Suppose that the velocity v (t) (in meters per second) of a sky diver falling near the Earth’s surface is given by the following exponential function, where time t is the time after diving measured in seconds.

Suppose That The Velocity V (t) (in Meters Per Second) Of A Sky Diver Falling Near The Earths Surface

Answers

Answer 1

The equation of the velocity is given by the exponential:

[tex]v(t)=53-53e^{-0.24t}[/tex]

Let us say that the sky driver's velocity will be 47 m/s at t₁. Then, using the expression above:

[tex]\begin{gathered} v(t_1)=47 \\ 53-53e^{-0.24t_1}=47 \end{gathered}[/tex]

Solving for t₁:

[tex]\begin{gathered} \frac{53-47}{53}=e^{-0.24t_1} \\ \ln (\frac{6}{53})=-0.24t_1 \\ t_1=9.1s \end{gathered}[/tex]


Related Questions

Solve and graph on a number line. 2(x-1) 4 or 2 (x-1)>4

Answers

The given inequality is:

2 (x - 1

Help me with my schoolwork what is the slope of line /

Answers

The two points given on the line are

[tex]\begin{gathered} (x_1,y_1)\Rightarrow(-2,9) \\ (x_2,y_2)\Rightarrow(6,1) \end{gathered}[/tex]

The slope of line that passes through (x1,y1) and (x2,y2) is gotten using the formula below

[tex]\begin{gathered} m=\frac{\text{change in y}}{\text{change in x}} \\ m=\frac{y_2-y_1}{x_2-x_1} \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{1-9}{6-(-2)} \\ m=-\frac{8}{6+2} \\ m=-\frac{8}{8} \\ m=-1 \end{gathered}[/tex]

Therefore,

The slope of the line = -1

21. Juanita is packing a box that is 18 inches long and 9 inches high. The total volume of the box.1,944 cubic inches. Use the formula V = lwh to find the width of the box. Show your work

Answers

Answer:

The width of the box is 12 inches

Explanations:

The formula for calculating the volume of a rectangular box is expressed as:

[tex]V=\text{lwh}[/tex]

where:

• l is the ,length ,of the box

,

• w is the ,width, of the box

,

• h is the ,height ,of the box

Given the following parameters

• length = 18 inches

,

• heigh = 9 inches

,

• volume = 1,944 cubic inches

Substitute the given parameters into the formula to calculate the width of the box as shown:

[tex]\begin{gathered} 1944=18\times w\times9 \\ 1944=162w \end{gathered}[/tex]

Divide both sides by 162 to have:

[tex]\begin{gathered} 162w=1944 \\ \frac{\cancel{162}w}{\cancel{162}}=\frac{1944}{162} \\ w=12\text{inches} \end{gathered}[/tex]

Hence the width of the box is 12 inches

The data shows the total number of employee medical leave days taken for on-the-job accidents in the first six months of the year: 12, 6, 15, 9, 28, 12. Use the data for the exercise. Find the standard deviation.

Answers

ANSWER:

The standard deviation is 7

STEP-BY-STEP EXPLANATION:

The standard deviation formula is as follows

[tex]\sigma=\sqrt[]{\frac{\sum^N_i(x_i-\mu)^2_{}}{N}}[/tex]

The first thing is to calculate the average of the sample like this:

[tex]\begin{gathered} \mu=\frac{12+6+15+9+28+12}{6} \\ \mu=\frac{82}{6}=13.67 \end{gathered}[/tex]

Replacing and calculate the standard deviation:

[tex]\begin{gathered} \sigma=\sqrt[]{\frac{(12_{}-13.67)^2_{}+(6_{}-13.67)^2_{}+(15_{}-13.67)^2_{}+(9_{}-13.67)^2_{}+(28-13.67)^2_{}+(12_{}-13.67)^2_{}}{6}} \\ \sigma=\sqrt[]{\frac{293.33}{6}} \\ \sigma=6.99\cong7 \end{gathered}[/tex]

Determine the common ratio for each of the following geometric series and determine which one(s) have an infinite sum.

