Suppose Set A contains 48 elements and Set B contains 16 elements. If the total number elements in either Set A or Set B is 54, how many elements do Sets A and B have in common?

Answers

Answer 1

Considering the Set A and B given, Applying inclusion - exclusion principle the number of elements common to both Sets is 10

What is inclusion - exclusion principle?

This is a counting techniques that ensures that elements are not counted twice

It is achieved by the formula:

(A ∪ B) = n(A) + n(B) - n(A ∩ B)  

Finding the elements Sets A and B have in common

The information from the question include the following

Set A contains 48 elements

Set B contains 16 elements

The total number elements in either Set A or Set B is 54

Applying inclusion - exclusion principle gives the formula

Set A + Set B - ( Set A ∩ Set B ) = Set A ∪ Set B

substituting the values gives

48 + 16 - ( Set A ∩ Set B ) = 54

48 + 16 - 54 = ( Set A ∩ Set B )

10 = ( Set A ∩ Set B )

( Set A ∩ Set B ) = elements Sets A and B have in common

Therefore the number of the elements common to Sets A and B  is 10

Learn more on Sets here; https://brainly.com/question/13458417

#SPJ1


Related Questions

Select the correct answer from each drop-down menu.
Given: Kite ABDC with diagonals AD and BC intersecting at E
Prove: AD L BC
A
C
E
LU
D
B
Determine the missing reasons in the proof.

Answers

The missing reasons are

ΔCDA ≅ ΔBDA  by SSS [side side side]

ΔCED ≅ ΔBED by SAS [side angle side]

What is Kite?

A kite is a quadrilateral having reflection symmetry across a diagonal in Euclidean geometry. A kite has two equal angles and two pairs of adjacent equal-length sides as a result of its symmetry.

Given,

ABCD is a kite, with the diagonal AD and BC

We have,

               AC = AB

and

               CD = BD                [Property of Kite]

In ΔACD and ΔABD

                AC = AB

and

               CD = BD               [Property of Kite]        

               AD = AD               [Common]

By rule SSS Criteria [Side Side Side ]

              ΔACD ≅ ΔABD

 ∴           ∠CDA = ∠BDA         [CPCT]

Now,

         In ΔCDE and ΔBDA

                 CD = BD

            ∠CDE = ∠BDE

                 DE = DE                [Common]

By rule SAS Criteria [Side Angle Side]  

            ΔCDE ≅ ΔBDA

∴                CE = BE                [CPCT]  

Hence, AD bisects BC into equal parts

The missing reasons are

ΔCDA ≅ ΔBDA  by SSS [side side side]

ΔCED ≅ ΔBED by SAS [side angle side]

To learn more about Kite click on the link

https://brainly.com/question/23279609

#SPJ13

Please help me with this problem so my son can better understand I have attached an image of the problem

Answers

We have to solve for c:

[tex](c+9)^2=64[/tex]

When we have quadratic expressions, we have to take into account that each number has two possible square roots: one positive and one negative.

We can see it in this example: the square root of 4 can be 2 or -2. This is beacuse both (-2)² and 2² are equal to 4.

Then, taking that into account, we can solve this expression as:

[tex]\begin{gathered} (c+9)^2=64 \\ c+9=\pm\sqrt[]{64} \\ c+9=\pm8 \end{gathered}[/tex]

We then calculate the first solution for the negative value -8:

[tex]\begin{gathered} c+9=-8 \\ c=-8-9 \\ c=-17 \end{gathered}[/tex]

And the second solution for the positive value 8:

[tex]\begin{gathered} c+9=8 \\ c=8-9 \\ c=-1 \end{gathered}[/tex]

Then, the two solutions are c = -17 and c = -1.

We can check them replacing c with the corresponding values we have found:

[tex]\begin{gathered} (-17+9)^2=64 \\ (-8)^2=64 \\ 64=64 \end{gathered}[/tex][tex]\begin{gathered} (-1+9)^2=64 \\ (8)^2=64 \\ 64=64 \end{gathered}[/tex]

Both solutions check the equality, so they are valid solutions.

