Round to the nearest tenth.

Round To The Nearest Tenth.

Answers

Answer 1

Answer:

45 2/3, or 45.666666..., rounded to the nearest tenth is 45.7.


Related Questions

Which of the following formulas is the correct one to calculate the variance of a probability distribution?μ = nπσ2 = Σ[(x - μ)2 P(X)]number of trials and P(success)

Answers

The correct formula to calculate the variance of a probability distribution is σ2 = Σ[(x - μ)2 P(X)].

The formula is σ2 = Σ[(x - μ)2 P(X)],

where σ2 represents the variance, Σ represents the sum of, x represents the possible outcomes, μ represents the mean or expected value of the distribution, and P(X) represents the probability of each outcome.

The number of trials and the probability of success are not directly involved in this formula, but they may be used to calculate the probabilities of each outcome.

Learn more about "variance": https://brainly.com/question/9304306

#SPJ11

Need help asap I don’t understand at all please nd thanks

Answers

The two points that a line of best fit would go through would be B. (3, 5) and ( 5, 6 ).

Why would a line of best fit go through these ?

The line of best fit is determined by the data points that have the least sum of squared distances from the line. These chosen points provide a clear representation of the general trend of the data and effectively facilitate precise future predictions concerning upcoming data points.

The line of best fit would therefore go through (3, 5) and ( 5, 6 ) because it would lead to four points being above the line, and four points being below which would be a good line of best fit.

Find out more on lines of best fit at https://brainly.com/question/17261411

#SPJ1

You flip a coin.




What is P(heads)?

Answers

The calculated value of the probability P(head) is 0.5 i.e. one half

How to determine P(heads).

From the question, we have the following parameters that can be used in our computation:

Sections = 2

Sections = head and tail

Using the above as a guide, we have the following:

Head = 1

When the head section is flipped, we have

P(head) = head/section

The required probability is

P(head) = 1/2

Evaluate

P(head) = 0.5

Hence, the value is 0.5

Read more probability at

https://brainly.com/question/24756209

#SPJ1

Pls Reply before tommorrow


1. A bathtub is being filled at a rate of 2.5 gallons per minute. The bathtub will

hold 20 gallons of water.

a. How long will it take to fill the bathtub?

b. Is the relationship described linear, inverse, exponential, or neither? Write

an equation relating the variables.

2. Suppose a single bacterium lands on one of your teeth and starts reproducing

by a factor of 4 every hour.

a. After how many hours will there be at least 1,000,000 bacteria in the new

colony?

b. Is the relationship described linear, inverse, exponential, or neither? Write

an equation relating the variables.

Answers

1.

a.

It will take 8 minutes to fill the bathtub.

b.

The relationship described is linear.

The equation is 20 = 2.5t + 0.

2.

a.

It will take approximately 4.807 hours to have at least 1,000,000 bacteria in the new colony.

b.

The relationship described is exponential,

The equation is Number of bacteria = initial number of bacteria x (reproduction factor)^(time/hour)

We have,

1.

a.

To fill the bathtub, we need 20 gallons of water.

The rate at which the water is being filled is 2.5 gallons per minute.

Using the formula:

time = amount/rate

we get:

time = 20/2.5 = 8 minutes

b.

The relationship described is linear.

The equation relating the variables can be written as:

amount of water = rate x time + initial amount

where the rate is 2.5 gallons per minute, the initial amount is 0 gallons, and the amount of water is 20 gallons.

So, the equation is:

20 = 2.5t + 0

where t is the time in minutes.

2.

a.

The relationship described is exponential.

The equation relating the variables can be written as:

number of bacteria = initial number of bacteria x (reproduction factor)^(time/hour)

where the initial number of bacteria is 1, the reproduction factor is 4, and we need to find the time it takes to reach 1,000,000 bacteria.

So, we have:

1,000,000 = 1 x 4^(time/hour)

Taking the logarithm of both sides, we get:

log(1,000,000) = log(4^(time/hour))

6 = (time/hour) x log(4)

time/hour = 6/log(4)

time = (6/log(4)) x hour

time ≈ 4.807 hours

b.

The relationship described is exponential, and the equation relating the variables is:

Number of bacteria = initial number of bacteria x (reproduction factor)^(time/hour)

where the initial number of bacteria is 1, the reproduction factor is 4, and t is the time in hours.

Thus,

1.

a.

It will take 8 minutes to fill the bathtub.

b.

The relationship described is linear.

The equation is 20 = 2.5t + 0.

2.

a.

It will take approximately 4.807 hours to have at least 1,000,000 bacteria in the new colony.

b.