I. 4+5+25/4+…
II. -7+7/4-7/9+…
III. 1/2-1+2…
IV. 4- ++...

A. III only
B. II, IV only
C. I, Ill only
D. I, II, IV only

Answers

The correct answer is Option A ( III Only). I . -16 sum cannot be negative, II. Not a G.P, III. Sum = 1/4, and IV. Not a G.P.

Solution:

Given geometric series,

I. 4 +5 +25 /4 ….

The common ratio(r) is (5/1)/(4/1) = 5/4.

S∞ = a / ( 1 - r)

     = 4 / ( 1 - 5/4)

     = 4 / -1/4

S∞ = -16.

Since sum cannot be negative.

II . -7 + 7/3 - 7/9+ ....

  Here common ratio = -7 / (7/3) = -1/3

   but - 7/9 / 7 /3 = 7/9

Here there is no common ratio so this not a G.P.

iii. 1/2 -1 + 2.....

     Common ratio = -1 / (1/2) =  -2

     S∞ =  a / ( 1 - r)

           = 1/2 / (1 -(-2))

     S∞  = 1/4.

iv  4 - 8/5 +16/5.....

   Here there is no common ratio.

   So this is not a G.P.

To learn more about geometric series refer to :

https://brainly.com/question/24643676

#SPJ13

Pour subtracted from the product of 10 and a number is at most-20,

Answers

we have

four subtracted from the product of 10 and a number is at most-20

Let

n ----> the number

so

[tex]10n-4\leq-20[/tex]

solve for n

[tex]\begin{gathered} 10n\leq-20+4 \\ 10n\leq-16 \\ n\leq-1.6 \end{gathered}[/tex]

the solution for n is the interval (-infinite, -1.6]

All real numbers less than or equal to negative 1.6

Find the sum of the arithmetic series given a1 =2, an =35 an n = 12

Answers

Given:

[tex]a_1=2,a_n=35,n=12[/tex]

Required:

Find the sum of the arithmetic series.

Explanation:

The sum of the arithmetic series when the first and the last term is given by the formula.

[tex]S_n=\frac{n}{2}(a_1+a_n)[/tex]

Substitute the given values in the formula.

[tex]\begin{gathered} S_n=\frac{12}{2}(2+35) \\ =6(37) \\ =222 \end{gathered}[/tex]

Final Answer:

Option D is the correct answer.

Which of these would not produce a representative sample that determines the favoritesport of the students at the local high school?ask every tenth student from a list of names in the student directoryask every tenth student who arrives at school on Wednesdayask ten students wearing football jerseys each day for a weekask five students from each classroom chosen by picking numbersMy Progress >

Answers

Answer: ask ten students wearing football jerseys each day for a week

This sample wouldn't b representative because, the use of a footblla

Which representation does not show y as a function of x?1.II.€9> 10III.x 1 3 5 7y -6 -18 -30 -42IV. {(-2,3), (-1,4), (0,4), (3, 2)}a) I and IIb) I, II, and IIIc) I and IVd) All of the above are functions

Answers

We can say that I is not a function because inputs can only have one output.

II it's not a function since if you draw an horizontal line through the function intersect in two points, then it's not a function.

The answer is A.

Use the Binomial Theorem to expand the expression.(x +6)^3

Answers

ok

[tex]\begin{gathered} (x+6)^3=^{}x^3+3(x)^2(6)+3(x)(6)^2+6^3 \\ \text{ = x}^3+18x^2\text{ + 3(36)x + 216} \\ \text{ = x}^3+18x^2\text{ + 108x + 216} \end{gathered}[/tex][tex]\begin{gathered} (a+b)^3\text{ } \\ first\text{ term = a} \\ \text{second term = b} \\ \text{theorem } \\ (a+b)^3=a^3+3a^2b+3ab^2+b^3 \end{gathered}[/tex]

that is the rule

just identify a and b in your problem

a = x

b = 6

Substitute in the theorem, and simplify

The profit of a cell-phone manufacturer is found by the function y= -2x2 + 108x + 75 , where x is the cost of the cell phone. At what price should the manufacturer sell the phone tomaximize its profits? What will the maximum profit be?

Answers

Hello!

First, let's rewrite the function:

[tex]y=-2x^2+108x+75[/tex]

Now, let's find each coefficient of it:

• a = -2

,

• b = 108

,

• c = 75

As we have a < 0, the concavity of the parabola will face downwards.

