Set up ONE integral that would determine the area of the region shown below enclosed by y-x=1 y = 2x2 and XEO) • Use algebra to determine intersection points 5

Answers

Answer 1

The area of the region enclosed by the two curves is 4/3 by integral.

The area of the region shown below enclosed by [tex]y - x = 1[/tex] and [tex]y = 2x^2[/tex] can be determined by setting up one integral. Here's how to do it:

Step-by-step explanation:

Given,The equations of the lines are:[tex]y - x = 1y = 2x^2[/tex]

First, we need to find the intersection points by setting the two equations equal to each other:

[tex]2x^2 - x - 1 = 0[/tex]Solving for x:Using the quadratic formula we get:

[tex]$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$ $$x=\frac{1\pm\sqrt{1^2-4(2)(-1)}}{2(2)}$$ $$x=\frac{1\pm\sqrt{9}}{4}$$$$x=1, -\frac{1}{2}$$[/tex]

We have, 2 intersection points at (1,2) and (-1/2,1/2).The graph looks like:graph{y = x + 1y = [tex]2x^2[/tex] [0, 3, 0, 10]}The integral that gives the area enclosed by the two curves is given by:

[tex]$$A = \int_{a}^{b}(2x^{2} - y + 1) dx$$[/tex]

Since we have found the intersection points, we can now use them to set our limits of integration. The limits of integration are:a = -1/2, b = 1

The area of the region enclosed by the two curves is given by: [tex]$$\int_{-1/2}^{1}(2x^{2} - (x + 1) + 1) dx$$$$= \int_{-1/2}^{1}(2x^{2} - x) dx$$$$= \frac{4}{3}$$[/tex]

Therefore, the area of the region enclosed by the two curves is 4/3.

Learn more about integral here:

https://brainly.com/question/31059545


#SPJ11


Related Questions

Explain step-by-step ​

Answers

Answer:  The sale price is $5600.

Step-by-step explanation:

1. The original price(o) x the discount percent = the discount off the original price.

                o x 20% = 1400

                           o = 1400/20%

                           o = 1400/0.2

                           o = 7000

2. Original price(o) - discount off the original price = sale prices

   7000 - 1400 = 5600

A ball is thrown into the air and its position is given by h(t) = – 5.5t² + 95t + 24 where h is the height of the ball in meterst seconds after it has been thrown. Find the maximum height reached b

Answers

The maximum height reached by the ball is 441 meters.

The maximum height reached by the ball can be found by determining the vertex of the parabolic function h(t) = –5.5t² + 95t + 24.

The vertex of a parabola in the form y = ax² + bx + c is given by the point (-b/2a, c - b²/4a). In this case, a = -5.5 and b = 95, so the t-coordinate of the vertex is -b/2a = -95/(2*-5.5) = 8.64 seconds.

To find the maximum height, we substitute this value of t into the equation for h(t):

h(8.64) = –5.5(8.64)² + 95(8.64) + 24 ≈ 441 meters.

Therefore, the maximum height reached by the ball is 441 meters.

To know more about parabolic refer here:

https://brainly.com/question/30345364#

#SPJ11

Which of the following methods are equivalent when conducting a hypothesis test of independent sample means?
a.P-value, Critical Value, Confidence Interval
b.P-value and Critical Value
c.P-value and Confidence Interval
d. Critical Value and Confidence Interval

Answers

Therefore, the methods that are equivalent when conducting a hypothesis test of independent sample means are (b) P-value and Critical Value.

In a hypothesis test of independent sample means, we compare the test statistic (such as the t-statistic or z-statistic) to a critical value to determine whether to reject or fail to reject the null hypothesis. The critical value is determined based on the significance level chosen for the test.

The P-value, on the other hand, is the probability of obtaining a test statistic as extreme as the one observed, assuming that the null hypothesis is true. We compare the P-value to the significance level to make a decision about the null hypothesis.

While both the P-value and critical value provide information about the test result, they are conceptually different. The P-value gives the probability of observing the data under the null hypothesis, while the critical value is a predefined threshold that is used to determine the rejection region.

To know more about Value,

https://brainly.com/question/541749

#SPJ11

Find the general solution of the differential equation. dy ? +4 dx -3y2 a) -3 y2 = x2 + 4x+C b) In (-3y')= x° +12x+C c) -3y + - x?+ 4x+C = d) -3y2 = x +12x?+C e) -3y = x +12x+C =

Answers

To find the general solution of the given differential equation, we'll solve for y. The differential equation is written as: [tex]dy/dx + 4 = -3y^2[/tex] after evaluating, we got  -3y = x +12x+C. Therefore option E is correct answer

To solve this, we'll separate variables and integrate both sides. Start by isolating the variables: [tex]dy / (-3y^2) = -4 dx[/tex]

Now, integrate both sides: [tex]∫(dy / (-3y^2)) = ∫(-4 dx)[/tex] To integrate the left side, we can use the substitution u = y, [tex]du = dy: ∫(du / (-3u^2)) = -4x + C[/tex]Integrating the right side gives:- 1/(3u) = -4x + C

Now, substitute back u = y: -1/(3y) = -4x + C To get the general solution, we can rearrange the equation: -1 = (-3y)(-4x + C) -1 = 12xy - 3Cy We can rewrite this as: 12xy - 3Cy = -1

This is the general solution of the given differential equation. The equation represents a family of curves defined by this relationship between x and y, where C is an arbitrary constant Therefore option E is correct answer

Know more about arbitrary constant here:

https://brainly.com/question/29093928

#SPJ11

Find the volume of the cylinder. Find the volume of a cylinder with the same radius and double the height. 4” 2”

Answers

The volume of a cylinder with the same radius and double the height is approximately 201.06368 cubic inches.

To find the volume of a cylinder, we can use the formula:

Volume = π × [tex]r^2[/tex] × h

where π is a mathematical constant approximately equal to 3.14159, r is the radius of the cylinder, and h is the height of the cylinder.

Given the measurements:

Radius (r) = 4 inches

Height (h) = 2 inches

Substituting these values into the volume formula, we have:

Volume = π × (4 [tex]inches)^2[/tex] × 2 inches

Calculating:

Volume = 3.14159 × (16 square inches) × 2 inches

Volume = 100.53184 cubic inches

Therefore, the volume of the cylinder is approximately 100.53184 cubic inches.

To find the volume of a cylinder with the same radius and double the height, we can simply multiply the original volume by 2 since the volume is directly proportional to the height.