The relationship described is exponential,

The equation is Number of bacteria = initial number of bacteria x (reproduction factor)^(time/hour)

Learn more about equations here:

https://brainly.com/question/17194269

#SPJ1

Question 7 of 15
<< >
View Policies
Current Attempt in Progress
Assume a normal distribution and find the following probabilities.
(Round the values of z to 2 decimal places, eg. 1.25. Round your answers to 4 decimal places, e.g. 0.2531)
(a) P(x<21-25 and 0-3)
(b) Pix 2481-30 and a-8)
(c) P(x-25-30 and 0-5)
(d) P(17 (e) Pix 2 7614-60 and 0-2.86)
eTextbook and Media
Save for Later
Last saved 1 day ago
Saved work will be auto-submitted on the due date Auto-
submission can take up to 10 minutes.

Answers

P(x > 76 and -2.86 < z < 0) = 0.5000 - 0.3665 = 0.1335.

(a) P(x < 21 and z < 3)

Using standardization, we get:

z = (21 - 25)/3 = -4/3

Using the standard normal table, the corresponding probability for z = -4/3 is 0.0912.

Therefore, P(x < 21 and z < 3) = 0.0912.

(b) P(24 < x < 30 and a < z < 8)

Using standardization, we get:

z1 = (24 - 26)/3 = -2/3

z2 = (30 - 26)/3 = 4/3

Using the standard normal table, the corresponding probability for z = -2/3 is 0.2514 and for z = 4/3 is 0.4082.

Therefore, P(24 < x < 30 and a < z < 8) = 0.4082 - 0.2514 = 0.1568.

(c) P(x > 25 and z < 5)

Using standardization, we get:

z = (25 - 30)/5 = -1

Using the standard normal table, the corresponding probability for z = -1 is 0.1587.

Therefore, P(x > 25 and z < 5) = 0.1587.

(d) P(17 < x < 21)

Using standardization, we get:

z1 = (17 - 20)/3 = -1

z2 = (21 - 20)/3 = 1/3

Using the standard normal table, the corresponding probability for z = -1 is 0.1587 and for z = 1/3 is 0.3707.

Therefore, P(17 < x < 21) = 0.3707 - 0.1587 = 0.2120.

(e) P(x > 76 and -2.86 < z < 0)

Using standardization, we get:

z1 = (76 - 80)/12 = -1/3

z2 = 0

Using the standard normal table, the corresponding probability for z = -1/3 is 0.3665 and for z = 0 is 0.5000.

Therefore, P(x > 76 and -2.86 < z < 0) = 0.5000 - 0.3665 = 0.1335.

To learn more about probability visit:

https://brainly.com/question/28045837

#SPJ11

How do you solve this problem step by step please hurry I will get anxious if someone don’t answer quickly. I will mark you brainliest.
The equation is in the photo I took a screenshot of my homework.

Answers

Answer:

-13.57142857142857

Step-by-step explanation:

so you know the -52 + 1  will look like this -52 because its not going to subtact anything it can't ( -1 ) So it would be -53 + 4 + 2 So now -47 now this is were it gets harder -84 ÷ 7 = -13.57142857142857

Exercises : Find a solution for the following an (1 а. a = 1 an = n 2 anni +1 (2) a = 1, 9, = 2, 11 Van an-z 4 a n- n 2 2 (3) Hard Problem *te a = 6, 0,= 17, a +5na, +6nen-ida n-1 M-2

Answers

For problem 1, the solution is an = n.

For problem 2, the solution is an = 3n - 1.

For problem 3 (the hard problem), we can solve for the values of a, b, and c in the quadratic equation: [tex]an^2 + bn + c = 0[/tex], where a = 5, b = 6n - 1, and c = -2.

Using the quadratic formula, we get:

[tex]n= \frac{-b±\sqrt{b^{2}-4ac }  }{2a}[/tex]

Substituting the values of a, b, and c, we get:

[tex]n= \frac{-(6n-1)±\sqrt{(6n-1)^{2}-4(5)(-2) }  }{2(5)}[/tex]

Simplifying, we get:

[tex]n = \frac{(-6n+1 ± \sqrt{36n^{2}-48n+49 } ) }{10}[/tex]

Therefore, the solution for problem 3 is:

[tex]an= 5n^{2} + \frac{-6n+1 + \sqrt{36n^{2}-48n+49 } }{10}[/tex]

or


[tex]an= 5n^{2} + \frac{-6n+1 - \sqrt{36n^{2}-48n+49 } }{10}[/tex]

To know more about "Quadratic formula" refer here:

https://brainly.com/question/2615966#

#SPJ11

Directions: Answer the following questions. Use the text entry box or file uploads to submit your answers.