So, it will have a maximum point.

To find this maximum point, we must obtain the coordinates of the vertex, using the formulas below:

[tex]\begin{gathered} X_V=-\frac{b}{2\cdot a} \\ \\ Y_V=-\frac{\Delta}{4\cdot a} \end{gathered}[/tex]First, let's calculate the coordinate X by replacing the values of the coefficients:[tex]\begin{gathered} X_V=-\frac{b}{2\cdot a} \\ \\ X_V=-\frac{108}{2\cdot(-2)}=-\frac{108}{-4}=\frac{108}{4}=\frac{54}{2}=27 \end{gathered}[/tex]

So, the coordinate x = 27.

Now, let's find the y coordinate:[tex]\begin{gathered} Y_V=-\frac{\Delta}{4\cdot a} \\ \\ Y_V=-\frac{b^2-4\cdot a\cdot c}{4\cdot a} \\ \\ Y_V=-\frac{108^2-4\cdot(-2)\cdot75}{4\cdot(-2)} \\ \\ Y_V=-\frac{11664+600}{-8}=\frac{12264}{8}=1533 \end{gathered}[/tex]

The coordinate y = 1533.

Answer:

The maximum profit will be 1533 (value of y) when x = 27.

Consider the function f(x)= square root 5x-10 for the domain [2, +infinity). find f^-1(x), where f^-1 is the inverse of f. also state the domain of f^-1 in interval notation.edit: PLEASE DOUBLE CHECK ANSWERS.

Answers

[tex]f^{\{-1\}}(x)\text{ = }\frac{x^2+10}{5}\text{for domain (-}\infty,\text{ }\infty)[/tex]Explanation:[tex]\begin{gathered} f(x)\text{ = }\sqrt[]{5x\text{ - 10}} \\ \text{Domain = \lbrack{}2, }\infty) \end{gathered}[/tex]

let f(x) = y

To find the inverse of f(x), we would interchange x and y:

[tex]\begin{gathered} y\text{ = }\sqrt[]{5x\text{ - 10}} \\ \text{Interchanging:} \\ x\text{ = }\sqrt[]{5y\text{ - 10}} \end{gathered}[/tex]

Then we would make the subject of formula:

[tex]\begin{gathered} \text{square both sides:} \\ x^2\text{ = (}\sqrt[]{5y-10)^2} \\ x^2\text{ = 5y - 10} \end{gathered}[/tex][tex]\begin{gathered} \text{Add 5 to both sides:} \\ x^2+10\text{ = 5y} \\ y\text{ = }\frac{x^2+10}{5} \\ \text{The result above is }f^{\mleft\{-1\mright\}}\mleft(x\mright) \end{gathered}[/tex][tex]\begin{gathered} f^{\mleft\{-1\mright\}}\mleft(x\mright)\text{ = }\frac{x^2+10}{5} \\ The\text{ domain of the inverse is all real numbers} \\ \text{That is from negative infinity to positive infinity} \end{gathered}[/tex]

In interval notation:

[tex]\begin{gathered} \text{Domain = (-}\infty,\text{ }\infty) \\ f^{\{-1\}}(x)\text{ = }\frac{x^2+10}{5}\text{for domain (-}\infty,\text{ }\infty) \end{gathered}[/tex]

“Use the properties to rewrite this expression with the fewest terms possible:3+7(x - y) + 2x - 5y”

Answers

[tex]-5y+2x+7(x-y)+3[/tex]

Expanding 7(x - y) in the above expression gives

[tex]-5y^{}+2x+7x-7y+3[/tex]

adding the like terms (2x+ 7x) and (-5y-7y) gives

[tex](-5y-7y)+(2x+7x)+3[/tex][tex]\rightarrow\textcolor{#FF7968}{-12y+8x+3.}[/tex]

The last expression is the simplest form we can convert our expression into.

An airplane is taking off at angle of 9 degrees and traveling at a speed of 200 feet per second in relation to the ground. If the clouds begin at an altitude of 4,000 feet, how many seconds will it take for the airplane to be in the clouds?