Answer: -17 and -1.

andrew went to the store to buy some walnuts. the price pee walnut is $4 per pound and he has a coupon for $1 off the final amount. with the coupon, how much would andrew have to pay to buy 4 pounds of walnuts? what is the expression for the cost to buy p pounds of walnuts , assuming at least one pound is purchased.

Answers

The amount Andrew have to pay to buy 4 pounds of walnuts = $19

The expression for the cost to buy p pounds of walnuts= 4p - 1

Explanation:

Amount per pound of walnut = $4

Amount of coupon = $1

The cost of 4 pounds of walnuts:

[tex]\text{Cost = 4 }\times5=\text{ \$20}[/tex]

The amount Andrew have to pay to buy 4 pounds of walnuts:

Amount = cost - coupon

Amount = $20 - $1

The amount Andrew have to pay to buy 4 pounds of walnuts = $19

The expression for the cost to buy p pounds of walnuts:

let number of pounds = p

Cost for p pounds of walnut = Amount per walnut * number of walnut

Cost for p pounds of walnut = $4 * p

= $4p

The expression for the cost to buy p pounds of walnuts= cost for p - coupon

= 4p - 1

Write an equation of the line containing the given point and parallel to the given line.
​(9​,−6​); 4x−3y=2

Answers

Answer:

y=4/3x-18

Step-by-step explanation:

4x-2=3y

y=4/3x-2/3

to parallel slope has to be the same

-6=9*(4/3)+b

b=-18

y=4/3x-18

Simplify 17(z-4x)+2(x+3z)

Answers

Answer:

23z-66x

Step-by-step explanation:

Look at the attachment please :D

The function h (t) = -4.9t² + 19t + 1.5 describes the height in meters of a basketball t secondsafter it has been thrown vertically into the air. What is the maximum height of the basketball?Round your answer to the nearest tenth.1.9 metersO 19.9 meters16.9 metersO 1.5 meters

Answers

Since the function describing the height is a quadratic function with negative leading coefficient this means that this is a parabola that opens down. This also means that the maximum height will be given as the y component of the vertex of the parabola, then if we want to find the maximum height, we need to write the function in vertex form so let's do that:

[tex]\begin{gathered} h(t)=-4.9t^2+19t+1.5 \\ =-4.9(t^2+\frac{19}{4.9}t)+1.5 \\ =-4.9(t^2+\frac{19}{4.9}t+(\frac{19}{9.8})^2)+1.5+4.9(\frac{19}{9.8})^2 \\ =-4.9(t+\frac{19}{9.8})^2+19.9 \end{gathered}[/tex]

Hence the function can be written as:

[tex]h(t)=-4.9(t+1.9)^2+19.9[/tex]

and its vertex is at (1.9,19.9) which means that the maximum height of the ball is 19.9 m

If b is a positive real number and m and n are positive integers, then.A.TrueB.False

Answers

we have that

[tex](\sqrt[n]{b})^m=(b^{\frac{1}{n}})^m=b^{\frac{m}{n}}[/tex]

therefore

If b is a positive real number

then

The answer is true

Frankenstein was in charge of bringing punch to the Halloween party. He brought 36 liters of his famous eyeball punch. How many gallons was this?​

Answers

Answer: 9.5112

Step-by-step explanation:

There are 0.2642 gallons in a liter. So, in 36 liters, there are [tex]36(0.2642)=9.5112 \text{ gal }[/tex]

estimate 328 divided by 11=?

Answers

Answer:

30

Step-by-step explanation:

f(x) = x2 + 4 and g(x) = -x + 2Step 2 of 4: Find g(d) - f(d). Simplify your answer.Answer8(d) - f(d) =

Answers

Answer:

[tex]\begin{equation*} g(d)-f(d)=-d^2-d-2 \end{equation*}[/tex]

Explanation:

Given:

[tex]\begin{gathered} f(x)=x^2+4 \\ g(x)=-x+2 \end{gathered}[/tex]

To find:

[tex]g(d)-f(d)[/tex]

We can find g(d) by substituting x in g(x) with d, so we'll have;