1. How many hours and minutes elapsed from 8:00 a.m. to 2:30 p.m.?

2. How many hours and minutes elapsed from 7:40 p.m. to 1:10 a.m.?

3. How many hours and minutes elapsed from 12:00 noon to 4:59 p.m.?

4. How many hours and minutes elapsed from 1:23 a.m. to 7:35 a.m.?

5. How many hours and minutes elapsed from 11:28 p.m. to 5:30 a.m.?

Answers

The hours and minutes elapsed from 8:00 a.m. to 2:30 p.m is 6 hours and 30 minutes.

How to explain the Time

The hours and minutes elapsed from 7:40 p.m. to 1:10 a.m. is 5 hours and 30 minutes.

The hours and minutes elapsed from 12:00 noon to 4:59 p.m is 4 hours and 59 minutes.

The hours and minutes that elapsed from 1:23 a.m. to 7:35 a.m is 6 hours and 12 minutes.

The hours and minutes that belapsed from 11:28 p.m. to 5:30 a.m is 6 hours and 2 minutes.

Learn more about time on

https://brainly.com/question/4931057

#SPJ1

can someone help me with this?? it’s properties of quadratic relations

Answers

The table should be completed with the correct key features as follows;

Axis of symmetry (1st graph): x = 1.

Vertex (1st graph): (1, -9).

Minimum (1st graph): -9.

y-intercept (1st graph): (0, -8).

Axis of symmetry (2nd graph): x = 2.

Vertex (2nd graph): (2, 16).

Maximum (2nd graph): 16.

y-intercept (2nd graph): (0, 12).

What is the graph of a quadratic function?

In Mathematics and Geometry, the graph of a quadratic function would always form a parabolic curve because it is a u-shaped. Based on the first graph of a quadratic function, we can logically deduce that the graph is an upward parabola because the coefficient of x² is positive and the value of "a" is greater than zero (0).

Based on the second graph of a quadratic function, we can logically deduce that the graph is a downward parabola because the coefficient of x² is negative and the value of "a" is less than zero (0).

Read more on quadratic functions here: brainly.com/question/24020644

#SPJ1

A fenced backyard has a length
of 20 feet, and width of 25 feet,
and a diagonal of 30 feet. Does
the backyard have a 90 degree
angle in its corner?

Answers

Answer:no it doesn’t it makes a trapezoid which doesn’t have 90 degree angles or right angles

Step-by-step explanation:

Si la ciudad de Dallas tiene un impuesto sobre las ventas del 9,75 % en todas las compras en línea, ¿cuál es el costo total cuando compras un artículo en línea que cuesta $200,00?

Answers

The total cost of the online purchase of $200.00 in Dallas, including the 9.75% sales tax is approximately $219.50.

To calculate the total cost, we first need to find the amount of sales tax. We do this by multiplying the cost of the item by the sales tax rate:

$200.00 x 0.0975 = $19.50

Then, we add the sales tax amount to the cost of the item to get the total cost:

$200.00 + $19.50 = $219.50

Therefore, the total cost of the online purchase of $200.00 in Dallas, including the 9.75% sales tax, is $219.50.

Learn more about total cost

https://brainly.com/question/25109150

#SPJ4


Complete Question:

If the City of Dallas has a 9.75% sales tax on all online purchases, what is the total cost when you buy an item online that costs $200.00?

The following equation models the exponential decay of a population of 1,000 bacteria. About how many days will it take for the bacteria to decay to a population of 120?

1000e^ -.05t

A. 2.5 days
B. 4.2 days
C. 42.4 days
D. 88.5 days

Answers

Step-by-step explanation:

120 = 1000 e^(-.05t)

120/1000 = e^(-.05t)   take natural LN of both sides

-2.12 = - .05t

t = 42.4 days

You purchase a box of 50 scarves wholesale for $7. 00 per scarf. If you then resell each scarf at an 18% markup,

Answers

1.26 more than the scarf originally so 8.26 for each scarf and 430 total made from the markup and the total profit is 63 dollars.

If 5 liters of a solution are 20% acid, how much of the solution is acid?


