Prove that for every positive integer n, 1*2*3 + 2*3*4 + ... + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4

Answers

Answer 1

To prove that for every positive integer n, the sum of the terms 123 + 234 + ... + n(n+1)(n+2) is equal to n(n+1)(n+2)(n+3)/4, we can use mathematical induction.

We will show that the equation holds true for the base case of n = 1 and then assume it holds for some arbitrary positive integer k. By proving that the equation holds for k+1, we can conclude that it holds for all positive integers n.

Base Case (n = 1):

When n = 1, the left-hand side of the equation is 1(1+1)(1+2) = 1(2)(3) = 6.

The right-hand side is n(n+1)(n+2)(n+3)/4 = 1(1+1)(1+2)(1+3)/4 = 6/4 = 3/2.

Since both sides of the equation evaluate to the same value of 6, the equation holds true for n = 1.

Inductive Hypothesis:

Assume that for some positive integer k, the equation holds true:

123 + 234 + ... + k(k+1)(k+2) = k(k+1)(k+2)(k+3)/4.

Inductive Step (n = k+1):

We want to prove that the equation holds true for n = k+1.

123 + 234 + ... + k(k+1)(k+2) + (k+1)(k+2)(k+3) = (k+1)(k+1+1)(k+1+2)(k+1+3)/4.

Using the inductive hypothesis, we have:

k(k+1)(k+2)(k+3)/4 + (k+1)(k+2)(k+3) = (k+1)(k+1+1)(k+1+2)(k+1+3)/4.

Factoring out (k+1)(k+2)(k+3) from both sides of the equation, we get:

(k+1)(k+2)(k+3)[k/4 + 1] = (k+1)(k+2)(k+3)(k+1+1)(k+1+2)/4.

Simplifying both sides, we have:

k/4 + 1 = (k+1)(k+1+1)(k+1+2)/4.

Expanding the right-hand side, we get:

k/4 + 1 = (k+1)(k+2)(k+3)/4.

Therefore, the equation holds true for n = k+1.

By establishing the base case and proving the inductive step, we conclude that the equation holds for all positive integers n.

To learn more about Inductive Hypothesis, refer:-

https://brainly.com/question/31703254

#SPJ11


Related Questions

Find the arc length, showing steps for both
e) r = 6 1+ cos 0 E|N π -; for 0≤0≤ ¹ 2 f) r = √√1+ sin(20); for 0≤0≤√2

Answers

The arc lengths for the given polar curves are √108π for r = 6(1 + cos(θ)) on the interval (0, π) and a numerical value for r = √(√(1 + sin(2θ))) on the interval (0, √2).

e) The arc length formula for a polar curve is given by: L = ∫√(r² + (dr/dθ)²) dθ.

In this case, r = 6(1 + cos(θ)). Differentiating r with respect to θ, we get dr/dθ = -6sin(θ).

For the polar curve r = 6(1 + cos(θ)), where 0 ≤ θ ≤ π:

dr/dθ = -6sin(θ)

L = ∫√(r² + (dr/dθ)²) dθ

L = ∫√(36(1 + cos(θ))² + 36sin²(θ)) dθ

L = ∫√(72 + 72cos(θ) + 36cos²(θ) + 36sin²(θ)) dθ

L = ∫√(108 + 108cos(θ)) dθ

L = ∫(√108(1 + cos(θ))) dθ

L = √108[θ + sin(θ)]

L = √108(θ + sin(θ)) evaluated from 0 to π

L = √108(π + 0 - 0 - 0)

L = √108π

f) For the curve r = √(√(1 + sin(2θ))), where 0 ≤ θ ≤ √2:

dr/dθ = (sin(2θ))/(2√(1 + sin(2θ)))