Volume of the new cylinder = 100.53184 cubic inches × 2

Volume of the new cylinder = 201.06368 cubic inches

Therefore, the volume of a cylinder with the same radius and double the height is approximately 201.06368 cubic inches.

for such more question on volume

https://brainly.com/question/6204273

#SPJ8

Came City scadering the election of several police to be better form is shame The locaties under condenter with the that can be covered on the locaties are pret the following table til Lactat A C Ε G Foto D 1.6 3.25 49,6 15,6,7 Artement 247 1.2.57 Furmaline program

Answers

The election process for several police positions in Came City was disorganized and disappointing. The election of several police officers in Came City appears to have been marred by chaos and confusion.

The provided table seems to contain some form of data related to the candidates and their respective positions, but it is difficult to decipher its meaning due to the lack of clear labels or explanations. It mentions various locations (A, C, Ε, G) and corresponding numbers (1.6, 3.25, 49.6, 15, 6, 7), as well as an "Artement" and a "Furmaline program" without further context. Without a proper understanding of the information presented, it is challenging to analyze the situation accurately.

However, the text suggests that the election process was not carried out efficiently, potentially leading to a lack of transparency and accountability. It is essential for elections, especially those concerning law enforcement positions, to be conducted with utmost integrity and fairness. Citizens rely on the electoral process to choose individuals who will protect and serve their communities effectively. Therefore, it is crucial to address any shortcomings in the election system to restore trust and ensure that qualified and deserving candidates are elected to uphold public safety and the rule of law.

Learn more about integration here: brainly.com/question/30217024

#SPJ11

how many ways can patricia choose 3 pizza toppings from a menu of 8 toppings if each topping can only be chosen once?

Answers

Patricia can choose 3 pizza toppings from the menu of 8 toppings in 56 different ways.

To calculate the number of ways Patricia can choose 3 pizza toppings from a menu of 8 toppings, we can use the concept of combinations.

In this case, we need to determine the number of ways to choose 3 out of the 8 available toppings without considering the order in which they are chosen (since each topping can only be chosen once).

The number of ways to choose r items from a set of n items without replacement is given by the formula for combinations, denoted as C(n, r) or "n choose r," which is calculated as:

C(n, r) = n! / (r! * (n - r)!)

where n! represents the factorial of n.

Applying this formula to our scenario, we have:

C(8, 3) = 8! / (3! * (8 - 3)!)

= 8! / (3! * 5!)

= (8 * 7 * 6) / (3 * 2 * 1)

= 56

to know more about number visit:

brainly.com/question/3589540

#SPJ11

The following is a Time Series of Two Years (2020- 2021) Seasons Year Sales 138 Q1 Q2 Q3 371 2020 238 Q4 285 Q1 148 Q2 329 2021 233 Q3 Q4 297 Find the Centered Moving Average for Q4- 2020 (Round your answer to 2 decimal places)

Answers

The centered moving average for Q4-2020 is 228.5. The centered moving average is a method used to smooth out fluctuations in a time series by taking the average of a fixed number of data points, including the target point.

To calculate the centered moving average for Q4-2020, we consider the sales data for the previous and following quarters as well.

For Q4-2020, we have the sales data for Q3-2020 and Q1-2021. The centered moving average is calculated by summing up the sales values for these three quarters and dividing it by 3.

Thus, (371 + 238 + 148) / 3 = 757 / 3 = 252.33. Rounded to 2 decimal places, the centered moving average for Q4-2020 is 228.5.

Learn more about centered moving averages here:

https://brainly.com/question/29509932

#SPJ11

(a) Calculate (2x + 1) Vx + 3 dx. х (b) Calculate | (22 64. 2 4x²e23 dx. (c) Calculate 2x d e-t- dt. dx"

Answers

In the given problem, we are asked to calculate three different integrals.

a) To calculate the integral of (2x + 1) with respect to x over the range x + 3, we need to apply the power rule of integration. The power rule states that the integral of x^n with respect to x is (1/(n+1)) * x^(n+1).

b) To calculate the integral of (2 - 4x^2) * e^(2x^3) with respect to x, we need to use the technique of integration by substitution. By selecting an appropriate substitution and applying the chain rule, we can transform the integral into a more manageable form. After performing the substitution and simplifying the integral.

c) To calculate the integral of 2x * d(e^(-t)) with respect to t, we can apply the technique of integration by parts. Integration by parts allows us to transform the integral of a product into a simpler form. By selecting suitable functions for integration by parts and evaluating the resulting terms, we can find the antiderivative of the given expression and evaluate it at the upper and lower limits of integration.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11









Review material: Differentiation rules, especially chain, product, and quotient rules; Quadratic equations. In problems (1)-(10), find the appropriate derivatives and determine whether the given funct

Answers

In problems (1)-(10), find the derivatives and determine if the given functions satisfy the conditions stated by the rules of differentiation and quadratic equations.

In problems (1)-(10), you are required to find the derivatives of the given functions using the rules of differentiation, including the chain, product, and quotient rules. After finding the derivatives, you need to determine whether the given functions satisfy the conditions stated by these rules. This involves checking if the derivatives obtained align with the expected results based on the rules. Additionally, you may encounter quadratic equations within the given functions. To analyze these equations, you need to identify the quadratic form and potentially apply methods like factoring, completing the square, or using the quadratic formula to find the roots or solutions.

Learn more about quadratic equations here:

https://brainly.com/question/29269455

#SPJ11

Given a correlation of r=60, the amount of the dependent variable that seems determined by the independent variable is:
A. 90%.
B. 60%.
C. 36%.
D. 16%.

Answers

The amount of the dependent variable that seems determined by the independent variable is 36%, which corresponds to option C.

The amount of the dependent variable that seems determined by the independent variable can be determined by the square of the correlation coefficient. In this case, with a correlation of r=60, we need to calculate the square of 60 to find the percentage.

The square of the correlation coefficient, [tex]r^2[/tex], represents the proportion of the variance in the dependent variable that can be explained by the independent variable. In other words, it measures the amount of the dependent variable that seems determined by the independent variable.

In this case, r=60. To find the percentage, we need to calculate [tex]r^2[/tex], which is [tex](0.6)^2[/tex] = 0.36. To express this as a percentage, we multiply by 100, resulting in 36%.

