Solve the method.simultaneous equation by graphicaly + 3x = 6y - 2x = 1

Answers

Answer 1

The equations given are

[tex]\begin{gathered} y+3x=6............1 \\ y-2x=1............2 \end{gathered}[/tex]

The graph of the equations will be shown below

Hence, the solution to the equations is the point where the two equations intersect.

Therefore, the solution is

[tex](1,3)[/tex]

Solve The Method.simultaneous Equation By Graphicaly + 3x = 6y - 2x = 1

Related Questions

PLEASE HELP AS SOON AS POSSIBLE PLEASE!! ( one question, can whole numbers be classified as integers and rational numbers)

Answers

ANSWER

G. 10 and -2 only

EXPLANATION

-5/4 is a fraction that can't be simplified. Therefore it is not an integer.

1.25 has decimals, so it is not an integer either.

10 and -2 are are integers.

Surface are of the wood cube precision =0.00The weight of the woo cube precision =0.00 The volume was 42.87 in3

Answers

Given:

The volume of the cube is 42.87 cubic inches.

The volume of a cube is given as,

[tex]\begin{gathered} V=s^3 \\ 42.87=s^3 \\ \Rightarrow s=3.5 \end{gathered}[/tex]

The surface area of a cube is,

[tex]\begin{gathered} SA=6s^2 \\ SA=6\cdot(3.5)^2 \\ SA=73.5 \end{gathered}[/tex]

Answer: the surface area is 73.5 square inches ( approximately)

Need answer if you could show work would be nice

Answers

(x^3 - 3x^2 - 5x + 39) = (x^2 - 6x + 13)(x + 3). [you can verify this by expanding the brackets]
x + 3 = 0 when x = -3

x^2 - 6x + 13 = 0
x^2 - 6x + 9 + 4 = 0
(x - 3)^2 = -4
This shows x^2 - 6x + 13 = 0 has no real roots
The function only has one real root at x = -3

The cost, c(x) in dollars per hour of running a trolley at an amusement park is modelled by the function [tex]c(x) = 2.1x {}^{2} - 12.7x + 167.4[/tex]Where x is the speed in kilometres per hour. At what approximate speed should the trolley travel to achieve minimum cost? A. About 2km/h B about 3km/h C about 4km/D about 5km/hr

Answers

The equation is modelled by the function,

c(x) = 2.1x^2 - 12.7x + 167.4

The general form of a quadratic equation is expressed as

ax^2 + bx + c

The given function is quadratic and the graph would be a parabola which opens upwards because the value of a is positive

Since x represents the speed, the speed at which the he

The answer is 57.3 provided by my teacher, I need help with the work

Answers

Apply the angles sum property in the triangle ABC,

[tex]62+90+\angle ACB=180\Rightarrow\angle ACB=180-152=28^{}[/tex]

Similarly, apply the angles sum property in triangle BCD,

[tex]20+90+\angle BCD=180\Rightarrow\angle BCD=180-110=70[/tex]

From triangle ABC,

[tex]BC=AC\sin 62=30\sin 62\approx26.5[/tex]

From triangle BDC,

[tex]BD=BC\cos 20=26.5\cos 20\approx24.9[/tex]

Now, consider that,

[tex]\angle BDE+\angle BDC=180\Rightarrow\angle BDE+90=180\Rightarrow\angle BDE=90[/tex]

So the triangle BDE is also a right triangle, and the trigonometric ratios are applicable.

Solve for 'x' as,

[tex]x=\tan ^{-1}(\frac{BD}{DE})=\tan ^{-1}(\frac{24.9}{16})=57.2764\approx57.3[/tex]

Thus, the value of the angle 'x' is 57.3 degrees approximately.ang

I inserted a picture of the question can you please hurry

Answers

Given:

[tex](-2,-5)\text{ and (}1,4)\text{ are given points.}[/tex][tex]\begin{gathered} \text{Slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{Slope}=\frac{4+5}{1+2} \\ \text{Slope}=\frac{9}{3} \\ \text{Slope}=3 \end{gathered}[/tex]

I NEED HELP
5C/2 = 20

Answers

you would have to do this backwards

20 times 2 would remove the /2

5c=40

40 divided by 5

is

8

C=8

is 2÷2 4 or am I wrong

Answers

2/2 = 1

The answer would be 1

5-3/2x>1/3what is x?