Answers

ANSWER

[tex]\begin{equation*} 127.85\text{ }seconds \end{equation*}[/tex]

EXPLANATION

First, let us make a sketch of the problem:

To find the time it will take the airplane to be in the clouds, we first have to find the distance flown by the airplane in attaining that height, x.

To do this, apply trigonometric ratios SOHCAHTOA for right triangles:

[tex]\sin9=\frac{4000}{x}[/tex]

Solve for x:

[tex]\begin{gathered} x=\frac{4000}{\sin9} \\ x=25,569.81\text{ }ft \end{gathered}[/tex]

Now, that we have the distance, we can solve for the time by applying the relationship between speed and distance:

[tex]\begin{gathered} speed=\frac{distance}{time} \\ \Rightarrow time=\frac{distance}{speed} \end{gathered}[/tex]

Substitute the given values into the formula above and solve for time:

[tex]\begin{gathered} time=\frac{25569.81}{200} \\ time=127.85\text{ }seconds \end{gathered}[/tex]

That is the number of seconds that it will take.

name the three congruent parts shown by the marks on each drawing

Answers

In this case the aswer is very simple. .

The congruent parts are the equal parts in the 2 triangles.

Therefore, the congruent parts would be:

1. side AB and side XY

2. ∠ A and ∠ X

3. side AC and side XZ

That is the solution. .

Write the decimal as a quotient of two integers in reduced form.
0.513

Answers

The given decimal can be written as a quotient of 513/1000.

What is quotient?

In maths, the result of dividing a number by any divisor is known as the quotient. It refers to how many times the dividend contains the divisor. The statement of division, which identifies the dividend, quotient, and divisor, is shown in the accompanying figure. The dividend 12 contains the divisor 2 six times. The quotient is always less than the dividend, whether it is larger or smaller than the divisor.

we can write the decimal given 0.513 as a answer of of 513 divided by 1000.

I.e.

[tex]0.513 = \frac{513}{1000}[/tex]

To know more about quotient, go to link

https://brainly.com/question/11418015

#SPJ13

What is the average rate of change from g(1) to g(3)?Type the numerical value for your answer as a whole number, decimal or fractionMake sure answers are completely simplified

Answers

The average rate of change from g(1) to g(3)

[tex]\frac{g(x)_3-g(x)_1}{X_3-X_1}_{}[/tex]

where

[tex]g(x)_3=-20,g(x)_1=-8,x_3=3,x_1=\text{ 1}[/tex][tex]\begin{gathered} =\frac{-20\text{ --8}}{3-1}\text{ = }\frac{-20\text{ +8}}{2} \\ =\frac{-12}{2} \\ -6 \end{gathered}[/tex]

Hence the average rate of change is -6

The function f(x) = 40(0.9)^x represents the deer population in a forest x years after it was first studied. What was the deer population when it was first studied?a. 44b.40c. 36d.49

Answers

We are given the function that models a deer population:

[tex]f(x)=40(0.9)^x[/tex]

Where x is the years since the study started. If we want to know the initial population, we want to find the population at x = 0 years.

Thus:

[tex]f(0)=40(0.9)^0=40\cdot1=40[/tex]

The correct answer is option b. 40

A half-marathon has 53 runners. A first-, second-, and third-place trophy will be awarded. Howmany different ways can the trophies be awarded?

Answers

Let's use the combination formula:

[tex]\begin{gathered} C(n,k)=nCk=\frac{n!}{k!(n-k)!} \\ n=53 \\ k=3 \\ C(53,3)=53C3=\frac{53!}{3!(50)!}=23426 \end{gathered}[/tex]

can I please getsome help with this question here, I can't really figure out how to find side PQ

Answers

SOLUTION

The following diagram will help us solve the problem

(a) From the diagram, the height of the parallelogram is given as TR, and it is 40 mm

Now we can use the area which is given to us as 3,600 square-mm to find the base of the parallelogram, which is PQ

So,

[tex]\begin{gathered} \text{Area }of\text{ a parallelogram = base}\times height \\ So\text{ } \\ 3600=PQ\times TR \\ 3600=PQ\times40 \\ 3600=40PQ \\ \text{dividing by 40, we have } \\ \frac{3600}{40}=\frac{40PQ}{40} \\ PQ=90 \end{gathered}[/tex]