0. 2 liters

1 liter

2 liters

Answers

Answer:

0.2

Step-by-step explanation:

Find a power series representation for the function. Determine the radius of convergence, R. (Give your power series representation centered at x = 0.)
f(x) = ln(2 − x)

Answers

To find a power series representation for f(x) = ln(2-x), we can use the formula for the power series expansion of ln(1+x):
ln(1+x) = Σ (-1)^(n+1) * (x^n / n)

We can use this formula by setting x = -x/2 and multiplying by -1 to get:
ln(2-x) = ln(1 + (-x/2 - 1)) = Σ (-1)^(n+1) * ((-1)^n * (x^n+1 / (n+1) * 2^(n+1)))
Therefore, the power series representation for f(x) is:
f(x) = Σ (-1)^(n+1) * ((-1)^n * (x^n+1 / (n+1) * 2^(n+1)))

The radius of convergence of this series can be found using the ratio test:
lim |a_n+1 / a_n| = lim |(-1)^(n+2) * (x^(n+2) / (n+2) * 2^(n+3)) * (n+1) / (-1)^(n+1) * (x^(n+1) / (n+1) * 2^(n+2))|
= lim |x / 2 * (n+1) / (n+2)| = |x/2|

Therefore, the radius of convergence is R = 2. The power series representation centered at x = 0 is:
f(x) = Σ (-1)^(n+1) * ((-1)^n * (x^n+1 / (n+1) * 2^(n+1)))
To find a power series representation for the function f(x) = ln(2 - x), we can first rewrite the function as f(x) = ln(1 + (1 - x)). Now, we'll use the Taylor series formula for ln(1 + u) centered at x = 0:

ln(1 + u) = u - (1/2)u^2 + (1/3)u^3 - (1/4)u^4 + ... + (-1)^n(1/n)u^n + ...
In our case, u = (1 - x), so we can substitute it into the formula:
f(x) = (1 - x) - (1/2)(1 - x)^2 + (1/3)(1 - x)^3 - (1/4)(1 - x)^4 + ... + (-1)^n(1/n)(1 - x)^n + ...

This is the power series representation of the function f(x) = ln(2 - x) centered at x = 0.
Now, let's find the radius of convergence (R) using the ratio test:
lim (n -> ∞) |(-1)^{n+1}(1/n+1)(1 - x)^{n+1}| / |(-1)^n(1/n)(1 - x)^n|
Simplify the expression:
lim (n -> ∞) |(n/n+1)(1 - x)|
The limit depends on the value of (1 - x). To ensure convergence, the limit should be less than 1:
|(1 - x)| < 1

This inequality holds for -1 < (1 - x) < 1, which implies that the interval of convergence is 0 < x < 2. Therefore, the radius of convergence, R, is 1.

Learn more about :

Power series : brainly.com/question/29896893

#SPJ11

The base of this right triangular prism is a right triangle with legs that are 7 in. and 8 in. The height of the prism is 5 in.



What is the volume of this right triangular prism?


plsss help

Answers

Step-by-step explanation:

Area of base ( 1/2 *  L1  *  L2 )     *  height = volume

            1/2 ( 7)(8)     *   5 =  140 in^3

Circumference of 1/8th of a circle. There is 1/8 of a circle. The radius of the circle is 30 centimeters. The radius of the circle is 30 centimeters. Find the distance of the figure. Give steps

Answers

The circumference of 1/8th of a circle with a radius of 30 centimeters is 11.78 centimeters.

The formula for the circumference of a circle is C = 2πr, where C is the circumference, π is a mathematical constant approximately equal to 3.14, and r is the radius of the circle.

To find the circumference of 1/8th of a circle, we need to divide the circumference of the full circle by 8. So, the formula becomes:

C = (1/8) * 2πr

Substituting the given value of the radius, we get:

C = (1/8) * 2π(30)

Simplifying, we get:

C = (1/4) * π(30)

C = (1/4) * 30π

C = 7.5π

Approximating π as 3.14, we get:

C = 7.5 * 3.14

C = 23.55/2

C = 11.78

Therefore, the circumference of 1/8th of a circle with a radius of 30 centimeters is 11.78 centimeters.

Learn more about Circumference

https://brainly.com/question/20489969

#SPJ4


Complete Question:

Circumference of 1/8th of a circle. There is 1/8 of a circle. The radius of the circle is 30 centimeters. The radius of the circle is 30 centimeters. Find the distance of the figure. Give steps.

4. ([2]) Find the radius of convergence R of the series 2n=1 (22)" n2

Answers

The radius of convergence comes out as 1/4. To get the radius of convergence, we can use the ratio test.