[tex]g(d)=-d+2[/tex]

We can find f(d) by substituting x in f(x) with d, so we'll have;

[tex]f(d)=d^2+4[/tex]

We can now go ahead and subtract f(d) from g(d) and simplify as seen below;

[tex]\begin{gathered} g(d)-f(d)=(-d+2)-(d^2+4)=-d+2-d^2-4=-d^2-d+2-4 \\ =-d^2-d-2 \\ \therefore g(d)-f(d)=-d^2-d-2 \end{gathered}[/tex]

Therefore, g(d) - f(d) = -d^2 - d -2

The data for numbers of times per week 20 students at Stackamole High eat vegetables are shown below. A dotplot shows 4 points above 1, 4 points above 3, 5 points above 2, 3 points above 4, 3 points above 5, and 1 point above 9.

Answers

Considering the given dot plot for the distribution, it is found that:

a) The distribution is right skewed.

b) There is an outlier at 9.

c) Since there is an outlier, the best measure of center is the median.

Dot plot

A dot plot shows the number of times that each measure appears in the data-set, hence the data-set is given as follows:

1, 1, 1, 1, 2, 2, 2, 2, 2 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 9.

To find the skewness of the data-set, we need to find the mean and the median.

The mean is the sum of all values divided by the number of values of 20, hence:

Mean = (4 x 1 + 5 x 2 + 4 x 3 + 3 x 4 + 3 x 5 + 9)/20 = 3.1.

The median is the mean of the 9th and the 10th elements(even cardinality) of the data-set, hence:

Median = (2 + 3)/2 = 2.5.

The mean is greater than the median, hence the distribution is right skewed.

To identity outliers, we need to look at the quartiles, as follows:

First quartile: 0.25 x 20 = 5th element = 2.Third quartile: 0.75 x 20 = 15th element = 4.

The interquartile range is:

IQR = 4 - 2 = 2.

Outliers are more than IQR from the quartiles, hence:

4 + 1.5 x 2 = 4 + 3 = 7 < 9, hence 9 is an outlier in the data-set, and hence the median will be the best measure of center.

Missing information


The questions are as follows:

Part A: Describe the dotplot. (4 points)

Part B: What, if any, are the outliers in these data? Show your work. (3 points)

Part C: What is the best measure of center for these data? Explain your reasoning. (3 points) (10 points)

More can be learned about dot plots at https://brainly.com/question/24726408

#SPJ1

how do I know where which choices below go into the correct blanks for number 1-4?

Answers

For 1, we have the following triangle:

Using the cosine function to get the hypotenuse we get:

[tex]\begin{gathered} \cos (45)=\frac{7}{h} \\ \Rightarrow h=\frac{7}{\cos(45)}=\frac{7}{\frac{1}{\sqrt[]{2}}}=7\cdot\sqrt[]{2} \\ h=7\cdot\sqrt[]{2} \end{gathered}[/tex]

Now that we have the hypotenuse, we can find the remaining side using the pythagorean theorem:

[tex]\begin{gathered} h^2=7^2+x^2 \\ \Rightarrow x^2=h^2-7^2=(7\cdot\sqrt[]{2})^2-7^2=49\cdot2-49=49 \\ \Rightarrow x^2=49 \\ x=7 \end{gathered}[/tex]

Therefore, the value of the remaining side is 7.

I'm attempting to solve and linear equation out of ordered pairs in slopes attached

Answers

Line equationInitial explanation

We know that the equation of a line is given by

y = mx + b,

where m and b are numbers: m is its slope (shows its inclination) and b is its y-intercept.

In order to find the equation we must find m and b.

In all cases, m is given, so we must find b.

We use the equation to find b:

y = mx + b,

↓ taking mx to the left side

y - mx = b

We use this equation to find b.