Answers

Coco, this is the solution to the inequality:

5 - 3x/2 ≥ 1/3

Subtracting 5 at both sides:

5 - 3x/2 - 5 ≥ 1/3 - 5

-3x/2 ≥ 1/3 - 15/3

-3x/2 ≥ -14/3

LCD (Least Common Denominator) between 2 and 3 : 6

-9x/6 ≥ -28/6

Dividing by -9/6 at both sides:

-9x/6 / -9/6 ≥ -28/6 / -9/6

x ≥ 28/9

In consequence, the correct answer is C. x ≥ 28/9

Suppose the coordinate of p=2 and PQ=8. Whare are the possible midpoints for PQ?

Answers

The midpoint for segment PQ can be calculated as:

[tex]\frac{P+Q}{2}[/tex]

Then, the midpoint of PQ is:

[tex]\frac{2\text{ + Q}}{2}=1+0.5Q[/tex]

Additionally, PQ can be calculated as:

[tex]PQ=\left|Q-P\right|[/tex]

So:

[tex]\begin{gathered} \left|Q-P\right|=8 \\ \left|Q-2\right|=8 \end{gathered}[/tex]

It means that:

[tex]\begin{gathered} Q-2=8\text{ or } \\ 2\text{ - Q = 8} \end{gathered}[/tex]

Solving for Q, we get:

Q = 8 + 2 = 10 or Q = 2 - 8 = -6

Finally, replacing these values on the initial equation for the midpoint, we get:

If Q = 10, then:

midpoint = 1 + 0.5(10) = 1 + 5 = 6

If Q = -6, then:

midpoint = 1 + 0.5(-6) = 1 - 3 = -2

The possible midpoints for PQ are 6 and -2

A square has a perimeterof 8,000 centimeters. Whatis the length of each side ofthe of the square inmeters?

Answers

Answer:

20 meters

Explanation:

The formula for calculating the perimeter of a square is expressed as

perimeter = 4s

where

s is the length of each side of the square

From the information given,

perimeter = 8,000 centimeters

Recall,

1 cm = 0.01 m

8000cm = 8000 x 0.01 = 80 m

Thus,

80 = 4s

s = 80/4

s = 20

The length of each side of the square is 20 meters

Can a triangle be formed with side lengths 17, 9, and 8? Explain.

Yes, because 17 + 9 > 8
Yes, because 17 + 8 < 9
No, because 9 + 8 > 17
No, because 8 + 9 = 17

Answers

Answer:

  (d)  No, because 8 + 9 = 17

Step-by-step explanation:

You want to know if side lengths 8, 9, and 17 can form a triangle.

Triangle inequality

The triangle inequality requires the sum of the two short sides exceed the length of the longest side. For sides 8, 9, 17, this would require ...

  8 + 9 > 17 . . . . . . . not true; no triangle can be formed

The sum is 8+9 = 17, a value that is not greater than 17. The triangle inequality is not satisfied. So, no triangle can be formed.

<95141404393>

Please help me no other tutor could or understand it

Answers

The equation

We must find the equation that models the amount of medication in the bloodstream as a function of the days passed from the initial dose. The initial dose is a and we are going to use x for the number of days and M for the amount of mediaction in the bloodstream. We are going to model this using an exponential function which means that the variable x must be in the exponent of a power:

[tex]M(x)=a\cdot b^x[/tex]

We are told that the half-life of the medication is 6 hours. This means that after 6 hours the amount of medication in the bloodstream is reduced to a half. If the initial dose was a then the amount after 6 hours has to be a/2. We are going to use this to find the parameter b but first we must convert 6 hours into days since our equation works with days.