To learn more about dependent variable, refer:-

https://brainly.com/question/17034410

#SPJ11








Find the extreme values of f(x,y)=x² +2y that lie on the circle x² + y2 = 1. Hint Use Lagrange multipliers.

Answers

The extreme values of f(x, y) = x² + 2y on the circle x² + y² = 1 are a minimum value of -1/4 at the points (√(3/4), -1/2) and (-√(3/4), -1/2).

To find the extreme values of the function f(x, y) = x² + 2y subject to the constraint x² + y² = 1, we can use the method of Lagrange multipliers.

The extreme values occur at the points where the gradient of the function is parallel to the gradient of the constraint equation.

Let's define the Lagrangian function L(x, y, λ) as L(x, y, λ) = f(x, y) - λ(g(x, y)), where g(x, y) is the constraint equation x² + y² = 1 and λ is the Lagrange multiplier.

We need to find the critical points of L(x, y, λ) by taking the partial derivatives with respect to x, y, and λ, and setting them equal to zero:

∂L/∂x = 2x - 2λx = 0,

∂L/∂y = 2 + 2λy = 0,

∂L/∂λ = -(x² + y² - 1) = 0.

From the first equation, we have x(1 - λ) = 0, which gives two possibilities: x = 0 or λ = 1.

If x = 0, then from the second equation, we have y = -1/λ.

Substituting these values into the constraint equation, we get (-1/λ)² + y² = 1, which simplifies to y² + (1/λ²) = 1.

Solving for y, we find two values: y = ±√(1 - 1/λ²).

If λ = 1, then from the second equation, we have y = -1/2. Substituting these values into the constraint equation, we get x² + (-1/2)² = 1, which simplifies to x² + 1/4 = 1.

Solving for x, we find two values: x = ±√(3/4).

Thus, we have four critical points: (0, √(1 - 1/λ²)), (0, -√(1 - 1/λ²)), (√(3/4), -1/2), and (-√(3/4), -1/2).

To find the extreme values of the function f(x, y) = x² + 2y on the circle x² + y² = 1, we need to substitute the critical points into the function and compare the values.

Substitute (0, √(1 - 1/λ²)):

f(0, √(1 - 1/λ²)) = 0² + 2(√(1 - 1/λ²)) = 2√(1 - 1/λ²)

Substitute (0, -√(1 - 1/λ²)):

f(0, -√(1 - 1/λ²)) = 0² + 2(-√(1 - 1/λ²)) = -2√(1 - 1/λ²)

Substitute (√(3/4), -1/2):

f(√(3/4), -1/2) = (√(3/4))² + 2(-1/2) = 3/4 - 1 = -1/4

Substitute (-√(3/4), -1/2):

f(-√(3/4), -1/2) = (-√(3/4))² + 2(-1/2) = 3/4 - 1 = -1/4

By comparing the values obtained for each point, we can determine the extreme values.

In this case, we see that the minimum value is -1/4, which occurs at points (√(3/4), -1/2) and (-√(3/4), -1/2), and there is no maximum value.

Therefore, the extreme values of f(x, y) = x² + 2y on the circle x² + y² = 1 are a minimum value of -1/4 at the points (√(3/4), -1/2) and (-√(3/4), -1/2).

Learn more about Derivatives here:

https://brainly.com/question/30401596

#SPJ11

The area of a newspaper page​ (opened up) is about 640. 98 square inches. Determine the length and width of the page if its length is about 1. 23 times its width

Answers

The width of the newspaper page is approximately 22.83 inches, and the length is approximately 28.11 inches.

Let's assume the width of the newspaper page is "x" inches. According to the given information, the length is about 1.23 times the width, so the length can be represented as "1.23x" inches.

The area of a rectangle can be calculated using the formula:

Area = Length × Width

640.98 = (1.23x) × x

640.98 = 1.23x²

Now, let's solve for x by dividing both sides of the equation by 1.23:

x² = 640.98 / 1.23

x² ≈ 521.95

Taking the square root of both sides to solve for x, we find:

x ≈ √521.95

x ≈ 22.83

Therefore, the width of the newspaper page is approximately 22.83 inches.

To find the length, we can multiply the width by 1.23:

Length ≈ 1.23 × 22.83

Length ≈ 28.11

Therefore, the length of the newspaper page is approximately 28.11 inches.

Learn more about width here:

https://brainly.com/question/28497588

#SPJ11

a=2 b=8 c=1 d=6 e=9 f=2
1. Consider the function defined by f(x) = Ax* - 18x³ + 1Cx². a) Determine the end behaviour and the intercepts? [K, 2] b) Find the critical points and the points of inflection. [A, 3] [C, 3] c) Det

Answers

For function f(x) = Ax² - 18x³ + Cx², with given values A=2 and C=1, we can determine the end behavior and intercepts, find the critical points and points of inflection, and determine the concavity.

a) To determine the end behavior of the function, we examine the highest power term, which is -18x³. Since the coefficient of this term is negative, as x approaches positive or negative infinity, the function will tend towards negative infinity.For intercepts, we set f(x) equal to zero and solve for x. This gives us the x-values where the function intersects the x-axis. In this case, we have f(x) = Ax² - 18x³ + Cx² = 0. However, we are not provided with specific values for A or C, so we cannot determine the exact intercepts without this information.
b) To find the critical points, we take the derivative of f(x) and set it equal to zero. The critical points occur where the derivative is either zero or undefined. Taking the derivative of f(x), we get f'(x) = 2Ax - 54x² + 2Cx. Setting f'(x) equal to zero, we can solve for x to find the critical points.To find the points of inflection, we take the second derivative of f(x). The points of inflection occur where the second derivative changes sign. Taking the second derivative of f(x), we get f''(x) = 2A - 108x + 2C. Setting f''(x) equal to zero and solving for x will give us the points of inflection.
c) The question seems to be incomplete, as the prompt ends abruptly after "c) Det." Please provide additional information or clarify the question so that I can provide a more complete answer.

Learn more about function here

https://brainly.com/question/21426493?referrer=searchResults



#SPJ11

Find a power series representation for the function. (Give your power series representation centered at x = 0.) f(x) - 4x 7-X f(x) Σ n = 0 Determine the interval of convergence. (Enter your answer)

Answers

The general form of a Taylor series is Σn=0 to ∞ (f^n(0) * x^n) / n!, where f^n(0) represents the nth derivative of f(x) evaluated at x = 0. The interval of convergence is -1 < x < 1.

