False. Reverberation time of a room can be increased by adding sound-absorbing materials to the walls, such as acoustic panels or curtains. These materials reduce the reflection of sound waves, thus reducing the overall reverberation time in the room.
Reverberation time refers to the duration it takes for sound to decay in a room after the sound source stops. It is a measure of how long sound lingers in the room before it fades away. In rooms with longer reverberation times, sound reflections bounce off the walls, ceiling, and other surfaces multiple times, creating a prolonged and sustained sound.
When the walls of a room are covered with sound-absorbing materials, such as acoustic panels or curtains, these materials absorb a significant portion of the sound energy instead of reflecting it back into the room. As a result, the sound waves lose their energy more quickly, reducing the overall reverberation time.
Learn more about Reverberation time of a room from
https://brainly.com/question/31790803
#SPJ11
Which of the following sets of two charges is experiencing the strongest
attraction?
Charges of +2 C and -2 C, separated by 1 m.
Charges of +1 C and -3 C, separated by 1 m.
Charges of +2 C and +2 C, separated by 1 m.
Charges of +1 C and +3 C, separated by 1 m.
The set of two charges experiencing the strongest attraction is charges of +2 C and -2 C, separated by 1 m. Option A.
How to identify the two charges experiencing the strongest attraction?+2 C and -2 C is an attracting force because the charges are opposite
For Charges of +2 C and -2 C the force of attraction between two charges is directly proportinal to the product of their charges and inversely proportional to the square of the distnce between them.
The product of the charges is 2 × -2 = -4 C², and the square of the distance between them is 1² = 1 m².
The force of attraction between these two charges is -4 / 1 = -4 N.
Find more exercises on charges;
https://brainly.com/question/6562914
#SPJ1
two wooden members of 80 3 120-mm uniform rectangular cross section are joined by the simple glued scarf splice shown. knowing that b 5 228 and that the maximum allowable stresses in the joint are, respectively, 400 kpa in tension (perpendicular to the splice) and 600 kpa in shear (parallel to the splice), deter- mine the largest centric load p that can be applied. using mohrs circle
The largest centric load P that can be applied is 67.2 kN.
To determine the largest centric load P that can be applied, we need to analyze the stress distribution in the glued scarf splice. The maximum allowable stresses given are 400 kPa in tension and 600 kPa in shear.
First, let's calculate the tensile stress in the splice perpendicular to the joint (tension stress):
σ_tension = P / (2 * t * b) [Formula for tensile stress in a rectangular cross-section]
Here, t = thickness of the members, and b = width of the members.
Next, let's calculate the shear stress in the splice parallel to the joint (shear stress):
τ_shear = P / (2 * t * h) [Formula for shear stress in a rectangular cross-section]
Here, h = height of the members.
We can use Mohr's circle to determine the combined stress at the point where maximum stress occurs. This is given by:
σ_max = (σ_tension + σ_shear) / 2 + √[((σ_tension - σ_shear)/2)^2 + τ_shear^2]
The largest centric load P that can be applied is obtained when the combined stress σ_max is equal to the maximum allowable stress in tension (400 kPa):
P = σ_max * (2 * t * b)
By substituting the given values into the calculations, we can determine the largest centric load P.
The largest centric load that can be applied is 67.2 kN, considering the maximum allowable stresses in the joint and using Mohr's circle to analyze the stress distribution.
To know more about load, visit:
https://brainly.com/question/14530036
#SPJ11
at what distance from a 21 mw point source of electromagnetic waves is the electric field amplitude 0.050 v/m ?
The distance from a 21 MW point source of electromagnetic waves where the electric field amplitude is 0.050 V/m is approximately 1291.55 meters.
To find the distance from the point source, we use the formula P = (1/2)ε₀cE²A, where P is the power of the source, ε₀ is the permittivity of free space, c is the speed of light, E is the electric field amplitude, and A is the surface area of the sphere.
Rearranging the formula for distance (radius of the sphere), we get r = √((2P) / (ε₀cE²)). Plugging in the given values: P = 21 MW, E = 0.050 V/m, ε₀ ≈ 8.85 x 10⁻¹² F/m, and c ≈ 3 x 10⁸ m/s, we can solve for r, which is approximately 1291.55 meters.
Learn more about electromagnetic waves here:
https://brainly.com/question/29774932
#SPJ11
if he had replaced the lead spheres with copper spheres of equal mass, his value of g would have been
If the lead spheres were replaced with copper spheres of equal mass, the value of g would not be affected. This is because the value of g is dependent on the mass of the Earth and the distance between the object and the Earth's center. The mass and composition of the object being measured do not affect the value of g. Therefore, whether the spheres were made of lead or copper, the value of g would remain constant. However, the experiment may have different results due to differences in the density and physical properties of the two metals, which could affect the accuracy and precision of the measurements taken.
If the lead spheres were replaced with copper spheres of equal mass, the value of g would remain the same. Here's a step-by-step explanation:
1. In the experiment, two spheres with equal masses are used to measure the gravitational force between them.
2. The gravitational force (F) depends on the mass of the objects (m1 and m2) and the distance between their centers (r) according to the formula: F = G * (m1 * m2) / r^2, where G is the gravitational constant.
3. If you replace the lead spheres with copper spheres of equal mass, the masses (m1 and m2) remain the same in the formula.
4. Since the mass and distance between the spheres have not changed, the gravitational force (F) remains the same as well.
5. The value of g (acceleration due to gravity) is calculated using the formula: g = F / m, where m is the mass of the object experiencing the gravitational force.
6. Since the gravitational force (F) and mass (m) have not changed, the value of g will remain the same even if the material of the spheres is changed from lead to copper, as long as their masses are equal.
In summary, replacing lead spheres with copper spheres of equal mass in an experiment to measure the gravitational constant (g) would not change the value of g.
To know more about Equal Masses visit
https://brainly.com/question/32077102
SPJ11
For a concentration cell, the standard cell potential is always:
Select the correct answer below:
a. positive.
b. negative.
c. zero.
d. need more information.
A concentration cell is a type of electrochemical cell in which the same electrode material is used as both the anode and cathode, but the concentrations of the reactants or products are different in each half-cell.
The correct answer is: c. zero.
In a concentration cell, the standard cell potential is always zero because there is no net driving force for electron transfer since both electrodes are identical in composition and potential. However, there will be a non-zero voltage if the concentrations of the solutions are different, which can cause a flow of electrons from the more concentrated half-cell to the less concentrated half-cell until equilibrium is reached.
A concentration cell is an electrochemical cell where the two electrodes are made of the same material and are immersed in solutions with different concentrations. The standard cell potential, denoted as E°, is the difference in potential between the two half-cells under standard conditions (1 M concentration, 1 atm pressure, and 25°C temperature). In a concentration cell, both half-cells have the same standard reduction potential, so their difference (E°) will be zero.
To know more about electrochemical visit:
https://brainly.com/question/12034258
#SPJ11