Remember that a day is composed of 24 hours so 6 hours is equivalent to 6/24=1/4 day. This means that the amount of medication after 1/4 days is the half of the initial dose. In mathematical terms this means M(1/4)=M(0)/2:

[tex]\begin{gathered} \frac{M(0)}{2}=M(\frac{1}{4}) \\ \frac{a\cdot b^0}{2}=a\cdot b^{\frac{1}{4}} \\ \frac{a}{2}=a\cdot b^{\frac{1}{4}} \end{gathered}[/tex]

We can divide both sides of this equation by a:

[tex]\begin{gathered} \frac{\frac{a}{2}}{a}=\frac{a\cdot b^{\frac{1}{4}}}{a} \\ \frac{1}{2}=b^{\frac{1}{4}} \end{gathered}[/tex]

Now let's raised both sides of this equation to 4:

[tex]\begin{gathered} (\frac{1}{2})^4=(b^{\frac{1}{4}})^4 \\ \frac{1}{2^4}=b^{\frac{1}{4}\cdot4} \\ b=\frac{1}{16} \end{gathered}[/tex]

Which can also be written as:

[tex]b=16^{-1}[/tex]

Then the equation that models how much medication will be in the bloodstream after x days is:

[tex]M(x)=a\cdot16^{-x}[/tex]

Using this we must find how much medication will be in the bloodstream after 4 days for an initial dose of 500mg. This basically means that a=500mg, x=4 and we have to find M(4):

[tex]M(4)=500mg\cdot16^{-4}=0.00763mg[/tex]

So after 4 days there are 0.00763 mg of medication in the bloodstream.

Now we have to indicate how much more medication will be if the initial dose is 750mg instead of 500mg. So we take a=750mg and x=4:

[tex]M(4)=750mg\cdot16^{-4}=0.01144mg[/tex]

If we substract the first value we found from this one we obtained the required difference:

[tex]0.01144mg-0.00763mg=0.00381mg[/tex]

So the answer to the third question is 0.00381mg.

9. SAILING The sail on Milton's schooner is the shape of a 30°-60°-90°triangle. The length of the hypotenuse is 45 feet. Find the lengths of thelegs. Round to the nearest tenth.

Answers

The triangle is shown below:

Notice how this is an isosceles triangle.

We can find the lengths of the hypotenuse by using the trigonometric functions:

[tex]\sin \theta=\frac{\text{opp}}{\text{hyp}}[/tex]

Then we have:

[tex]\begin{gathered} \sin 45=\frac{21}{hyp} \\ \text{hyp}=\frac{21}{\sin 45} \\ \text{hyp}=29.7 \end{gathered}[/tex]

Therefore the hypotenuse is 29.7 ft.

Solve this equation 3n+8=20

Answers

Given the equation below

[tex]3n\text{ + 8 = 20}[/tex]

Step 1

Collect like terms.

[tex]\begin{gathered} 3n=20-8 \\ 3n=12 \end{gathered}[/tex]

Step 2

Divide both sides of the equation obtained, by the coefficient of the unknown.

[tex]\begin{gathered} \text{The unknown is n.} \\ \text{The co}efficient\text{ of n is 3.} \\ \text{Thus,} \\ \frac{3n}{3}=\frac{12}{3} \\ \Rightarrow n=4 \end{gathered}[/tex]

Hence, the value of n in the equation is 4

What would the answer be?
Nvm, I got it wrong

Answers

Applying the definition of similar triangles, the measure of ∠DEF = 85°.

What are Similar Triangles?

If two triangles are similar, then their corresponding angles are all equal in measure to each other.

In the image given, since E and F are the midpoint of both sides of triangle BCD, then it follows that triangles BCD and EFD are similar triangles.

Therefore, ∠DBC ≅ ∠DEF

m∠DBC = m∠DEF

Substitute

4x + 53 = -6x + 133

4x + 6x = -53 + 133

10x = 80

10x/10 = 80/10 [division property of equality]

x = 8

Measure of ∠DEF = -6x + 133 = -6(8) + 133

Measure of ∠DEF = 85°

Learn more about similar triangles on:

https://brainly.com/question/14285697

#SPJ1

Find the exact solution to the exponential equation. (No decimal approximation)

Answers

Let's solve the equation:

[tex]\begin{gathered} 54e^{3x+3}=16 \\ e^{3x+3}=\frac{16}{54} \\ e^{3x+3}=\frac{8}{27} \\ \ln e^{3x+3}=\ln (\frac{8}{27}) \\ 3x+3=\ln (\frac{2^3}{3^3}) \\ 3x+3=\ln (\frac{2}{3})^3 \\ 3x+3=3\ln (\frac{2}{3}) \\ 3x=-3+3\ln (\frac{2}{3}) \\ x=-1+\ln (\frac{2}{3}) \\ x=-1+\ln 2-\ln 3 \end{gathered}[/tex]

Therefore the solution of the equation is:

[tex]x=-1+\ln 2-\ln 3[/tex]

write the equation for a quadratic function in vertex form that opebs down shifts 8 units to the left and 4 units down .