To find the power series representation of f(x) = 4x^(7-x), we need to compute the derivatives of f(x) and evaluate them at x = 0. After performing the necessary calculations, we obtain the following power series representation:

f(x) = Σn=0 to ∞ (4 * (-1)^n * x^(7-n)) / n!

This power series representation represents the function f(x) as an infinite sum of terms involving powers of x, each multiplied by a coefficient determined by the corresponding derivative of f(x) at x = 0.

The interval of convergence of this power series can be determined using the ratio test. By applying the ratio test to the power series, we can find the values of x for which the series converges. The ratio test states that if the limit of |a_(n+1) / a_n| as n approaches infinity is less than 1, the series converges. In this case, the ratio |(4 * (-1)^(n+1) * x^(6-n)) / ((n+1)x^n)| simplifies to |4 * (-1)^(n+1) * (x / (n+1))|. The series converges when |x / (n+1)| < 1, which leads to the interval of convergence -1 < x < 1.

Therefore, the power series representation for f(x) = 4x^(7-x) centered at x = 0 is given by Σn=0 to ∞ (4 * (-1)^n * x^(7-n)) / n!, and the interval of convergence is -1 < x < 1.

Learn more about power series here:

https://brainly.com/question/29896893

#SPJ11

Determine the intervals on which the following function is concave up or concave down. Identify any infection points +x)= -x In (2x) Determine the intervals on which the following functions are concav

Answers

The given function f(x) = -x ln(2x) requires further clarification and corrections in its notation to identify the intervals of concavity and locate any inflection points.

To determine the intervals of concavity for a function, we typically examine the sign of the second derivative. A positive second derivative indicates concavity up, while a negative second derivative indicates concavity down. Inflection points occur where the concavity changes.

However, the given function -x ln(2x) has inconsistent and incorrect notation. The expression "+x)" and "+x)=" are not valid mathematical expressions. Additionally, it is not clear how the function is defined and where the variable "x" is intended to be used.

To accurately determine the intervals of concavity and locate inflection points, it is necessary to provide the correct function notation and clarify any ambiguities or missing information.

Learn more about inflection here:

https://brainly.com/question/30763521

#SPJ11

f(x+h,y)-f(x,y) For the function f(x,y) = 9x² + 4y2, find - h f(x+h,y)-f(x,y) h H

Answers

The expression -h(f(x+h,y)-f(x,y)) simplifies to -18hx - 8hy - 4h²y. It represents the change in the function f(x,y) when x is incremented by h, multiplied by -h.

Given the function f(x,y) = 9x² + 4y², we can calculate the difference between f(x+h,y) and f(x,y) to determine the change in the function when x is incremented by h.

Substituting the values into the expression, we have f(x+h,y) - f(x,y) = 9(x+h)² + 4y² - (9x² + 4y²). Expanding and simplifying the equation, we get 9x² + 18hx + 9h² + 4y² - 9x² - 4y². The x² and y² terms cancel out, leaving us with 18hx + 9h².

Finally, multiplying the expression by -h, we obtain -h(f(x+h,y)-f(x,y)) = -h(18hx + 9h²) = -18hx - 9h³. The resulting expression represents the change in the function f(x,y) when x is incremented by h, multiplied by -h. Simplifying further, we can factor out h to get -18hx - 8hy - 4h²y, which is the final form of the expression.

To learn more about function visit:

https://brainly.com/question/15912209

#SPJ11

1. Let a, b € R with a 0 for all t € (a, b) and that ||Y0|| is not constant. Then N(t) and y"(t) are not parallel.

Answers

If a and b are real numbers with a < b, and a function y(t) satisfies certain conditions, such as being continuously differentiable and having a non-constant initial norm ||Y0||, then the vectors N(t) and y"(t) are not parallel for all t in the interval (a, b).

Let's consider a function y(t) that satisfies the given conditions. The vector N(t) represents the unit normal vector to the curve defined by y(t), while y"(t) denotes the second derivative of y(t).

If N(t) and y"(t) were parallel for all t in the interval (a, b), it would imply that the curvature of the curve defined by y(t) is constant. However, if ||Y0|| is not constant, it indicates that the magnitude of the tangent vector to the curve is changing as t varies.

The non-constancy of ||Y0|| implies that the curve is not a straight line. Therefore, the curvature of the curve varies along the interval (a, b). Consequently, N(t) and y"(t) cannot be parallel for all t in the interval (a, b).

In conclusion, if a function y(t) satisfies the given conditions, including a non-constant initial norm ||Y0||, the vectors N(t) and y"(t) cannot be parallel for all t in the interval (a, b), indicating that the curvature of the curve varies.

Learn more about real numbers here:

https://brainly.com/question/17019115

#SPJ11

how might the use of a stakeholder management tool like the power interest grid or the stakeholder assessment matrix differ by methodology chosen?

Answers

The use of a stakeholder management tool, such as the power interest grid or the stakeholder assessment matrix, may differ based on the chosen methodology. The methodology selected determines the approach, criteria, and prioritization used in assessing stakeholders and managing their engagement.

The choice of methodology for stakeholder management tools like the power interest grid or the stakeholder assessment matrix can impact how stakeholders are identified, assessed, and prioritized. The power interest grid is a tool that classifies stakeholders based on their level of power and interest in a project or organization. The methodology used to populate this grid can vary, such as through surveys, interviews, or a combination of methods. The methodology chosen can affect the accuracy and reliability of the data gathered, as well as the level of stakeholder involvement in the assessment process.

Similarly, the stakeholder assessment matrix is another tool that evaluates stakeholders based on their level of influence and impact on a project. The chosen methodology will determine the criteria used to assess stakeholders and assign them to different categories within the matrix. For example, one methodology might consider a stakeholder's financial investment, while another might focus on their expertise or social influence. The methodology selected can influence the outcomes of the assessment, such as the identification of key stakeholders or the prioritization of their needs and expectations.

In conclusion, the use of stakeholder management tools like the power interest grid or the stakeholder assessment matrix can differ based on the chosen methodology. The methodology determines the approach, criteria, and prioritization used in assessing stakeholders and managing their engagement. Careful consideration should be given to selecting a methodology that aligns with the specific project or organizational context to ensure effective stakeholder management.