Hence PQ is 90 mm

(b) Now, note that the side

[tex]PS=QR[/tex]

So, we will find QR

Also, since we have PQ, we can find TQ, that is

[tex]\begin{gathered} PQ=PT+TQ \\ 90=60+TQ \\ TQ=90-60 \\ TQ=30mm \end{gathered}[/tex]

Note that triangle QRT is a right-angle triangle, and QR is the hypotenuse or the longest side

From pythagoras

[tex]\text{hypotenuse}^2=opposite^2+adjacent^2[/tex]

So,

[tex]\begin{gathered} QR^2=TR^2+TQ^2 \\ QR^2=40^2+30^2 \\ QR^2=1600+900 \\ QR^2=2,500 \\ QR=\sqrt[]{2,500} \\ QR=50mm \end{gathered}[/tex]

Now, since

[tex]\begin{gathered} PS=QR \\ \text{then } \\ PS=50mm \end{gathered}[/tex]

Hence PS is 50 mm

One ton (2,000 pounds) is equivalent to 907 kilograms. A baby elephant weighs about 91 kilograms atbirth. Approximately how many pounds (lbs.) is this?A 200 lbs.B 400 lbs.C 600 lbs.D 1,000 lbs.

Answers

Since 2000 pounds = 907 kilograms, use the conversion factor:

[tex]\frac{2000\text{ pounds}}{907\operatorname{kg}}[/tex]

To find out what 91 kg are equal to, measured in pounds:

[tex]91\operatorname{kg}=\frac{2000\text{ pounds}}{907\operatorname{kg}}=\frac{91\cdot2000}{907}\text{ pounds =200.66 pounds}[/tex]

Therefore, a baby elephant weighs about 200 lbs.

Given the conversion factor which cube has the larger surface area?

Answers

Given the surface area of a cube as

[tex]\begin{gathered} SA=6l^2 \\ \text{where l is the length} \end{gathered}[/tex]

Given Cubes A and B

[tex]\begin{gathered} \text{Cube A} \\ l=19.5ft \end{gathered}[/tex][tex]\begin{gathered} \text{Cube B } \\ l=6m\text{ } \\ \text{ in ft}\Rightarrow\text{ 1m =3.28ft} \\ l=6\times3.28ft=19.68ft \end{gathered}[/tex]

Find the surface area of the cubes and compare them to know which one is larger

[tex]\begin{gathered} \text{Cube A} \\ SA=6\times19.5^2=6\times380.25=2281.5ft^2 \end{gathered}[/tex][tex]\begin{gathered} \text{Cube B} \\ SA=6\times19.68^2=6\times387.3024=2323.8144ft^2 \end{gathered}[/tex]

Hence, from the surface area gotten above, Cube B has a larger surface area than Cube A

why does a cubic graph have both an x intercept and a y intercept

Answers

Answer:

All cubic function has domain (-∞,∞) and range (-∞,∞)

Step-by-step explanation:

match the system of equations with the solution set.hint: solve algebraically using substitution method.A. no solutionB. infinite solutionsC. (-8/3, 5)D. (2, 1)

Answers

We will solve all the systems by substitution method .

System 1.

By substituting the second equation into the first one, we get

[tex]x-3(\frac{1}{3}x-2)=6[/tex]

which gives

[tex]\begin{gathered} x-x+6=6 \\ 6=6 \end{gathered}[/tex]

this means that the given equations are the same. Then, the answer is B: infinite solutions.

System 2.

By substituting the first equation into the second one, we have

[tex]6x+3(-2x+3)=-5[/tex]

which gives

[tex]\begin{gathered} 6x-6x+9=-5 \\ 9=-5 \end{gathered}[/tex]

but this result is an absurd. This means that the equations represent parallel lines. Then, the answer is option A: no solution.

System 3.