Answers

STEP - BY STEP EXPLANATION

What to find?

Equation for a quadratic equation.

Given:

Shifts 8 unit to the left.

4 units down

Step 1

Note the following :

• The parent function of a quadratic equation in general form is given by;

[tex]y=x^2[/tex]

• If f(x) shifts q-units left, the f(x) becomes, f(x+q)

,

• If f(x) shift m-units down, then the new function is, f(x) -m

Step 2

Apply the rules to the parent function.

8 units to the left implies q=8

4 units down implies m= 4

[tex]y=(x+8)^2-4[/tex]

ANSWER

y= (x+8)²- 4

Find the sum of the arithmetic series -1+ 2+5+8+... where n=7.A. 56B. 184C. 92D. 380Reset Selection

Answers

Answer:

Explanation:

The arithmetic series is:

-1 + 2 + 5 + 8 + .....

The first term, a = -1

The common difference, d = 2 - (-1)

d = 3

The number of terms, n = 7

Find the sum of the arithmetic series below

[tex]\begin{gathered} S_n=\frac{n}{2}[2a+(n-1)d] \\ \\ S_7=\frac{7}{2}[2(-1)+(7-1)(3)] \\ \\ S_7=\frac{7}{2}(-2+18) \\ \\ S_7=\frac{7}{2}(16) \\ \\ S_7=56 \end{gathered}[/tex]

Therefore, the sum of the arithmetic series = 56

The slope and y-intercept of the relation represented by the equation 12x-9y+12=0 are:

Answers

12x - 9y +12 =0

To find the slope and y intercept, we want to put the equation in slope intercept form

y = mx+b where m is the slope and b is the y intercept

Solve the equation for y

Add 9y to each side

12x - 9y+9y +12 =0+9y

12x+12 = 9y

Divide each side by 9

12x/9 +12/9 = 9y/9

4/3 x + 4/3 = y

Rewriting

y = 4/3x + 4/3

The slope is 4/3 and the y intercept is 4/3

ExpenseYearly costor rateGasInsuranceWhat is the cost permile over the course ofa year for a $20,000 carthat depreciates 20%,with costs shown in thetable, and that hasbeen driven for 10,000miles?$425.00$400.00$110,00$100.0020%OilRegistrationDepreciationB. $4.10 per mileA. $1.10 per mileC. $0.25 per mileD. $0.50 per mile

Answers

Step 1:

Find the depreciation

[tex]\begin{gathered} \text{Depreciation = 20\% of \$20,000} \\ \text{Depreciation = }\frac{20}{100}\text{ }\times\text{ \$20000} \\ \text{Depreciation = \$4000} \end{gathered}[/tex]

Step 2:

Total cost = $425 + $400 + $110 + $100 + $4000

Total cost = $5035

Final answer

[tex]\begin{gathered} \text{Cost per mile = }\frac{5035}{10000} \\ \text{Cost per mile = \$0.5035} \\ \text{Cost per mile = \$0.50} \end{gathered}[/tex]

Option D $0.50 per mile

What is 3 +4.3+45?A4늘OB.B. 7O. 8○ D. 12

Answers

solution

[tex]3+4\frac{1}{3}=7\frac{1}{3}[/tex]

answer: B

(I don't know if there are tutors here right now at this time but it's worth a try.) Please help me I really really don't understand this, it's going to take me a while to understand this. X(

Answers

[tex]\begin{gathered} 3(b+5)=4(2b-5) \\ 3b+15=8b-20 \\ 15+20=8b-3b \\ 5b=35 \\ b=\frac{35}{5} \\ b=7 \end{gathered}[/tex][tex]3(b+5)=4(2b-5)[/tex]

by the distributive law x(y+z)=zy+xz, we have

[tex]\begin{gathered} 3b+3(5)=4(2b)-4(5) \\ 3b+15=8b-20 \end{gathered}[/tex]