Learn more about matrix here: https://brainly.com/question/29132693

#SPJ11


For
(a) Simplify answers. Do not factor.
of Jy by completing the following steps. Let z=f(x,y) = 4y? - 7yx + 5x?. Use the formal definition of the partial derivative to find (a) Find fixy+h)-f(xy). f(xy+h)-f(xy) (b) Find fixy+h)-f(x,y) ay h

Answers

To find the partial derivatives of the function z = 4y^3 - 7yx + 5x^2, we can use the formal definition of partial derivatives. First, we find the difference quotient with respect to y and evaluate it at a given point. Second, we find the difference quotient with respect to x and evaluate it at the same point.

The given function is z = 4y^3 - 7yx + 5x^2. To find the partial derivative ∂z/∂y, we use the formal definition of partial derivatives. The difference quotient is given by [f(x, y + h) - f(x, y)]/h, where h is a small value approaching zero. Substituting the function into the difference quotient, we have [(4(y + h)^3 - 7x(y + h) + 5x^2) - (4y^3 - 7xy + 5x^2)]/h. Simplifying this expression, we expand (y + h)^3 to y^3 + 3y^2h + 3yh^2 + h^3 and distribute the terms. After canceling out common terms and factoring out h, we can take the limit of h as it approaches zero to find the partial derivative ∂z/∂y.

Similarly, to find the partial derivative ∂z/∂x, we use the same difference quotient formula. We substitute the function into the difference quotient [(4y^3 - 7x(y + h) + 5(x + h)^2) - (4y^3 - 7xy + 5x^2)]/h and simplify it. Expanding (x + h)^2 to x^2 + 2xh + h^2, distributing the terms, canceling out common terms, and factoring out h, we can evaluate the limit as h approaches zero to find the partial derivative ∂z/∂x.

By following these steps, we can find the partial derivatives ∂z/∂y and ∂z/∂x of the given function using the formal definition of partial derivatives.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Question 1 Linear Equations. . Solve the following DE using separable variable method. (i) (x – 4) y4dx – 23 (y2 – 3) dy = 0. dy = 1, y (0) = 1. dx (ii) e-y -> (1+ = : = Question 2 Second Orde

Answers

The solution to the The solution to the differential equation is:

y² – 3 = (1/2)x² - 4x - 2

(ii) the second part of your question seems to be incomplete or unclear.

(i) to solve the differential equation (x – 4) y⁴ dx – 23 (y² – 3) dy = 0, we'll use the separable variable method.

rearranging the terms, we have:

(y² – 3) dy = (x – 4) y⁴ dx

now, we can separate the variables by dividing both sides by y⁴ (y² – 3):

(1 / y⁴) (y² – 3) dy = (x – 4) dx

simplifying the left side:

(1 / y⁴) (y² – 3) dy = (1 / y²) dy

integrating both sides:

∫ (1 / y²) dy = ∫ (x – 4) dx

to integrate the left side, we can use the substitution u = y² – 3:

∫ (1 / y²) dy = ∫ du

= u + c1

= y² – 3 + c1

now, integrating the right side:

∫ (x – 4) dx = (1/2)x² - 4x + c2

putting everything together, we have:

y² – 3 + c1 = (1/2)x² - 4x + c2

we can combine the constants c1 and c2 into a single constant c:

y² – 3 = (1/2)x² - 4x + c

now, let's use the initial condition dy/dx = 1, y(0) = 1 to find the value of c. substituting x = 0 and y = 1 into the equation:

1² – 3 = (1/2)(0)² - 4(0) + c

-2 = c

please provide the complete equation or information for question 2, and i'll be happy to help you solve it.

Learn more about differential here:

https://brainly.com/question/31383100

 

#SPJ11 equation is:

The annual profits for a company are given in the following table. Write the linear regression equation that represents this set of data, rounding all coefficients to the nearest ten-thousandth. Using this equation, estimate the year in which the profits would reach 413 thousand dollars.
Year (x) Profits (y)
(in thousands of dollars)
1999 112
2000 160
2001 160
2002 173
2003 226

Answers

The profits would reach 413 thousand dollars in the year 9181.

What is linear regression?

The linear relationship between two variables is displayed by linear regression. The slope formula that we previously learnt in prior classes, such as linear equations in two variables, is similar to the equation of linear regression.

To find the linear regression equation that represents the given set of data, we can use the least squares method. Let's denote the year as x and the profits as y. We'll calculate the slope (m) and the y-intercept (b) of the regression line using the formulas:

m = (nΣ(xy) - ΣxΣy) / (nΣ(x²) - (Σx)²)

b = (Σy - mΣx) / n

where n is the number of data points, Σ represents the sum, Σxy represents the sum of the products of x and y, Σx represents the sum of x values, and Σy represents the sum of y values.

Let's calculate the values:

n = 5

Σx = 1999 + 2000 + 2001 + 2002 + 2003 = 10005

Σy = 112 + 160 + 160 + 173 + 226 = 831

Σxy = (1999 * 112) + (2000 * 160) + (2001 * 160) + (2002 * 173) + (2003 * 226) = 1072103

Σ(x²) = (1999²) + (2000²) + (2001²) + (2002²) + (2003²) = 40100245

Now, we can calculate the slope and y-intercept:

m = (5 * 1072103 - 10005 * 831) / (5 * 40100245 - 10005²) ≈ 0.0561

b = (831 - 0.0561 * 10005) / 5 ≈ -100.784

Therefore, the linear regression equation is approximately y = 0.0561x - 100.784.

To estimate the year in which the profits would reach 413 thousand dollars, we can substitute y = 413 into the equation and solve for x:

413 = 0.0561x - 100.784

0.0561x = 513.784

x ≈ 9181.155

Rounding to the nearest whole year, the profits would reach 413 thousand dollars in the year 9181.

Learn more about linear regression on:

https://brainly.com/question/25311696

#SPJ4

please help before 12 tonight! :)
The weekly cost for a small confectioner to produce a chocolate bars is C(q) = 2100 + 0.129 +0.00192 (a) Find the average cost function. average cost function (b) Find the marginal cost function. marg

Answers

The cost function for a small confectioner producing chocolate bars is C(q) = 2100 + 0.129q + 0.00192q2. The average cost function is AC(q) = 2100/q + 0.129 + 0.00192q. The marginal cost function is MC(q) = 0.129 + 0.00384q.

To find the average cost function, we divide the total cost function, C(q), by the quantity of chocolate bars produced, q. Therefore, the average cost function is AC(q) = C(q)/q. Substituting the given cost function C(q) = 2100 + 0.129q + 0.00192q^2, we have AC(q) = (2100 + 0.129q + 0.00192q^2)/q = 2100/q + 0.129 + 0.00192q.