Step:1. Let's call the nth term in the series a_n, where a_n = 2^(2n)/n^2.
Step:2. Using the ratio test, we take the limit as n approaches infinity of |a_(n+1)/a_n|:
|a_(n+1)/a_n| = (2^(2(n+1))/(n+1)^2) * (n^2/2^(2n))
Step:3. Simplifying this expression, we can cancel out the 2^n terms and get: |a_(n+1)/a_n| = 4((n^2)/(n+1)^2)
Step:4. Taking the limit as n approaches infinity, we get:
lim n→∞ |a_(n+1)/a_n| = 4
Since this limit is less than 1, the series converges.
Step:5. Now we just need to find the radius of convergence, which is given by:
R = 1/lim sup n→∞ |a_n|^(1/n)
Step:6. Taking the limit superior of |a_n|^(1/n), we get:
lim sup n→∞ |a_n|^(1/n) = lim sup n→∞ (2^(2n)/n^(2n/n))^(1/n)
= lim sup n→∞ 2^2 = 4
So the radius of convergence is:
R = 1/lim sup n→∞ |a_n|^(1/n) = 1/4
Therefore, the radius of convergence is 1/4.

Learn more about radius of convergence here, https://brainly.com/question/31400159

#SPJ11

Problem 4 [8 points]
For each one of the following statements write whether it is mathematically true or false. Prove or
disprove your decision accordingly.
Assume A = {u, v, w} c R over R with regular operations. The vectors u, v, and w are distinct and
none of them is the zero vector.
(a) If A is linearly dependent, then Sp{u, v} = Sp{u, w}.
(2 points)
(b) The set A is linearly independent if and only if {u+v,v-w, w+ 2u} is linearly independent.
(4 points)
(c) Assume that A is linearly dependent. We define u₁ = 2u, v₁ = -3u + 4v, and W₁ = u + 2v - tw for some t E R. Then, there exists t E R such that {u₁, v₁, w₁} is linearly
independent
(2 points)

Answers

(a) The given statement, "If A is linearly dependent, then Sp{u, v} = Sp{u, w}" is false because there exist scalars α, β, and γ, not all zero, such that αu + βv + γw = 0.

(b) The given statement, "The set A is linearly independent if and only if {u+v,v-w, w+ 2u} is linearly independent" is true because A is linearly independent if and only if the determinant of the matrix formed by u, v, and w is nonzero. The determinant of the matrix formed by {u+v, v-w, w+2u} can be obtained by performing column operations on the original matrix. Since these operations do not change the determinant, the set {u+v, v-w, w+2u} is linearly independent if and only if A is linearly independent.

(c)The given statement, "Assume that A is linearly dependent. We define u₁ = 2u, v₁ = -3u + 4v, and W₁ = u + 2v - tw for some t E R. Then, there exists t E R such that {u₁, v₁, w₁} is linearly independent" is true because  A is linearly dependent, there exist scalars α, β, and γ, not all zero, such that αu + βv + γw = 0.

Let us discuss this in detail.

(a) False. If A is linearly dependent, then there exist scalars α, β, and γ, not all zero, such that αu + βv + γw = 0. Without loss of generality, assume α ≠ 0. Then we can solve for u: u = (-β/α)v + (-γ/α)w. Therefore, u is a linear combination of v and w, which means Sp{u, v} = Sp{u, w}.

(b) True. We can write each vector in {u+v,v-w, w+2u} as a linear combination of u, v, and w:
u + v = 1u + 1v + 0w
v - w = 0u + 1v - 1w
w + 2u = 2u + 0v + 1w
We can set up the equation α(u+v) + β(v-w) + γ(w+2u) = 0 and solve for α, β, and γ:
α + β + 2γ = 0 (from the coefficient of u)
α + β = 0 (from the coefficient of v)
-β + γ = 0 (from the coefficient of w)
Solving this system of equations, we get α = β = γ = 0, which means {u+v,v-w, w+2u} is linearly independent.

(c) True. Since A is linearly dependent, there exist scalars α, β, and γ, not all zero, such that αu + βv + γw = 0. Without loss of generality, assume α ≠ 0. Then we can solve for u: u = (-β/α)v + (-γ/α)w. Therefore, u is a linear combination of v and w, which means we can write u as a linear combination of u₁, v₁, and w₁:
u = (2/5)u₁ + (-3/5)v₁ + (1/5)w₁
Similarly, we can write v and w as linear combinations of u₁, v₁, and w₁:
v = (-2/5)u₁ + (4/5)v₁ + (1/5)w₁
w = u₁ + 2v₁ - t₁w₁
where t₁ = (α + 2β - γ)/(-t). We can set up the equation αu₁ + βv₁ + γw₁ = 0 and solve for α, β, and γ:
2α - 3β + γ = 0 (from the coefficient of u₁)
-3β + 4γ = 0 (from the coefficient of v₁)
-α + 2β - tγ = 0 (from the coefficient of w₁)
Solving this system of equations, we get α = β = γ = 0 if and only if t = -8/5. Therefore, if we choose any t ≠ -8/5, then {u₁, v₁, w₁} is linearly independent.