Then we use the properties of inequalities, we can switch both sides, and if we add or multiply something on both sides the equality remains

[tex]\begin{gathered} 3b+15=8b-20 \\ \end{gathered}[/tex]

we want the variables and the numbers without variables to be in different side, so, first we add 20 to both sides, note that the -20 will be cancelled

[tex]\begin{gathered} 3b+15+20\text{ = 8b-20+20} \\ 3b+15+20=8b \end{gathered}[/tex]

we want to left all the numbers with variable on the right side so we substract 3b (add -3b) to both sides. Same as before, the 3b will be cancellated (we can change the order in the sum)

[tex]\begin{gathered} -3b+3b+15+20=-3b+8b \\ 15+20=8b-3b \end{gathered}[/tex]

of course, you're welcome

I was asking if you have understood my explanation so far

tell me

it doesn't matter the order, in fact, when you get used to the method you can work with both at the same time

any other question?

yes, you could substrac 3b first

For example

[tex]\begin{gathered} 2+3x=6-x \\ 2+3x+x=6-x+x \\ 2+3x+x=6 \\ -2+2+3x+x=-2+6 \\ 3x+x=6-2 \\ 4x=4 \\ \end{gathered}[/tex]

sadly I will need to leave since my shift is over, but if you ask another question one of my partners will help you

Have a nice evening!!!!

then we add like terms and switch both sides

[tex]5b=35[/tex]

And then we multiply by 1/5 both sides

[tex]\begin{gathered} 5\frac{1}{5}b=\frac{35}{5} \\ b=\frac{35}{5} \\ b=7 \end{gathered}[/tex]

Using the distributive property, show how to decompose 8 * 78

Answers

Given any three numbers a, b, and c.

By the distributive law, we must have:

a x (b + c) = (a x b) + (a x c)

Now to find 8 x78

8 x 78 = 8 x (70 + 8) = (8 x 70) + (8 x 8) = 560 + 64 = 624

Can you please solve the last question… number 3! Thanks!

Answers

Let us break the shape into two triangles and solve for the unknowns.

The first triangle is shown below:

We will use the Pythagorean Theorem defined to be:

[tex]\begin{gathered} c^2=a^2+b^2 \\ where\text{ c is the hypotenuse and a and b are the other two sides} \end{gathered}[/tex]

Therefore, we can relate the sides of the triangles as shown below:

[tex]25^2=y^2+16^2[/tex]

Solving, we have:

[tex]\begin{gathered} y^2=25^2-16^2 \\ y^2=625-256 \\ y^2=369 \\ y=\sqrt{369} \\ y=19.2 \end{gathered}[/tex]

Hence, we can have the second triangle to be:

Applying the Pythagorean Theorem, we have:

[tex]22^2=x^2+19.2^2[/tex]

Solving, we have:

[tex]\begin{gathered} 484=x^2+369 \\ x^2=484-369 \\ x^2=115 \\ x=\sqrt{115} \\ x=10.7 \end{gathered}[/tex]

The values of the unknowns are:

[tex]\begin{gathered} x=10.7 \\ y=19.2 \end{gathered}[/tex]

Use an inequality to represent the corresponding Celsius temperature that is at or below 32° F.

Answers

Answer:

C ≤ 0

Explanations:

The given equation is:

[tex]F\text{ = }\frac{9}{5}C\text{ + 32}[/tex]

Make C the subject of the equation

[tex]\begin{gathered} F\text{ - 32 = }\frac{9}{5}C \\ 9C\text{ = 5(F - 32)} \\ C\text{ = }\frac{5}{9}(F-32) \end{gathered}[/tex]

At 32°F, substitute F = 32 into the equation above to get the corresponding temperature in °C

[tex]\begin{gathered} C\text{ = }\frac{5}{9}(32-32) \\ C\text{ = }\frac{5}{9}(0) \\ C\text{ = 0} \end{gathered}[/tex]

The inequality representing the corresponding temperature that is at or below 32°F is C ≤ 0

Which of the following shows the expansion of sum from n equals 0 to 4 of 2 minus 5 times n ?