L = ∫√(r² + (dr/dθ)²) dθ

L = ∫√(√(1 + sin(2θ))² + ((sin(2θ))/(2√(1 + sin(2θ))))²) dθ

L = ∫√(1 + sin(2θ) + (sin²(2θ))/(4(1 + sin(2θ)))) dθ

L = ∫√((4(1 + sin(2θ)) + sin²(2θ))/(4(1 + sin(2θ)))) dθ

L = ∫√(4 + 2sin(2θ) + sin²(2θ))/(2√(1 + sin(2θ)))) dθ

L = ∫(√(4 + 2sin(2θ) + sin²(2θ))/(2√(1 + sin(2θ)))) dθ evaluated from 0 to √2

learn more about Polar curves here:

https://brainly.com/question/28976035

#SPJ4

te the calculations. . d²y Find For which values dx2 of t is the curve concave upward? C(t) = (t - t?, t-t3) =

Answers

Since the second derivative d²y/dx² is negative at t = 1/2, the curve is concave downward at the point (1/4, 3/8).

To find the concavity of the curve defined by C(t) = (t - t^2, t - t^3), we need to calculate the second derivative of y with respect to x.

The parametric equations x = t - t^2 and y = t - t^3 can be expressed in terms of t. To do this, we solve x = t - t^2 for t:

t - t^2 = x

t^2 - t + x = 0

Using the quadratic formula, we can solve for t:

t = (1 ± √(1 - 4x))/2

Now, we differentiate both sides of x = t - t^2 with respect to t to find dx/dt:

1 = 1 - 2t

2t = 1

t = 1/2

We can substitute t = 1/2 into the equations for x and y to find the corresponding point:

x = (1/2) - (1/2)^2 = 1/4

y = (1/2) - (1/2)^3 = 3/8

So the point on the curve C(t) at t = 1/2 is (1/4, 3/8).

Now, let's find the second derivative of y with respect to x:

d²y/dx² = d/dx(dy/dx)

First, we find dy/dx by differentiating y with respect to t and then dividing by dx/dt:

dy/dt = 1 - 3t^2

dy/dx = (dy/dt)/(dx/dt) = (1 - 3t^2)/(2t)

Now, we differentiate dy/dx with respect to x:

d(dy/dx)/dx = d/dx((1 - 3t^2)/(2t))

= (d/dt((1 - 3t^2)/(2t)))/(dx/dt)

= ((-6t)/(2t) - (1 - 3t^2)(2))/(2t)

= (-3 - 1 + 6t^2)/(2t)

= (6t^2 - 4)/(2t)

= (3t^2 - 2)/t

We can substitute t = 1/2 into d²y/dx² to find the concavity at the point (1/4, 3/8):

d²y/dx² = (3(1/2)^2 - 2)/(1/2)

= (3/4 - 2)/(1/2)

= (-5/4)/(1/2)

= -5/2

Learn more about the curve here:

https://brainly.com/question/32672090

#SPJ11

A tank contains 1000 L of brine with 15 kg of dissolved salt.Pure water enters the tank at a rate of 10L/min. The solution iskept thoroughly mixed and drains from the tank at the same rate.How much salt is in the tank
(a) after t minutes
(b) after 20 minutes?

Answers

The concentration of salt in the tank at any given time can be described by the equation C(t) = e^(-k * t + ln(0.015)), and the amount of salt in the tank after 20 minutes depends on the value of k and the volume of the tank.

To solve this problem, we need to consider the rate of salt entering and leaving the tank over time.

(a) After t minutes:

The rate of salt entering the tank is constant because pure water is being added. The rate of salt leaving the tank is proportional to the concentration of salt in the tank at any given time.

Let's define the concentration of salt in the tank at time t as C(t) (in kg/L). Initially, the concentration of salt is 15 kg/1000 L, which can be written as C(0) = 15/1000 = 0.015 kg/L.

Since pure water enters the tank at a rate of 10 L/min, the rate of salt entering the tank is 0 kg/min because the water is salt-free.

The rate of salt leaving the tank is proportional to the concentration of salt in the tank at any given time. Let's call this rate k. So, the rate of salt leaving the tank is k * C(t).