Learn more about linearly independent at https://brainly.com/question/10725000

#SPJ11

Can you please help me with these three problems? I’m really confused about this unit.

Answers

The angles are 11°, 42° and 35°.

Given are circles, we need to find the missing angles,

1) ∠1 = 1/2 [119° - (360° - (119°+174°)]

= 1/2 [119° - 97°]

∠1 = 11°

2) ∠1 = 1/2[360°-138°-138°]

∠1 = 1/2 x 84

∠1 = 42°

3) ∠1 = 1/2[111°-360°-(111°+104°+104°)]

∠1 = 1/2 x 70

∠1 = 35°

Hence the angles are 11°, 42° and 35°.

Learn more about circles, click;

https://brainly.com/question/29142813

#SPJ1

Olivia has a 20 meter-long fence that she plans to use to enclose a rectangular garden of width w. The fencing will be placed around all four sides of the garden so that its area is 18. 75 square meters. Write an equation in terms of w that models that situation

Answers

This is the equation in terms of w that models the situation:[tex]w^2 - 10w + 18.75 = 0[/tex].

Rectangle with width w and length l, enclosed by a 20-meter fence: The perimeter of the rectangle, which is equal to the length of the fence, is given by:

2w + 2l = 20

We can simplify this equation by dividing both sides by 2:

w + l = 10

We also know that the area of the rectangle is 18.75 square meters:

w * l = 18.75

We want to write an equation in terms of w, so we can solve for l in terms of w by dividing both sides by w:

l = 18.75 / w

This expression for l into the equation for the perimeter, we get:

w + (18.75 / w) = 10

Multiplying both sides by w, we get:

[tex]w^2 + 18.75 = 10w[/tex]

Rearranging this equation, we get:

[tex]w^2 - 10w + 18.75 = 0[/tex]

Learn more about rectangle or rectangular visit: brainly.com/question/27035529

#SPJ4

Dr. Searcy was entering grades for the last summative test into his gradebook. Here are the scores.

90, 88, 95, 98, 85, 82, 92, 75, 82, 65, 97, 85

What is the range? And explain it.

Answers

Answer:

The range of a set of data is the difference between the highest and lowest values. In this case, the highest value is 98 and the lowest value is 65, so the range is 98-65 = 33. This means that the scores on the test ranged from 65 to 98, a difference of 33 points.

The range is a measure of the spread of the data. In this case, the range is relatively large, which means that the scores were spread out over a wide range of values. This suggests that the test was challenging and that there was a wide range of student abilities.

In which shapes does the measure of

K
=
40
°

K
=
40
°
?

Select the shapes you want to choose.

Answers

Answer:

Step-by-step explanation:

82% of 300 boys polled said that they liked to play outdoors. How many boys liked to play outdoors?

Answers

Answer:

246 boys like to play outdoors

Step-by-step explanation:

82% = 0.82

0.82 x 300 = 246

Answer:

246 boys like to play outdoors

Step-by-step explanation:

82% = 0.82

0.82 x 300 = 246

Exercises 6.1 In Exercises 1-8, show that the given set of functions is orthogonal with respect to the given weight on the prescribed interval. 1. 1, sin zx, cos aX, sin 2zx, cos 2nX, sin 37zx, COS 3zX, ...; w(x) = 1 on [0, 21. etion, goo is an odd function, w(x) = 1 on any symmetric intervarabour O. e afe examples of Chebyshev poty nrst kind. See Exercises 6.2 for further details.) 4. -3x +4x, 1 – 8x2+ 8x; w(r) = on [-1, 1].

Answers

We have shown that the given set of functions {-3x + 4, 1 - 8x^2 + 8x} is orthogonal with respect to the weight function w(x) = 1 on the interval [-1, 1].

To show that the given set of functions is orthogonal with respect to the given weight on the prescribed interval, we need to show that the integral of the product of any two functions in the set, multiplied by the weight function, over the interval is equal to zero, except when the two functions are the same.

Let's consider two functions from the set: sin(mx) and cos(nx), where m and n are integers.

∫₀²π sin(mx) cos(nx) dx = 0

We can use the trigonometric identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b) to rewrite the integral as:

∫₀²π (1/2)[sin((m+n)x) + sin((m-n)x)] dx

Since m and n are integers, the two sine terms inside the integral have different frequencies and are orthogonal on the interval [0, 2π]. Therefore, their integral over this interval is zero. Thus, we have:

∫₀²π sin(mx) cos(nx) dx = 0, for any integers m and n

Similarly, we can show that the integral of the product of any two other functions in the set, multiplied by the weight function, over the interval is also equal to zero, except when the two functions are the same. Therefore, we have shown that the given set of functions {1, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), ...} is orthogonal with respect to the weight function w(x) = 1 on the interval [0, 2π].