By substituting the first equation into the second one, we obtain

[tex]-\frac{3}{2}x+1=-\frac{3}{4}x+3[/tex]

by moving -3/4x to the left hand side and +1 to the right hand side, we get

[tex]-\frac{3}{2}x+\frac{3}{4}x=3-1[/tex]

By combining similar terms, we have

[tex]-\frac{3}{4}x=2[/tex]

this leads to

[tex]x=-\frac{4\times2}{3}[/tex]

then, x is given by

[tex]x=-\frac{8}{3}[/tex]

Now, we can substitute this result into the first equation and get

[tex]y=-\frac{3}{2}(-\frac{8}{3})+1[/tex]

which leads to

[tex]\begin{gathered} y=4+1 \\ y=5 \end{gathered}[/tex]

then, the answer is option C: (-8/3, 5)

System 4.

By substituting the second equation into the first one, we get

[tex]-5x+(2x-3)=-9[/tex]

By combing similar terms, we have

[tex]\begin{gathered} -3x-3=-9 \\ -3x=-9+3 \\ -3x=-6 \\ x=\frac{-6}{-3} \\ x=2 \end{gathered}[/tex]

By substituting this result into the second equation, we have

[tex]\begin{gathered} y=2(2)-3 \\ y=4-3 \\ y=1 \end{gathered}[/tex]

then, the answer is option D

I thought of a number. from ²/₇ parts of that number I subtracted 0,4 and got ⅗. The number is: A: ²⁄₇ B: ⅖ C: 3,5D: 4,5

Answers

Note : The use of comma as number separator represent point in this solution

Step 1: Let the number be x, thus, 2/7 parts of the number means

[tex]\frac{2}{7}x[/tex]

Step 2: Subtract 0,4 from 2/7 parts of x

[tex]\frac{2}{7}x-0,4\Rightarrow\frac{2}{7}x-\frac{4}{10}[/tex]

Step 3: Equate the expression above to 3/5

[tex]\frac{2}{7}x-\frac{4}{10}=\frac{3}{5}[/tex]

Step 4: Simplify the equation above

[tex]\begin{gathered} \frac{2}{7}x-\frac{4}{10}=\frac{3}{5} \\ \frac{20x-28}{70}=\frac{3}{5}(\text{cross multiply)} \\ 5(20x-28)=70(3) \\ 100x-140=210 \\ 100x=210+140 \\ 100x=350 \\ \frac{100x}{100}=\frac{350}{100}(\text{Divide both side by 100)} \\ x=3,5 \end{gathered}[/tex]

Hence, the number is 3,5

Option C is correct

The following distribution represents the number of credit cards that customers of a bank have. Find the mean number of credit cards.Number of cards X01234Probability P(X)0.140.40.210.160.09

Answers

To solve this problem we have a formula at hand: the mean (m) number of credits cards is

[tex]m=\sum ^{}_XX\cdot P(X)[/tex]

Then,

[tex]m=0\cdot0.14+1\cdot0.4+2\cdot0.21+3\cdot0.16+4\cdot0.09=1.66[/tex]

Let f(x) = 2x-1 and g(x) = x2 - 1. Find (f o g)(-7).

Answers

Answer: (f o g)(-7) = 95

Step by step solution:

We have the two functions:

[tex]\begin{gathered} f(x)=2x-1 \\ g(x)=x^2-1 \end{gathered}[/tex]

We need to find (f o g)(-7) or f(g(-7)), first we evaluate g(-7):

[tex](f\circ g)(-7)=f(g(-7))[/tex][tex]g(-7)=-7^2-1=49-1=48[/tex]

Now we evaluate f(48):

[tex]f(48)=2\cdot48-1=96-1=95[/tex]

i need help, plotting the ordered pair (0, 0.5) and I need to state in which quadrant or on which axis the point lies.

Answers

The ordered pair:

[tex](x,y)=(0,0.5)[/tex]

it is located at:

Since the point lies on the y-axis it doesn't not lie in any quadrant

hannah paid 15.79 for a dress that was originally marked 24.99 what js the percent of discount

Answers

The percentage of discount is 37%

Here, we want to calculate the percentage of discount

The first thing we need to do here is to calculate the discount amount

Mathematically, we have this as;

[tex]24.99-15.79\text{ = 9.2}[/tex]

Now, we find the percentage of 24.99 is this discount

We have this as;

[tex]\frac{9.2}{24.99}\text{ }\times100\text{ \% = 36.8\%}[/tex]

The percentage of discount is approximately 37%

Raphael has an odd-shaped field shown in Figure 13-2. He wants to put a four-strand barbed wire fence around it for his cattle.A. What is the perimeter of the field?b. How many 80-rod rolls of barbed wire does he need topurchase?c. How many acres will be fenced?