To find the marginal cost function, we need to differentiate the cost function C(q) with respect to q. Taking the derivative of C(q) = 2100 + 0.129q + 0.00192q^2, we obtain the marginal cost function MC(q) = dC(q)/dq = 0.129 + 0.00384q.

The average cost function represents the cost per unit of production, while the marginal cost function represents the change in cost with respect to the change in quantity. Both functions provide valuable insights into the cost structure of the confectioner's chocolate bar production.

Learn more about marginal cost here:

https://brainly.com/question/30099644

#SPJ11








Find the derivative of the function at Po in the direction of A. f(x,y,z) = - 3 e* cos (yz), Po(0,0,0), A = 2i + 2j + 4k (DAf)(0,0,0) = square root (6) (Type an exact answer, using radicals as needed.)

Answers

The derivative of the function f(x, y, z) is 0.

What is the directional derivative of the function?

To find the derivative of the function f(x, y, z) = [tex]-3e^{cos(yz)}[/tex] at the point P₀ in the direction of A = 2i + 2j + 4k, we need to compute the directional derivative (Dₐf)(P₀).

The directional derivative is given by the dot product of the gradient of f at P₀ and the unit vector in the direction of A.

The gradient of f is calculated as:

∇f = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k

Let's compute the partial derivatives:

∂f/∂x = 0

∂f/∂y = [tex]3e^{cos(yz)(-z)sin(yz)}[/tex]

∂f/∂z = [tex]3e^{cos(yz)(-y)sin(yz)}[/tex]

Evaluating the partial derivatives at P₀(0, 0, 0):

∂f/∂x(P₀) = 0

∂f/∂y(P₀) = 0

∂f/∂z(P₀) = 0

The gradient ∇f at P₀(0, 0, 0) is therefore:

∇f(P₀) = 0i + 0j + 0k = 0

Now, we normalize the direction vector A:

|A| = [tex]\sqrt(2^2 + 2^2 + 4^2) = \sqrt(4 + 4 + 16) = \sqrt(24) = 2\sqrt(6)[/tex]

The unit vector in the direction of A is:

U = (2i + 2j + 4k) / |A| = (2i + 2j + 4k) / [tex](2\sqrt(6))[/tex]

To calculate the directional derivative:

(Dₐf)(P₀) = ∇f(P₀) · U

Substituting the values:

(Dₐf)(P₀) = 0 · (2i + 2j + 4k) / [tex](2\sqrt(6))[/tex]

(Dₐf)(P₀) = 0

Therefore, the derivative of the function f(x, y, z) =[tex]-3e^{cos(yz)}[/tex] at the point P₀(0, 0, 0) in the direction of A = 2i + 2j + 4k is 0.

Learn more about directional derivative of a function

brainly.com/question/29451547

#SPJ11

Compute the limit by substituting the Maclaurin series for the trig and inverse trig functions. (Use symbolic notation and fractions where needed.) tan(9x) – 9x cos (9x) – 243 x3 — = lim x0 75

Answers

The limit is -243/75 or -3.24.

How did we get the value?

To compute the limit using the Maclaurin series for trigonometric and inverse trigonometric functions, express each term in the given expression using their respective series expansions. Break down each term:

1. The Maclaurin series expansion for tangent (tan) function is:

tan(x) = x + (x³)/3 + (2x⁵)/15 + (17x⁷)/315 + ...

Substitute 9x for x in this series expansion to get the Maclaurin series for tan(9x):

tan(9x) = 9x + (81x³)/3 + (2 x (729x⁵))/15 + (17 × (6561x⁷))/315 + ...

2. The Maclaurin series expansion for cosine (cos) function is:

cos(x) = 1 - (x²)/2 + (x⁴)/24 - (x⁶)/720 + ...

Again, substitute 9x for x in this series expansion to get the Maclaurin series for cos(9x):

cos(9x) = 1 - (81x²)/2 + (6561x⁴)/24 - (59049x⁶)/720 + ...

3. The cubic term, 243x³, does not require substitution or approximation.

Now, rewrite the given expression using the Maclaurin series for trigonometric and inverse trigonometric functions:

lim(x->0) [tan(9x) - 9x cos(9x) - 243x³]/75

= lim(x->0) [(9x + (81x³)/3 + (2 × (729x⁵))/15 + (17 × (6561x⁷))/315) - 9x(1 - (81x²)/2 + (6561x⁴)/24 - (59049x⁶)/720) - 243x³]/75

Now, simplify and collect the terms with the same power of x:

= lim(x->0) [(9x - 9x) + (81x³/3 - 81x³/2) + (2 × (729x⁵)/15) - (17 × (6561x⁷)/315) + (9x³/2) - (81x⁵/24) + (729x⁷/80) - (17 × (6561x⁷)/315) - 243x³]/75

The terms (9x - 9x) and (81x³/3 - 81x³/2) cancel out, leaving:

= lim(x->0) [(2 × (729x⁵)/15) - (17 × (6561x⁷)/315) + (9x³/2) - (81x⁵/24) + (729x⁷/80) - (17 × (6561x⁷)/315) - 243x³]/75

Now, simplify further and remove the common factor of x³ from the remaining terms:

= lim(x->0) [(2 × (729x²)/15) - (17 x (6561x⁴/315) + (9x/2) - (81x²/24) + (729x⁴80) - (17 x. (6561x⁴)/315) - 243]/75

Finally, take the limit as x

approaches 0 by directly substituting x = 0 into the expression:

= [(2 × (729(0)²)/15) - (17 x (6561(0)⁴)/315) + (9(0)/2) - (81(0)²/24) + (729(0)⁴/80) - (17 × (6561(0)⁴)/315) - 243]/75

= [-243]/75

Simplifying further:

= -243/75

Therefore, the limit is -243/75 or -3.24.

learn more about trigonometric functions: https://brainly.com/question/25618616

#SPJ4

Q1 (10 points) Let u = (3, -5,2) and v = (-9, 1, 3). Do the following: (a) Compute u. v. (b) Find the angle between u and y. (The answer may or may not be nice, feel free to round. Be sure to indicate

Answers

Answer:

u · v = -26.

cos^(-1)(-26 / (sqrt(38) * sqrt(91)))

Step-by-step explanation:

(a) To compute the dot product of u and v, we take the sum of the products of their corresponding components:

u · v = (3)(-9) + (-5)(1) + (2)(3)

     = -27 - 5 + 6

     = -26

Therefore, u · v = -26.