1

We have that the line passes through

(x, y) = (-10, 8)

and m = -1/2

Using this information we replace in the equation we found:

y - mx = b

↓ replacing x = -10, y = 8 and m = -1/2

[tex]\begin{gathered} 8-(-\frac{1}{2})\mleft(-10\mright)=b \\ \downarrow(-\frac{1}{2})(-10)=5 \\ 8-5=b \\ 3=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = -1/2x + 3

Equation 1: y = -1/2x + 3

2

Similarly as before, we have that the line passes through

(x, y) = (-1, -10)

and m = 0

we replace in the equation for b,

y - mx = b

↓ replacing x = -1, y = -10 and m = 0

-10 - 0 · (-1) = b

↓ 0 · (-1) = 0

-10 - 0 = b

-10 = b

Then, the equation of this line is:

y = mx + b,

y = 0x - 10

y = -10

Equation 2: y = -10

3

Similarly as before, we have that the line passes through

(x, y) = (-6, -9)

and m = 7/6

we replace in the equation for b,

y - mx = b

↓ replacing x = -6, y = -9 and m = 7/6

[tex]\begin{gathered} -9-\frac{7}{6}(-6)=b \\ \downarrow\frac{7}{6}(-6)=-7 \\ -9-(-7)=b \\ -9+7=b \\ -2=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = 7/6x - 2

Equation 3: y = 7/6x - 2

4

The line passes through

(x, y) = (6, -4)

and m = does not exist

When m does not exist it means that the line is vertical, and the equation looks like:

x = c

In this case

(x, y) = (6, -4)

then x = 6

Then

Equation 4: x = 6

5

The line passes through

(x, y) = (6, -6)

and m = 1/6

we replace in the equation for b,

y - mx = b

↓ replacing x = 6, y = -6 and m = 1/6

[tex]\begin{gathered} -6-\frac{1}{6}(6)=b \\ \downarrow\frac{1}{6}(6)=1 \\ -6-(1)=b \\ -7=b \end{gathered}[/tex]

Then, the equation of this line is:

y = mx + b,

y = 1/6x - 7

Equation 5: y = 1/6x - 7

Help me please Circle describe and correct each error -2=-3+x/4-2(4)-3+x/4•48=-3+x+3X=11

Answers

Answer

The error in the solution is circled (red) in the picture below.

The equation can be solved correctly as follows

[tex]\begin{gathered} -2=\frac{-3+x}{4} \\ \\ Multiply\text{ }both\text{ }sides\text{ }by\text{ }4 \\ \\ -2(4)=\frac{-3+x}{4}\cdot4 \\ \\ -8=-3+x \\ \\ Add\text{ }3\text{ }to\text{ }both\text{ }sides \\ \\ -8+3=-3+x+3 \\ \\ x=-5 \end{gathered}[/tex]

A chemist has 30% and 60% solutions of acid available. How many liters of each solution should be mixed to obtain 570 liters of 31% acid solution? Work area number of liters | acid strength | Amount of acid 30% acid solution 60% acid solution 31% acid solution liters of 30% acid liters of 60% acid

Answers

Let the amount of 30% acid solution be a

Let the amount of 60% acid solution be b

Given, "a" and "b" mixed together gives 570 liters of 31% acid. We can write:

[tex]0.3a+0.6b=0.31(570)[/tex]

Also, we know 30% acid and 60% acid amounts to 570 liters, thus:

[tex]a+b=570[/tex]

The first equation becomes:

[tex]0.3a+0.6b=176.7[/tex]

We can solve the second equation for a:

[tex]\begin{gathered} a+b=570 \\ a=570-b \end{gathered}[/tex]

Putting this into the first equation, we can solve for b. The steps are shown below:

[tex]\begin{gathered} 0.3a+0.6b=176.7 \\ 0.3(570-b)+0.6b=176.7 \\ 171-0.3b+0.6b=176.7 \\ 0.3b=176.7-171 \\ 0.3b=5.7 \\ b=\frac{5.7}{0.3} \\ b=19 \end{gathered}[/tex]

So, a will be:

a = 570 - b

a = 570 - 19

a = 551

Thus,

551 Liters of 30% acid solution and 19 Liters of 60% acid solution need to be mixed.

А ВC D0 2 4 68 10 12Which point best represents V15?-0,1)A)point AB)point Bpoint CD)point D

Answers

We have to select a point that is the best representative of the square root of 15.

