=20 \\ 4^{20-1}=4^{19} \\ \text{This shows us that the function is valid for every real number. This is written as:} \\ \left\{x|x∈R\right\} \end{gathered}[/tex]

Range:

[tex]\begin{gathered} g(x)=-1+4^{x-1} \\ \begin{equation*} -1+4^{x-1} \end{equation*} \\ when:x=-10 \\ =-1+4^{-10-1}\Rightarrow-1+4^{-11} \\ =-0.9999\approx-1 \\ when:x=1 \\ =-1+4^{1-1}\Rightarrow-1+4^0\Rightarrow-1+1 \\ =0 \\ when:x=5 \\ =-1+4^{5-1}\Rightarrow-1+4^4\Rightarrow-1+256 \\ =255 \\ \text{This shows us that the lowest value of ''y'' is -1. This is written as:} \\ \left\{y|y>−1\right\} \end{gathered}[/tex]

Horizontal asmyptote:

For exponential functions, the equation of the horizontal asymptote is given as:

[tex]y=-1[/tex]

Melissa standing 40 feet from a tree the angle of elevation from where she is standing on the ground to the top of the tree is 50° how tall is the tree round the final answer to the nearest 10th.

Answers

Given:

• Melissa standing 40 feet from a tree.

,

• The angle of elevation from where she is standing on the ground to the top of the tree is 50°.

Required: To determine the height of the tree.

This is achieved thus:

First, we represent the given information diagrammatically as follows:

Using the diagram above, in relation to the given angle, we can determine the height of the tree by using the tangent ratio as follows:

[tex]\begin{gathered} \tan\theta=\frac{opposite}{adjacent} \\ \therefore\tan50\degree=\frac{h}{40} \\ h=40\tan50\degree \\ h\approx47.7ft \end{gathered}[/tex]

Hence, the answer is:

[tex]47.7ft[/tex]

Other Questions
what are the methods for structuring and presenting information called?(1 point) responses classification strategies classification strategies organizational strategies organizational strategies narratives and arguments narratives and arguments facts and research Section 5.2-10. Solve the following system of equations by substitution or elimination. Enter your answer as (x,y).-2x+3y = 15-x-3y = 12 researchers tried to explain how vesicular transport occurs in cells by attempting to assemble the transport components. they set up microtubular tracks along which vesicles could be transported, and they added vesicles and atp (because they knew the transport process requires energy). yet, when they put everything together, there was no movement or transport of vesicles. what were they missing? an axon endoplasmic reticulum contractile microfilaments motor proteins 1. Consider the example problem, but with the lower pressure reduced to 100 Pa. How much work would be done in a single cycle?1. 29,970 J2. 0 J3. -30,030 J4. 27,000 J when graphed on a coordinate plane,Bumby Avenue can be represented by the equation y=-4x-7. primrose can be represented by the equation 8x+2y=17. Are these streets parallel ? Select all the equations that have no solution. (Select all that apply.) a. 2t+1=1+ 2tb. 2t+1 = 2tc. 2(t+1) = 2t + 1d. 2t+t=2t+1e. 2t = 1 help me ............................ What additional information was needed to prove alfred wegeners hypothesis of continental drift was possible?. Last year the debate club had 25 members. This year there are 37 members in the club. Estimate the percent change in the number of club members. this lettuce i have is 25 calories per serving. serving size is 85 grams. i had 27 grams. how many calories would that be?? Use the times and corresponding closing prices of the stock to create coordinate pairs. Let X represent the number of weeks since the first at a point, and Y represent the closing price of each time. So, X equals zero represents the data point from five years ago. There are 52 weeks in a year, and you can write the time for each closing price recorded in terms of weeks that have passed since five years ago, when X equals zero. Fill in the table to represent your data as coordinate pairs in drosophila, the first 14 cell divisions after fertilization take no more than 10 minutes each. e. coli in contrast take ~ 30 minutes to undergo a cell division. what is one difference between dna replication in bacteria versus drosophila that could explain this? what is the solution set for the inequalityA. x -5B. x 5C. x 1d. x -14 For an arc length s, area of sector A, and central angle of a circle of radius r, find the indicated quantity for the given value. r= 6.45 in, = 5 pi\6, s=? You are to enter up the necessary Ledgers for the month of June from the following details, and then balance off the accounts and extract a trial balance as at 30th June 2021 Started firm with capital in cash Kshs. 750,000 Bought goods on credit from F. Kamau Kshs.16200, K. Musioka Kshs. 26100, G. Mutiso. Kshs.7500, M. Kim 22800 and F. Njoroge Kshs. 19200 Sold goods on credit to M. Coke Kshs.12000, T. Big Kshs. 18600 and K. Ngai June 1: June 2: June 4: June 6: June 9: June 10: June 12: June 15: June 18: June 21: June 30: Kshs. 52800 Paid rent by cash Kshs. 3600 M. Coke paid us his account by cheque Kshs. 12900 H. Muigai paid us Kshs. 45000 by cheque We paid the following by cheque G. Mutiso Kshs. 7500, F. Kamau Kshs. 6200 Paid carriage by cash Kshs. 6900 Bought goods on credit form K. Musioka Kshs. 129, M. Kim Kshs. 33000 Sold goods on credit to T. Big Kshs. 20100 Paid rent by cheque Kshs. 5400 Your brother is buying textbooks for college. He has to buy 3 math textbooks and 2 science textbooks. The total cost of his textbooks is $487. Write a linear equation to represent the cost of his textbooks. CASSANDRA WENT FOR A JO9.SHE RAN AT A PACE OF 7.3 MILESPER HOUR. IF SHE RAN FOR 0.75HOURS, HOW FAR DID CASSANDRARUN? Erin is keeping a science journal. She wrote the following paragraph that explains how light travels through different mediums. But shes made one mistake. Which sentence in Erins journal is incorrect?A ray of light passes through the air and enters the water inside a metal container. The light ray bends as it crosses the boundary between air and water. Once it hits the bottom of the container, the ray gets reflected. The reflected ray passes back through the water and enters the air without bending. In this example, the ray of light is both reflected and refracted. ou are implementing security at a local high school that is concerned with students accessing inappropriate material on the internet from the library's computers. the students use the computers to search the internet for research paper content. the school budget is limited. which content filtering option would you choose? in linear regression, the fitted value is the: a. predicted value of the dependent variable b. predicted value of the independent value c. predicted value of the slope d. predicted value of the intercept e. none of these options