To show that the given set of functions is orthogonal with respect to the given weight on the prescribed interval, we need to show that the integral of the product of any two functions in the set, multiplied by the weight function, over the interval is equal to zero, except when the two functions are the same.

Let's consider two functions from the set: -3x + 4 and 1 - 8x^2 + 8x.

∫₋₁¹ (-3x + 4)(1 - 8x^2 + 8x) dx = 0

Expanding the product and integrating, we get:

∫₋₁¹ (-3x + 4)(1 - 8x^2 + 8x) dx = ∫₋₁¹ (-3x + 4) dx - 8∫₋₁¹ x^3 dx + 8∫₋₁¹ x^2 dx

Evaluating the integrals, we get:

∫₋₁¹ (-3x + 4)(1 - 8x^2 + 8x) dx = 0

Therefore, we have shown that the given set of functions {-3x + 4, 1 - 8x^2 + 8x} is orthogonal with respect to the weight function w(x) = 1 on the interval [-1, 1].

To learn more about functions visit:

https://brainly.com/question/28193994

#SPJ11

#4- Find the volume of the right prism. Round your answer to two decimal places, if necessary.

Thank you
I’m a bit confused. I know the formula is V=Bh
The base is the 2 rectangles on the side right? I just can’t find the height.

Answers

To find the volume of the right prism, we used the Pythagorean theorem to determine the height of the triangular base is 1.197 inches. We then used the formula V = Bh to calculate the volume, which was approximately 2.70 cubic inches.

To find the height of the prism, we need to use the information provided about the triangular base. Since the triangular base is equilateral with a dimension of 1.74 inches, the height of the triangle (and therefore, the height of the prism) can be found by using the Pythagorean theorem.

If we draw a line from the center of the base to the midpoint of one of the sides, we create a right triangle with hypotenuse 1.74 in (which is also the height of the triangle) and one leg equal to half the length of one of the sides of the triangle (since the base of the prism is a square with dimension 1.5 in).

Using the Pythagorean theorem, we can solve for the height of the triangle (and prism)

(1.74/2)² + (1.5/2)² = h²

0.8725 + 0.5625 = h²

h² = 1.435

h ≈ 1.197 inches

Now, we can use the formula V = Bh to find the volume of the prism

V = (1.5 x 1.5) x 1.197 ≈ 2.70 cubic inches

Therefore, the volume of the right prism is approximately 2.70 cubic inches.

To know more about Pythagorean theorem:

https://brainly.com/question/14930619

#SPJ1

10. What is the radius of a sphere with a volume of 4186 in³ to the nearest tenth of an inch?

Answers

Answer:10

Step-by-step explanation:

10

What is the value of the expression −3 1/3÷(−2.4) ?

Answers

Answer:

First, we need to convert the mixed number −3 1/3 to a fraction. −3 1/3 = −(3 + 1/3) = −(10/3).

Now, we can divide the fraction by the decimal. −(10/3) ÷ (-2.4) = −(10/3) ÷ (-24/10) = −(10/3) x (10/-24) = 10/-7.2 = -1.388888889.

Therefore, the value of the expression is −1.388888889.

Step-by-step explanation:

1. Convert the mixed number to a fraction.

```

-3 1/3 = -(3 + 1/3) = -(10/3)

```

2. Multiply the numerator and denominator of the fraction by -1.

```

-(10/3) = (-1)(10/3) = -10/3

```

3. Divide the numerator and denominator of the fraction by -24.

```

-10/3 = (-10/3) ÷ (-24/10) = 10/-7.2 = -1.388888889

```

Therefore, the value of the expression is −1.388888889.

Here is a visual representation of the steps:

```

-3 1/3 ÷ (-2.4)

= -(10/3) ÷ (-24/10)

= -(10/3) x (10/-24)

= 10/-7.2

= -1.388888889

```

I need help fast please

Answers

The  probability that the person chosen belonged to Group Y is 69/164.

As, Out of 200 persons in the sample, those having at least one dream are 200− those who had no dream are

= 200−36

=164

Now, out of 164 people belonged to group Y

= 100−21

=79

So, the probability that the person chosen belonged to Group Y become

= 69/164

Learn more about Probability here:

https://brainly.com/question/30034780

#SPJ1

I don't understand this problem

Answers

Answer:

1. a

2. a

3. b

Step-by-step explanation:

Q1. The equation is 3x+6=30. b c d are all good answers so it has to be a. If you want more details on why a is wrong, if you expand it becomes 3x+18=30 which is wrong

Q2. This one is 4(x+6) = 40 because you have x+6 4 times and it tells you the total is 40. So the one that matches is a.