Using the principle of conservation of mass, the change in the amount of salt in the tank over time is equal to the difference between the rate of salt entering and the rate of salt leaving:

dS(t)/dt = 0 - k * C(t),

where dS(t)/dt represents the derivative of the amount of salt in the tank with respect to time.

We can solve this first-order ordinary differential equation to find an expression for C(t):

dS(t)/dt = - k * C(t),

dS(t)/C(t) = - k * dt.

Integrating both sides:

∫(dS(t)/C(t)) = ∫(- k * dt),

ln(C(t)) = - k * t + C,

where C is a constant of integration.

Solving for C(t):

C(t) = e^(-k * t + C).

To determine the constant of integration C, we can use the initial condition that C(0) = 0.015 kg/L:

C(0) = e^(-k * 0 + C) = e^C = 0.015,

C = ln(0.015).

Therefore, the equation for C(t) is:

C(t) = e^(-k * t + ln(0.015)).

Now, we need to find the value of k. Since the tank contains 1000 L of brine with 15 kg of dissolved salt initially, we have:

C(0) = 15 kg / 1000 L = 0.015 kg/L,

C(t) = e^(-k * t + ln(0.015)).

Substituting t = 0 and C(0) into the equation:

0.015 = e^(-k * 0 + ln(0.015)),

0.015 = e^ln(0.015),

0.015 = 0.015.

This equation is satisfied for any value of k, so k can take any value.

In summary, the concentration of salt in the tank at time t is given by:

C(t) = e^(-k * t + ln(0.015)).

To find the amount of salt in the tank at time t, we multiply the concentration by the volume of the tank:

Amount of salt in the tank at time t = C(t) * Volume of the tank.

(b) After 20 minutes:

To find the amount of salt in the tank after 20 minutes, we substitute t = 20 into the equation for C(t) and multiply by the volume of the tank:

Amount of salt in the tank after 20 minutes = C(20) * Volume of the tank.

To know more about amount of salt,

https://brainly.com/question/30578434

#SPJ11

A large tank contains 80 litres of water in which 23 grams of salt is dissolved. Brine containing 14 grams of salt per litre is pumped into the tank at a rate of 7 litres per minute. The well mixed solution is pumped out of the tank at a rate of 3 litres per minute. (a) Find an expression for the amount water in the tank after t minutes. (b) Let x(t) be the amount of salt in the tank after t minutes. Which of the following is a differential equation for X(t)? Problem #8(a): Enter your answer as a symbolic function of t, as in these examples (A) = 98 - 7.xt) 80 + 47 (B) = 7 - 3.xt) 80 +7 98 - 3o r(t) (D) x) = 98 - 3 x(t) 80 + 40 (E) = 21 - 7.x(t) 80 + 70 (F) = 7 - go r(t) (6) = 7 - 7x(t) 80 + 40 (H) = 21 - 3x(t) 80 + 70 (1) Con = 21 - So r(t) -- Problem #8(b): Select V Just Save Submit Problem #8 for Grading Problem #8 Attempt #1 Your Answer: 8(a) 8(b) Your Mark: 8(a) 8(b) Attempt #2 8(a) 8(6) 8(a) 8(b) Attempt #3 8(a) 8(b) 8(a) 8(b) Attempt #4 8(a) 8(b) Attempt #5 8(a) 8(b) 8(a) 8(b) 8(a) 8(b) Problem #9: In Problem #8 above the size of the tank was not given. Now suppose that in Problem #8 the tank has an open top and has a total capacity of 216 litres. How much salt (in grams) will be in the tank at the instant that it begins to overflow? Problem #9: Round your answer to 2 decimals. Just Save Submit Problem #9 for Grading Attempt #1 Attempt #2 Attempt #3 Attempt #4 Attempt #5 Problem #9 Your Answer: Your Mark:

Answers

The expression for the amount of water in the tank after t minutes is: W(t) = 4t + 80 and the differential equation for x(t) is: dx(t)/dt = 98 - (3/(4t + 80)) * x(t)

To solve this problem, let's break it down into two parts:

(a) Finding an expression for the amount of water in the tank after t minutes:

The rate at which water is pumped into the tank is 7 liters per minute, and the rate at which water is pumped out of the tank is 3 liters per minute. Therefore, the net rate of change of water in the tank can be expressed as:

dW(t)/dt = 7 - 3 = 4 liters per minute.