We can calculate the square root of 15 with a calculator, but we can aproximate with the following reasoning.

We know that 15 is the product of 3 and 5. If we average them, we have 4.

If we multiply 4 by 4, we get 16, that is a little higher than 15.

If we go to the previous number (3) and calculate 3 by 3 we get 9, that is far from 15 than 16.

So we can conclude that the square root of 15 is a number a little less than 4.

In the graph, the point B is the one that satisfy our conclusion, as it is a point in the scale that is between 3 and 4, and closer to 4.

The answer is Point B

the inside diameter (I.D.) and outside diameter (O.D.) of a pope are shown in the figure. The wall thickness of the pope is the dimension labeled t. Calculate the wall thickness of the pipe if its I.D. is 0.599 in. and its O.D. is 1.315 in.

Answers

Given:

The inside diameter of the pope, I.D.=0.599 in.

The outside diameter of the pope, O.D.=1.315 in.

The inside radius of the pope is,

[tex]IR=\frac{ID}{2}=\frac{0.599}{2}=0.2995\text{ in}[/tex]

The outside radius of the pope is,

[tex]OR=\frac{OD}{2}=\frac{1.315}{2}=0.6575\text{ in}[/tex]

The wall thickness of the pope can be calculated as,

[tex]t=OR-IR=0.6575-0.2995=0.358\text{ in}[/tex]

Therefore, the wall thickness of the pope is t=0.358 in.

Please help me on #1 Please show your work so I can follow and understand

Answers

Answer:

Between markers 3 and 4.

Explanation:

We know that each student runs 2 / 11 miles. Given this, how many miles do the first two students run?

The answer is

[tex]\frac{2}{11}\cdot2=\frac{4}{11}\text{miles}[/tex]

Now, we know that the course has markers every 0.1 miles. How many markers are ther in 4 /11 miles?

The answer is

[tex]\frac{2}{11}\text{miles}\times\frac{1\text{marker}}{0.1\; miles}[/tex][tex]=3.6\text{ markers}[/tex]

This is between markers 3 and 4. Meaning that the second student finishes between markers 3 and 4.

If the given is -3x+20=8 What should the subtraction property of equality be?

Answers

Given the equation

[tex]-3x+20=8[/tex]

To apply the subtraction property of equality, we subtract 20 from both sides.

[tex]-3x+20-20=8-20[/tex]

I need help with part b, c ii, and d

Answers

Recall that:

[tex]\text{average speed=}\frac{total\text{ distance}}{total\text{ time}}.[/tex]

(b) Since Marcos traveled for 2 hours and 17 minutes a distance of 155 miles, then Marco's average speed for the 155 miles trip is:

[tex]\frac{155mi}{(2+\frac{17}{60})h}=\frac{155mi}{\frac{137}{60}h}=\frac{9300}{137}miles\text{ per hour}\approx67.89miles\text{ per hour.}[/tex]

(c ii) Since Devon also traveled the 155 miles in 2hours and 17 minutes but at a constant speed, then the constant speed at which he traveled is equal to his average speed, which is equal to:

[tex]\frac{155mi}{(2+\frac{17}{60})h}=\frac{155mi}{\frac{137}{60}h}=\frac{9300}{137}miles\text{ per hour}\approx67.89miles\text{ per hour.}[/tex]

(d) Marco needs to drive 2 miles in 5 minutes to be able to complete the 155 miles trip in 2 hours and 17 minutes, then he must drive at a constant speed of:

[tex]\frac{2mi}{5\min }=\frac{2mi}{\frac{5}{60}h}=\frac{120mi}{5h}=24\text{miles per hour.}[/tex]

Answer:

(b) 67.89 miles per hour.

(c ii) 67.89 miles per hour.

(d) 24 miles per hour.

The width of a rectangle measures (5v-w)(5v−w) centimeters, and its length measures (6v+8w)(6v+8w) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?

Answers

The most appropriate choice for perimeter of rectangle will be given by -

Perimeter of rectangle = (22v + 14w) cm

What is perimeter of rectangle?

At first it is important to know about rectangle.