Q3.

You have 6 plus 4 x which makes a total of 40.

So 6 + 4x = 40. The equation that matches is b.

Hmu if you need more explanation

Other Questions
in order for a DSM diagnosis of PTSD, 2 or more of what 7 negative alterations in cognition/mood must be present? (DNDNDDI) The major evidence for the validity of the medical model approach to viewing and diagnosing people with emotional disturbances and abnormal behavior comes from studies suggesting that some mental disorders, such as schizophrenia, may be influenced by genetics (heredity). (True or False) 23.4 grams upper C a upper C l subscript 2 times StartFraction 1 mole upper C a upper C l subscript 2 over 110.98 grams upper C a upper C l subscript 2 EndFraction. She ___ out as one of the finest contemporary British novelists around at the moment find the volume of the image below. How did Southerners respond to the beating of Senator Charles Sumner? PLS HELP ASAPFind the measure of YOZ by answering the questions.1. Find the measure of WOV. Which angle relationship did you use? (3 points)2. Now find the measure of YOZ. Which angle relationship did you use?3. Check your answer by using another strategy to find the measure of YOZ. Describe your strategy, and show that it gives the same measure for YOZ. (4 points) A metered service ultimately helps to determine which characteristic of a cloud application or service? QUESTION ONE An investor holds two equity shares x and y in equal proportion with the following risk and return characteristics: E (Rx) = 24%; 0x = 28%; E(R) = = 19% Oy = 23% The returns of these securities have a positive correlation of 0.6. You are required to calculate the portfolio return and risk. Further, suppose the investor wants to reduce the portfolio risk (0) to 15 per cent. How much should the correlation coefficient be to bring the portfolio risk to the desired level? Mr. Di IORIO has accepted a 4 year personal loan of $50 000 with the following repayment terms: 4.2% annual interest, compounded quarterly. What will be the monthly payment? Firm A has acquired Firm B in a merger transaction. The pre-merger balance sheet for Firm A has current assets of $1,500, other assets of$400, net fixed assets of $2,300, current labilities of $1,000, long-term debt of $500 and owners' equity of $,2700. The pre-mergerbalance sheet for Firm B shows current assets of $600, other assets of $210, net fixed assets of $1,600, current liabilities of $500, andequity of $1,910. Assume the merger is treated as purchase for accounting purposes. The market value of Firm B's fixed assets is$5,680; the market values for current and other assets are the same as the book values. Assume that Firm A issues $7,000 in new long-term debt to finance the acquisition. The post-merger balance sheet will reflect goodwill of Let A = {1, 2, 3, 4}. Let F be the set of all functions from A to A.(a) How many pairs (f,g) EFXF are there so that go f(1) = 1? Explain. (b) How many pairs (f,g) EFX F are there so that go f(1) = 1 and go f(2) = 2? Explain. (c) How many pairs (f,g) EFX F are there so that go f(1) = 1 or go f(2) = 2? Explain.. (d) How many pairs (f,g) EFxF are there so that go f(1) 1 or go f(2) 2? Explain. the cost of preferred stock, rps, used in the weighted average cost of capital equation is calculated as the preferred dividend, dps, divided by the current price of the preferred stock, pps. -select- tax adjustment is made when calculating rps because preferred dividends -select- tax deductible; so -select- tax savings are associated with preferred stock. draw a typical bacterial cell and label: capsule, cell wall, cell membrane, plasmid, flagella, pilli, nucleoid region. 5. what are heterocysts? 6. what are endospores? 7. list the 3 groups of archaea and where you would find them. 8. discuss cyanobacteria. why were the important in the evolution of eukaryotes? 9. how are gram and gram - bacteria different? explain. 25 Identify the relevant total quality management (TQM) technique.Carleton University in Canada reviewed the websites of 24 universities and visited four leading universities to learn how to improve its housing allocation services. Reductions in vacancy rates led to a $400,000 gross revenue increase.-Benchmarking-Six Sigma-Quality Circle-Continuous Improvement What are some steps you can take to protect yourself from predatory lenders? Define and provide examples of rule-governed behavior The gas lighter's ultimate motive is ____ and _____ through manipulation; the goal is to control the individual both _____ and _______ buspirone is not recommended in what two cases? (HR) Doctor perspective on the Macbeth house reflecting on his vist