(−18) + (−13) + (−8) + (−3) + 0
(−3) + (−8) + (−13) + (−18) + (−23)
2 + (−3) + (−8) + (−13) + (−18)
2 + 7 + 12 + 17 + 22

Answers

The option that indicates the required sum when n equals 0 to 4 of 2 minus 5 times n, is 2 + (−3) + (−8) + (−13) + (−18) (Option C)

What is the Sum of sequences?

The sum of the terms of a sequence is called a series.

From the given sum of a sequence, we are to find the sum of the given sequence from n = 0 to n = 4

When n = 0

a(0) = 2 - 5(0)

a(0) = 2 - 0

a(0) = 2

When n = 1

a(1) = 2 - 5(1)

a(1) = 2 -5

a(1) = -3

When n = 2

a(2) = 2 - 5(2)

a(2) = 2 - 10

a(2) = -8

When n = 3

a(3) = 2 - 5(3)

a(3) = 2 - 15

a(3) = -13

When n = 4

a(4) = 2 - 5(4)

a(4) = 2 - 20

a(4) = -18

Hence the required sum is 2 + (−3) + (−8) + (−13) + (−18)

Learn more about sum of sequences:
https://brainly.com/question/24160061

#SPJ1

The required sum is 2 + (−3) + (−8) + (−13) + (−18)  when n equals 0 to 4 of 2 minus 5 times n, which is the correct answer that would be an option (C).

The given expression is (2 - 5n)

We to determine the sum of the given sequence from n = 0 to n = 4

Let the required sum is  T₀ + T₁  + T₂ +  T₃ + T₄

Substitute the value of n = 0 in the expression (2 - 5n) to get T₀

⇒ T₀ = 2 - 5(0) = 2 - 0 = 2

Substitute the value of n = 1 in the expression (2 - 5n) to get T₁

⇒ T₁ = 2 - 5(1)  = 2 -5 = -3

Substitute the value of n = 2 in the expression (2 - 5n) to get T₂

⇒ T₂ = 2 - 5(2) = 2 - 10 = -8

Substitute the value of n = 3 in the expression (2 - 5n) to get T₃

⇒ T₃ = 2 - 5(3) = 2 - 15 = -13

Substitute the value of n = 4 in the expression (2 - 5n) to get T₄

⇒ T₄ = 2 - 5(4) = 2 - 20 = -18

Therefore, the required sum is 2 + (−3) + (−8) + (−13) + (−18)

Learn more about the sequences here:

brainly.com/question/21961097

#SPJ1

Rewrite the fraction with a rational denominator:
[tex]\frac{1}{\sqrt{5} +\sqrt{3} -1}[/tex]
Give me a clear and concise explanation (Step by step)
I will report you if you don't explain

Answers

The expression with rational denominator is [tex]\frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

How to rewrite the fraction?

From the question, the fraction is given as

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1}[/tex]

To rewrite the fraction with a rational denominator, we simply rationalize the fraction

When the fraction is rationalized, we have the following equation

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{1}{\sqrt 5 + \sqrt{3} - 1} \times \frac{\sqrt 5 - \sqrt{3} + 1}{\sqrt 5 - \sqrt{3} + 1}[/tex]

Evaluate the products in the above equation

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{(\sqrt 5)^2 - (\sqrt{3} + 1)^2}[/tex]

This gives

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{5 - 10 - 2\sqrt 3}[/tex]

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{- 5 - 2\sqrt 3}[/tex]

Rationalize again

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{\sqrt 5 - \sqrt{3} + 1}{- 5 - 2\sqrt 3} \times \frac{- 5+2\sqrt 3}{- 5 +2\sqrt 3}[/tex]

This gives

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{(-5)^2 - (2\sqrt 3)^2}[/tex]

So, we have

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{25 -12}[/tex]

Evaluate

[tex]\frac{1}{\sqrt 5 + \sqrt{3} - 1} = \frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

Hence, the expression is [tex]\frac{(\sqrt 5 - \sqrt{3} + 1)(- 5+2\sqrt 3)}{13}[/tex]

Read more about rational expressions at

https://brainly.com/question/20400557

#SPJ1

-27\sqrt(3)+3\sqrt(27), reduce the expression

Answers

[tex]-18\sqrt[]{3}[/tex]

Explanation

[tex]-27\sqrt[]{3}+3\sqrt[]{27}[/tex]