Rectangle is a parallelogram in which every angle of the parallelogram is 90°.

Perimeter of rectangle is the length of the boundary of the rectangle.

If l is the length of the rectangle and b is the breadth of the rectangle, then perimeter of the rectangle is given by

Perimeter of rectangle = [tex]2(l + b)[/tex]

Length of rectangle = (5v - w) cm

Breadth of rectangle = (6v + 8w) cm

Perimeter of rectangle = 2[(5v - w) + (6v + 8w)]

                                      = 2(11v + 7w)

                                      = (22v + 14w) cm

To learn more about perimeter of rectangle, refer to the link -

https://brainly.com/question/19819849

#SPJ9

Complete Question

The width of a rectangle measures (5v−w) centimeters, and its length measures(6v+8w) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?

According to projections through the year 2030, the population y of the given state in year x is approximated byState A: - 5x + y = 11,700State B: - 144x + y = 9,000where x = 0 corresponds to the year 2000 and y is in thousands. In what year do the two states have the same population?The two states will have the same population in the year

Answers

The x variable represents the year in question. The year 2000 is represented by x = 0, 2001 would be repreented by x = 1, and so on.

The year in which both states would have the same population can be determined by the value of x which satisfies both equations.

We would now solve these system of equations as follows;

[tex]\begin{gathered} -5x+y=11700---(1) \\ -144x+y=9000---(2) \\ \text{Subtract equation (2) from equation (1);} \\ -5x-\lbrack-144x\rbrack=11700-9000 \\ -5x+144x=2700 \\ 139x=2700 \\ \text{Divide both sides by 139} \\ x=19.4244 \\ x\approx19\text{ (rounded to the nearest whole number)} \end{gathered}[/tex]

Note that x = 19 represents the year 2019

ANSWER:

The two states will have the same population in the year 2019

Find the distance between the pair of points. (16,0) and (1, -7) The distance is. (Round to the nearest thousandth as needed.)

Answers

Solution

For this case we can use the formula for the distance between two points:

[tex]d=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

and replacing we got:

[tex]d=\sqrt[]{(-7-0)^2+(1-16)^2}=\sqrt[]{274}[/tex]

And the correct answer after round would be:

16.553

4) What is perimeter of this shape? * 4 cm 2 cm

Answers

the perimeter is the sum of the outside sides. So in this case is 4+4+2+2+2+2=16

so the answer is 16cm

what times what equals 38

Answers

1 2 and 19 equal to 38

triangle HXI can be mapped onto troangle PSL by a reflection If m angle H = 157 find m angle S

Answers

From the information provided, the triangle HXI can be mapped onto triangle PSL. This means the vertices of the reflected image would now have the following as same measure angles;

[tex]\begin{gathered} \angle H\cong\angle P \\ \angle X\cong\angle S \\ \angle I\cong\angle L \end{gathered}[/tex]

Measure of angle S cannot be determined from the information provided because there is insufficient information given to determine the measure of angle X, hence the angle congruent to it (angle S) likewise cannot be determined.

Rearrange the formula 5w-3y +7=0 to make w the subject.

Answers

5w = -7 + 3y (after adding 3y on both sides.)

Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza fora total cost of $12.50. Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $8.50. What is the cost of one slice of mushroom pizza?

Answers

c = price of a slice of Cheese pizza

m= price of a slice of mushroom pizza

Jack bought 3 slices of cheese pizza and 4 slices of mushroom pizza fora total cost of $12.50

3c + 4 m = 12.50

Grace bought 3 slices of cheese pizza and 2 slices of mushroom pizza for a total cost of $8.50.

3c + 2m = 8.50

We have the system of equations:

3c + 4 m = 12.50 (a)

3c + 2m = 8.50 (b)

Subtract (b) to (a) to eliminate c

3c + 4m = 12.50

-

3c + 2m = 8.50

_____________

2m = 4

Solve for m:

m = 4/2

m=2

The cost of one slice of mushroom pizza is $2

Question 34: Find the polar coordinates that do NOT describe the point on the graph. (Lesson 9.1)

Answers

Notice that the polar coordinates of the point on the simplest form are (2,30). Then, the only option that does not match a proper transformation of coordinates is the point (-2,30)

What is the solution set of x over 4 less than or equal to 9 over x?