We know that initially there are 80 liters of water in the tank, so we can set up the following initial value problem:

W(0) = 80, where W(t) represents the amount of water in the tank after t minutes.

To find an expression for the amount of water in the tank after t minutes, we can integrate the rate of change of water with respect to time:

∫ dW(t)/dt dt = ∫ 4 dt

W(t) = 4t + C

Using the initial condition W(0) = 80, we can solve for the constant C:

80 = 4(0) + C

C = 80

Therefore, the expression for the amount of water in the tank after t minutes is: W(t) = 4t + 80.

(b) Finding a differential equation for x(t), the amount of salt in the tank after t minutes:

We know that initially there are 23 grams of salt in 80 liters of water. The rate at which salt is pumped into the tank is 14 grams per liter, and the rate at which the well-mixed solution is pumped out is 3 liters per minute. Therefore, the net rate of change of salt in the tank can be expressed as:

dx(t)/dt = (14 g/L) * (7 L/min) - (3 L/min) * (x(t)/W(t))

The term (14 g/L) * (7 L/min) represents the rate at which salt is pumped into the tank, and the term (3 L/min) * (x(t)/W(t)) represents the rate at which salt is pumped out of the tank, proportional to the amount of salt present in the tank at time t.

Hence, the differential equation for x(t) is:

dx(t)/dt = 98 - (3/W(t)) * x(t)

Note that we substitute the expression for W(t) obtained in part (a) into the differential equation.

Therefore, the differential equation for x(t) is: dx(t)/dt = 98 - (3/(4t + 80)) * x(t).

To know more about amount check the below link:

https://brainly.com/question/31100325

#SPJ4








3. If F(t)= (1, 740=) 4&v" find the curvature of F(t) at t = v2.

Answers

To find the curvature of a

vector function

F(t) at a specific value of t, we need to compute the curvature formula: K = |dT/ds| / |ds/dt|. In this case, we are given F(t) = (1, 740t^2), and we need to find the curvature at t = v^2.

To find the curvature, we first need to calculate the unit

tangent vector

T. The unit tangent vector T is given by T = dF/ds, where dF/ds is the derivative of the vector function F(t) with respect to the arc length parameter s. Since we are not given the

arc length

parameter, we need to find it first.

To find the arc length parameter s, we

integrate

the magnitude of the derivative of F(t) with respect to t. In this case, F(t) = (1, 740t^2), so dF/dt = (0, 1480t), and the

magnitude

of dF/dt is |dF/dt| = 1480t. Therefore, the arc length parameter is s = ∫|dF/dt| dt = ∫1480t dt = 740t^2.

Now that we have the arc length

parameter

s, we can find the unit tangent vector T = dF/ds. Since dF/ds = dF/dt = (0, 1480t) / 740t^2 = (0, 2/t), the unit tangent vector T is (0, 2/t).

Next, we need to find ds/dt. Since s = 740t^2, ds/dt = d(740t^2)/dt = 1480t.

Finally, we can calculate the

curvature

K using the formula K = |dT/ds| / |ds/dt|. In this case, dT/ds = 0 and |ds/dt| = 1480t. Therefore, the curvature at t = v^2 is K = |dT/ds| / |ds/dt| = 0 / 1480t = 0.

Hence, the curvature of the vector function F(t) at t = v^2 is 0.