Step 1

Let's remember one propertie of the roots

[tex]\sqrt[]{a\cdot b}=\sqrt[]{a}\cdot\sqrt[]{b}[/tex]

hence

[tex]\sqrt[]{27}=\sqrt[]{9\cdot3}=\sqrt[]{9}\cdot\sqrt[]{3}=3\sqrt[]{3}[/tex]

replacing in the expression

[tex]\begin{gathered} -27\sqrt[]{3}+3\sqrt[]{27} \\ -27\sqrt[]{3}+3(3\sqrt[]{3}) \\ -27\sqrt[]{3}+9\sqrt[]{3} \\ (-27+9)\sqrt[]{3} \\ -18\sqrt[]{3} \end{gathered}[/tex]

therefore, the answer is

[tex]-18\sqrt[]{3}[/tex]

I hope this helps you

I need help with this question... the correct answer choice

Answers

Reflection over the x-axis:

(x,y)--->(x, -y)

and the question is what is not a reflection across the x-axis.

so,

the correct option is D which is:

R'(-9, 4) ----> R'(9, -4)

Because it is a reflection over the y-axis.

Other Questions
Which sample size will produce the widest 95% confidence interval, given asample proportion of 0.5?A. 40B. 70C. 60D. 50 Which calculation and answer show how to convert 13 to a decimal? assume the perpetual inventory system is used. 1) green company purchased merchandise inventory that cost $64,200 under terms of 2/10, n/30 and fob shipping point. 2) green company paid freight cost of $2,420 to have the merchandise delivered. 3) payment was made to the supplier on the inventory within 10 days. 4) all of the merchandise was sold to customers for $94,400 cash and delivered under terms fob destination with freight cost amounting to $1,620. what is the net cash flow from operating activities that results from these transactions? Write 5.8% as a fraction in lowest terms. Describe the cycle that involves soil, decomposers, and other living things?Thank you. a cats purple crinkle ball toy of mass 20g is throwwn straight up in the air with an initial speed of 4m/s. assume in this problem that air grad is negligible. what is the kinetic energy of the ball as it leaves the hand? For a science fair project, Cora tracked the temperature each day. Temperature reading (C) Number of temperature readings 6 2 22 3 25 1 35 1 2 42 1 X is the temperature that a randomly chosen temperature reading was. What is the expected value of X? Write your answer as a decimal. the compensation plan known as blank involves payments being based on some measure of organizational performance, and the payments do not become part of the base salary.multiple choice question.individual incentiveslabor unionmerit payprofit sharing help me pleaze its hard !! Be sure to include the correct unit in your answer 024 (part 1 of 3) 10.0 pointsA 4.0 kg block is pushed 1.0 m at a constantvelocity up a vertical wall by a constant forceapplied at an angle of 30.0 with the horizontal, as shown in the figure.The acceleration of gravity is 9.81 m/s2.1 m304 kgFDrawing not to scale.If the coefficient of kinetic friction betweenthe block and the wall is 0.40, finda) the work done by the force on the block.Answer in units of J. During a food drive, a local middle school collected 3,195 Help Me Please A B, C, or D.Answer correctly The author organizes the text byarguing that copper tools are superior to bronze, iron, and stone toolsdescribing the outcome of using copper toolspresenting in chronological order the events that followed the discovery ofcoppercomparing copper to other influential metals of the past For a school project, Ariana's granddaughter will interview Ariana about her former career. Which of the following best describes how Ariana will access information to participate in the interview?O a. She will use her sensory memory to retrieve details about what it felt like to work in that career.O b. She will retrieve details about her career from long-term storage.O c. She will use her working memory to make calculations about which questions her granddaughter will ask.O d. She will retrieve details about her career from her short-term memory. Which principle states that processes that occurred in the past are nodifferent than the processes in the present? O is the center of the regular hexagon below. Find its perimeter. Round to the nearest tenth if necessary. why is hierarchical design important, both when writing hdl code, and when implementing physical circuits? what are the benefits and potential drawbacks? 19. Write in algebraic terms: six times a number, minus five times the number, plus eight. Which of these natural disasters are the most unpredictable? A. earthquakes B. hurricanes C. tornados D. blizzards