Answers

we have

[tex]\frac{x}{4}\leq\text{ }\frac{9}{x}[/tex]

Multiply in cross

[tex]x^2\leq36[/tex]

square root both sides

[tex](\pm)x\leq6[/tex]

see the attached figure to better understand the problem

the solution is the interval {-6,6}

the solution in the number line is the shaded area at right of x=-6 (close circle) and the shaded area at left of x=6 (close circle)

Other Questions
Amy's cookie shop had expenses of the following: flour $45.00sugar $92.00butter $53 she earns $12 per dozen. what is her profit,if she sells 9 dozen?what is the total dollar amount for expenses?what is the total dollar amount for earnings or revenue? On average, people breath 10,000 times per night with a standard deviation of 1400. You study 50 people and record how many breaths they take per night. What is the probability that the average of all participants in the study was fewer than 10,200 breaths each night?I want answer with step by step. A worker is holding a filled gas cylinder still. Which two sentences are true about the energy of the filled gas cylinder?A man in a blue dress holding a red color cylinder It has no energy because its being held still. It has gravitational potential energy because of its height. Its atoms and molecules have thermal energy. It has motion energy because it will fall if let go. Its kinetic energy is being converted to potential energy. The solution set of which of the following equations is the set of real numbers that are 3 units from -2?A |x+2|=3B|x-2|=3C |x+3|=-2D |x-3|=2E |x+3|=2 a test has 20 Questions worth 100 points the test consists of true or false questions worth 3 points each and multiple choice questions worth 11 points each how many multiple choice questions are on the test If f(x) = -3 and g(x) = 4x + 2x - 4, find (* + )(x).O A. 4x2 + x +1OB. 432 + x ->C.X2-12OD. 4x2+2x-7 Mario ordered a pizza for dinner. WHEN IT Came Mario quickly ate 1/8 of the pizza. While Mario was getting napkins, his pet poodle ate 1/3 of the pizza. Select all the musical elements that lead to the creation of Jazz:Bebop & Hard BopRagtimeSwing BandsGospel MusicAfrican MusicMarchesMinstrelsy & 19th Century Popular MusicRock n' RollBlack Folk MusicThe Blues Given the points:(5,2) and (3,-4)Select the THREE equations that represent the line that passesthrough them. A ball is shot from a cannon into the air with an upward velocity of 40 ft/sec. The equation that give the height (h) of the ball at any time (t) is: h(t)= -16t^2 + 40t + 1.5. Find the maximum height attained by the ball. I need a clear explanation because I have to expose this What is the image distance if a 5.00 cm tall object is placed 2.33 cm from a converging lens with a focal length of 5.75 cm?0.603cm1.66cm-0.255cm-3.92cm The Maldives is with the threat of Which state of matter is being described below?It cannot be squashed easily, will not spread out & is high densityA. GasB. SolidC. LiquidD. Plasma 28-6x=2x-84Prove: x = 14 A rectangular gardan is surrounded by a walk of uniform width. The area of the garden is 200 square yards. If the dimensions of the garden plus the walkway are 18 yards by 26 yards, find the dimensions of the garden.***NOTE*** This is a Quadratic Word Problem, so please use the Quadratic Method when solving and show all steps!! write each decimal in word form 302.78 and 15.023 _____ elements may not be equally distributed; however, they can still promote some form of equilibrium by placing numerous small items on one side of the page and just a few large objects on the other side.SymmetricalEmphasizedContrastingAsymmetrical HURRY IM TIMED the prophet who promoted a syncretic blend of zoroastrian, christian, and buddhist elements into a religious faith that would serve the needs of a cosmopolitan world was in the sophomore class at Summit High School the number of students taking French is 2/3 of the number taking Spanish. how many students are studying each language if the total number of students in French and Spanish is 310 ?This is Homework Solve the system by substitution:y=-6x-77x+y=-3(__ , __)