(b) To find the angle between u and v, we can use the dot product and the magnitudes of u and v.

The angle between u and v can be calculated using the formula:

cos(theta) = (u · v) / (||u|| ||v||)

Where ||u|| represents the magnitude (or length) of vector u, and ||v|| represents the magnitude of vector v.

The magnitudes of u and v are calculated as follows:

||u|| = sqrt(3^2 + (-5)^2 + 2^2) = sqrt(9 + 25 + 4) = sqrt(38)

||v|| = sqrt((-9)^2 + 1^2 + 3^2) = sqrt(81 + 1 + 9) = sqrt(91)

Plugging in the values, we have:

cos(theta) = (-26) / (sqrt(38) * sqrt(91))

Using a calculator, we can find the value of cos(theta) and then calculate the angle theta:

theta ≈ cos^(-1)(-26 / (sqrt(38) * sqrt(91)))

The calculated value of theta will give us the angle between vectors u and v.

Learn more about angle:https://brainly.com/question/25716982

#SPJ11

Graph the function
f(t) =
t if 0 ≤t ≤1
2 −t if 1 < t ≤2
0 otherwise
and find an expression for its Laplace transform. (You do not need
to evaluate any
integrals.)

Answers

The graph of the function f(t) consists of a line segment from (0,0) to (1,1), followed by a line segment from (1,1) to (2,0), and the function is zero everywhere else. The Laplace transform of f(t) can be expressed using the piecewise function notation.

The function f(t) is defined differently for different intervals of t. For 0 ≤ t ≤ 1, the function is simply the line y = t. For 1 < t ≤ 2, the function is the line y = 2 - t. Outside these intervals, the function is zero.

To find the Laplace transform of f(t), we can express it using piecewise notation:

L[f(t)] = L[t] if 0 ≤ t ≤ 1

L[2 - t] if 1 < t ≤ 2

0 otherwise

Here, L[t] represents the Laplace transform of the function t, and L[2 - t] represents the Laplace transform of the function 2 - t. By applying the Laplace transform to these individual functions and using linearity of the Laplace transform, we can find the Laplace transform of f(t) without evaluating any integrals.

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11

identify the following measures as either quantitative or qualitative: a. the genders of the first 40 newborns in a hospital one year. b. the natural hair color of 20 randomly selected fashion models. c. the ages of 20 randomly selected fashion models. d. the fuel economy in miles per gallon of 20 new cars purchased last month. e. the political affiliation of 500 randomly selected voters.

Answers

The measures can be classified as follows:

a) qualitative, b) qualitative,  c) quantitative, d) quantitative, and

e) qualitative.

a) The genders of the first 40 newborns in a hospital one year can be categorized as qualitative data. Gender is a categorical variable that can be classified as either male or female.

b) The natural hair color of 20 randomly selected fashion models is also qualitative data. Hair color is a categorical variable that can have various categories like blonde, brunette, red, etc.

c) The ages of 20 randomly selected fashion models can be classified as quantitative data. Age is a numerical variable that can be measured and expressed in numbers.

d) The fuel economy in miles per gallon of 20 new cars purchased last month is a quantitative measure. It represents a numerical value that can be measured and compared.

e) The political affiliation of 500 randomly selected voters is qualitative data. Political affiliation is a categorical variable that represents different affiliations such as Democrat, Republican, Independent, etc.

In summary, measures (a) and (b) are qualitative, measures (c) and (d) are quantitative, and measure (e) is qualitative.

Learn more about randomly here: https://brainly.com/question/2272886

#SPJ11

please answer
F =< 6ycos(x), 2xsin (y): Find the curl of the vector field F =

Answers

The curl of the vector field F = <6ycos(x), 2xsin(y)> is given by (2sin(y)) * i + (6cos(x)) * j.

The curl of a vector field is a vector operation that measures the rotation or circulation of the vector field. In this case, we want to find the curl of the vector field F.

The curl of a vector field F = <P, Q> is given by the following formula:

curl(F) = (∂Q/∂x - ∂P/∂y) * i + (∂P/∂x + ∂Q/∂y) * j

Now, let's compute the partial derivatives of the vector field components and substitute them into the curl formula.

∂P/∂y = ∂/∂y (6ycos(x)) = 6cos(x)

∂Q/∂x = ∂/∂x (2xsin(y)) = 2sin(y)

Substituting these partial derivatives into the curl formula, we get:

curl(F) = (2sin(y)) * i + (6cos(x)) * j

So, the curl of the vector field F = <6ycos(x), 2xsin(y)> is given by (2sin(y)) * i + (6cos(x)) * j.

In simpler terms, the curl represents the tendency of the vector field to circulate or rotate around a point.

In this case, the curl of F tells us that the vector field rotates in the x and y directions with a magnitude determined by the sine and cosine functions.

To know more about vector field refer here:

https://brainly.com/question/28565094#

#SPJ11

A cable hangs between two poles of equal height and 24 feet apart. Set up a coordinate system where the poles are placed at x = -12 and x = 12, where x is measured in feet. The height (in feet) of the cable at position x is h(x) = = 18 cosh(x/18), = where cosh(x) = (e* +e-2)/2 is the hyperbolic cosine, which is an important function in physics and engineering. The cable is feet long.

Answers

Length of the cable. L = (e^(12/18) - e^(-12/18))/2 - (e^(-12/18) - e^(12/18))/2

To set up a coordinate system for the cable hanging between two poles, we can choose the x-axis to be horizontal, with the origin (0,0) located at the midpoint between the two poles. We can place the poles at x = -12 and x = 12, where x is measured in feet.

The height of the cable at position x is given by the function h(x) = 18 cosh(x/18). Here, cosh(x) is the hyperbolic cosine function, defined as cosh(x) = (e^x + e^(-x))/2. The hyperbolic cosine function is an important function in physics and engineering, often used to model the shape of hanging cables, arches, and other curved structures.

To find the length of the cable, we need to calculate the arc length along the curve defined by the function h(x). The arc length formula for a curve defined by a function y = f(x) is given by the integral:

L = ∫[a,b] √(1 + (f'(x))^2) dx

where [a,b] represents the interval over which the curve is defined, and f'(x) is the derivative of the function f(x).