Answers

Answer: Total perimeter = 9, 962.01 feet

The figure is a composite structure

It contains a rectangle and triangle

The perimeter of a rectangle is given as

Perimeter = 2( length + width)

length of the rectangle = 1500ft

Width of the rectangle = 1390 ft

Perimeter = 2( 1500 + 1390)

Perimeter = 2(2890)

Perimeter = 5780 ft

To calculate the perimeter of a triangle

[tex]\begin{gathered} \text{Perimeter = a + b + }\sqrt[]{a^2+b^2} \\ a\text{ = 1050ft and b = 1390 ft} \\ \text{Perimeter = 1050 + 1390 + }\sqrt[]{1050^2+1390^2} \\ \text{Perimeter = 2440 + }\sqrt[]{1,102,\text{ 500 + 1, 932, 100}} \\ \text{Perimeter = 2400 + }\sqrt[]{3,034,600} \\ \text{Perimeter = 2440 + 1,742,01} \\ \text{Perimeter = }4182.01\text{ f}eet \end{gathered}[/tex]

The total perimeter of the field = Perimeter of the rectangle + perimeter of the right triangle

Total perimeter = 5780 + 4182.01

Total perimeter = 9, 962.01 feet

Other Questions
2.Which equations represent linear functions?a. y = -2xb. -4y = 3xc.y= 3x^2 -5d. 2x-3y =12 Who benefitted more from the WartimeEconomyAmerican FamiliesAmerican Farmers the length of the rectangle is two feet less than 3 times the width.if the area is 65ft^2.find the dimension. Consider the equation cos(2t) = 0.8. Find the smallest positive solution in radians and round your answer to 2 decimal places. Multiply by applying the commutative and/or associative property. (310)(4.2)(100) What is the product? The designations for the first four electron energy sublevels with the maximum number of electrons that can be accommodated in each sublevel ares:2, p:6, d:10, and f:14s:2, p:8, d:10, and f:14s:1, p:2, d:3, and f:4s:2, p:8, d:18, and f:32 How much money would you have if you deposited $100.00 in an account thatearned 8% interest after 20 years? -0.5f - 4.52 = -25.52 + f HELP PLEASE Complete the equation of the line through (4, -8) and (8,5). 1. Heir to throne 2.sold for thirty pieces of silver 3.false witnesses accuse Jesus 4.wounded for our transgressions 5.crucified with sinners 6.resurrection Isaiah 9:7; Matthew 1:1 Isaiah 53:12; Matthew 27:38 Psalm 27:12; Matthew 26:60-61 Psalm 16:10; Matthew 28:9 Isaiah 53:4-5; Matthew 8:16-17 Zechariah 11:12; Matthew 26:15 matching i put English but this is bible Select the diagram that shows the segment AC: THE ANSWER IS IN THE PICTURE BELOW The ages of three siblings, Ben, Bob and Billy, are consecutive integers. The square of the age of the youngest child Ben is four more than eight times the age of the oldest child, Billy. How old are the three boys? Consider the following expression 9x+4y + 1 Select all of the true statements below 1 is a constant. 9x and 1 are like terms. 9x is a factor, 9x + 4y + 1 is written as a sum of three terms. ( 9x is a coefficient. None of these are true. What is 10/12 written in simplest form? the existing spot rate of the canadian dollar is $.82. the premium on a canadian dollar call option is $.04. the exercise price is $.81. the option will be exercised on the expiration date if at all. if the spot rate on the expiration date is $.87, the profit as a percent of the initial investment (the premium paid) is: group of answer choices convert the polar representation of this complex number into its standard form P(B) = 2/3P(An B) = 1/6What will P(A) have to be for A and B to be independent?1/211/121/45/6 help me w this for 50 pts. Find x, for which 7x+8=4x-10 select all reasons that support one or more statements in ghe proof.