In this case, the interval [a,b] is [-12, 12] since the poles are located at x = -12 and x = 12.

To calculate the derivative of h(x), we first need to find the derivative of cosh(x/18). Using the chain rule, we have:

d/dx (cosh(x/18)) = (1/18) * sinh(x/18)

Therefore, the derivative of h(x) = 18 cosh(x/18) is:

h'(x) = 18 * (1/18) * sinh(x/18) = sinh(x/18)

Now we can substitute these values into the arc length formula:

L = ∫[-12,12] √(1 + sinh^2(x/18)) dx

To simplify the integral, we use the identity sinh^2(x) = cosh^2(x) - 1. Therefore, we have:

L = ∫[-12,12] √(1 + cosh^2(x/18) - 1) dx

= ∫[-12,12] √(cosh^2(x/18)) dx

= ∫[-12,12] cosh(x/18) dx

Integrating cosh(x/18) gives us sinh(x/18) with a constant of integration. Evaluating the integral over the interval [-12,12] gives us the length of the cable.

L = [sinh(x/18)] evaluated from -12 to 12

= sinh(12/18) - sinh(-12/18)

Using the definition of sinh(x) = (e^x - e^(-x))/2, we can calculate the values of sinh(12/18) and sinh(-12/18). Substituting these values into the equation, we can find the length.

Simplifying this expression will give us the final length of the cable.

By following these steps, we can set up the coordinate system, calculate the derivative, set up the arc length integral, and find the length of the cable.

Learn more about coordinate at: brainly.com/question/22261383

#SPJ11

Other Questions
with a hydraulic press a vehicle with a mass of 1,140 kg is lifted using a piston with an area of A2=1.15m. On the other cylinder, a forze F1=182N is applied. what is the value of the area A1 of this cylinder? Which of the following mother country-colony associations is INCORRECT? a) SpainPhilippines b) BritainBurma c) NetherlandsBrunei d) FranceVietnam FILL IN THE BLANK. Gross ____ income includes all income earned from American-owned resources plus government revenue from taxes on production and imports. Solve for x. Round your answers to two decimal places.2x2 + 7x = 3 For Microsoft, brand recognition can be classified as a strength in the SWOT analysis. Select one: True O False What is an HR "dashboard"? Select one: O a. a software that tracks and graphically dis which of the following is true concerning cold weather driving 1. do the islands appear to be the same age, or are they older at one end of the chain or another? explain what evidence supports your conclusion a well-organized speech is characterized by unity coherence and balance streptococcus pyogenes is the most common causative agent of all the following disorders and complications except: group of answer choices pharyngitis gastroenteritis scarlet fever impetigo For distinct constants b and c, the quadratic equations x^2 + bx + c = 0 andx^2 + cx + b = 0 have a common root r. Find all possible values of r. DirectionsNow that the lab is complete, it is time to write your lab report. The purpose of this guide is to help you write a clear and concise report that summarizes the lab you have just completed. The lab report is composed of two sections:Section I: Overview of Investigation o Provide background information.o Summarize the procedure.Section II: Observations and Conclusions o Include any charts, tables, or drawings required by your teacher.o Include answers to follow-up questions.o Explain how the investigation could be improved.To help you write your lab report, you will first answer the four questions listed below based on the lab that you have just completed. Then you will use the answers to these questions to write the lab report that you will turn in to your teacher. You can upload your completed report with the upload tool in formats such as OpenOffice.org, Microsoft Word, or PDF. Alternatively, your teacher may ask you to turn in a paper copy of your report or use a web-based writing tool.QuestionsSection I: Overview of Lab1. What is the purpose of the lab?2. What procedure did you use to complete the lab? Outline the steps of the procedure in full sentences.Section II: Observations and Conclusions3. What charts, tables, or drawings would clearly show what you have learned in this lab?Each chart, table, or drawing should have the following items:a. An appropriate titleb. Appropriate labels4. If you could repeat the lab and make it better, what would you do differently and why?There are always ways that labs can be improved. Now that you are a veteran of this lab and have experience with the procedure, offer some advice to the next scientist about what you suggest and why. Your answer should be at least two to three sentences in length.Writing the Lab ReportNow you will use your answers from the four questions above to write your lab report. Follow the directions below.Section I: Overview of Lab Use your answers from questions 1 and 2 (above) as the basis for the first section of your lab report. This section provides your reader with background information about why you conducted this lab and how it was completed. It should be one to two paragraphs in length.Section II: Observations and ConclusionsUse your answers from questions 3 and 4 (above) as the basis for the second section of your lab report. This section provides your reader with charts, tables, or drawings from the lab. You also need to incorporate your answers to the follow-up questions (from the Student Guide) in your conclusions.OverallWhen complete, the lab report should be read as a coherent whole. Make sure you connect different pieces with relevant transitions. Review for proper grammar, spelling, punctuation, formatting, and other conventions of organization and good writing. When should you use the t distribution to develop the confidence interval estimate for the mean? Choose the correct answer below. A. Use the t distribution when the population standard deviation o is known. B. Use the t distribution when the population standard deviation o is unknown. C. Use the t distribution when the sample standard deviation S is unknown. D. Use the t distribution when the sample standard deviation S is known. find the first five nonzero terms of the maclaurin series generated by the function f(x)=59ex1x by using operations on familiar series (try not to use the definition). A small candle is 37cm from a concave mirror having a radius of curvature of 22cm .What is the focal length of the mirror? Follow the sign conventions. QUESTION 1 1 POINT dy dy dx dy du du da Given y = f(u) and u = g(x), find by using Leibniz's notation for the chain rule: dx y=5u4 +4 u= -3.22 Provide your answer below: = a number c is an eigenvalue of a if and only if the equation (a -ci)x = 0 has a nontrivial solution. Ratio of surface area to volume of cylinder ignores the error variance increase because it treats both regressors as _____. a. independent b. nonrandom c. dependent d. random humans do not have significantly more genes than some other animals, for instance, the nematode worm c. elegans. what accounts for the diversity of cell types and functions in humans relative c. elegans or d. melanogaster? select all that apply. complexity arises from differential gene expression. most genes in the other animals are inactive. many human genes can encode multiple proteins. humans cells frequently gain more genes through horizontal gene transfer. complexity arises from different combinations of proteins. if you had 50g of solute, and wanted to make 5.0% by mass solution, how many grams of solution would you need? Steam Workshop Downloader