To learn more about

curvature

click here :

brainly.com/question/32215102

#SPJ11

Consider the function f(x) = 3(x+2) - 1 (a) Determine the inverse of the function, f-¹ (x) (b) Determine the domain, range and horizontal asymptote of f(x). (c) Determine the domain, range and vertic

Answers

Answer:

(a) To find the inverse of the function f(x), we interchange x and y and solve for y. The inverse function is f^(-1)(x) = (x + 1) / 3.

(b) The domain of f(x) is the set of all real numbers since there are no restrictions on the input x. The range is also the set of all real numbers since f(x) can take any real value. The horizontal asymptote is y = 3, as x approaches positive or negative infinity, f(x) approaches 3.

(c) The domain of f^(-1)(x) is the set of all real numbers since there are no restrictions on the input x. The range is also the set of all real numbers since f^(-1)(x) can take any real value. There are no vertical asymptotes in either f(x) or f^(-1)(x).

Step-by-step explanation:

(a) To find the inverse of a function, we interchange the roles of x and y and solve for y. For the function f(x) = 3(x + 2) - 1, we can write it as y = 3(x + 2) - 1 and solve for x. Interchanging x and y, we get x = 3(y + 2) - 1. Solving for y, we have y = (x + 1) / 3, which gives us the inverse function f^(-1)(x) = (x + 1) / 3.

(b) The domain of f(x) is the set of all real numbers because there are no restrictions on the input x. For any value of x, we can evaluate f(x). The range of f(x) is also the set of all real numbers because f(x) can take any real value depending on the input x. The horizontal asymptote of f(x) is y = 3, which means that as x approaches positive or negative infinity, the value of f(x) approaches 3.

(c) The domain of the inverse function f^(-1)(x) is also the set of all real numbers since there are no restrictions on the input x. Similarly, the range of f^(-1)(x) is the set of all real numbers because f^(-1)(x) can take any real value depending on the input x. There are no vertical asymptotes in either f(x) or f^(-1)(x) since they are both linear functions.

In summary, the inverse function of f(x) is f^(-1)(x) = (x + 1) / 3. The domain and range of both f(x) and f^(-1)(x) are the set of all real numbers, and there are no vertical asymptotes in either function. The horizontal asymptote of f(x) is y = 3.

To learn more about horizontal asymptote

brainly.com/question/29140804

#SPJ11

Use Lagrange multipliers to maximize the product xyz subject to the restriction that x+y+z² = 16. You can assume that such a maximum exists.

Answers

The maximum product xyz is obtained when x = 2λ, y = 2λ, and z = ±sqrt(16 - 4λ), where λ is any real number that satisfies the equation 0 ≤ λ ≤ 4.

To maximize the product xyz subject to the restriction x+y+z^2 = 16, we can use the method of Lagrange multipliers. By setting up the appropriate equations and solving them, we can find the values of x, y, and z that yield the maximum product.

To maximize the product xyz, we define the function f(x, y, z) = xyz. We also have the constraint g(x, y, z) = x + y + z^2 - 16 = 0.

Using Lagrange multipliers, we introduce a Lagrange multiplier λ and form the Lagrangian function L(x, y, z, λ) = f(x, y, z) - λg(x, y, z).

Taking partial derivatives of L with respect to x, y, z, and λ, and setting them equal to zero, we have:

∂L/∂x = yz - λ = 0

∂L/∂y = xz - λ = 0

∂L/∂z = xy - 2λz = 0

g(x, y, z) = x + y + z^2 - 16 = 0

From the first two equations, we get yz = xz and y = x. Substituting these into the third equation, we have xz = 2λz. Since we can assume that a maximum exists, we consider the case where z ≠ 0. Therefore, x = 2λ.

Substituting x = 2λ and y = x into the constraint equation, we have:

2λ + 2λ + z^2 = 16

4λ + z^2 = 16

z^2 = 16 - 4λ

Plugging this back into the equations y = x and yz = xz, we find:

y = 2λ

yz = 2λz

Substituting 2λz for yz, we have:

2λz = 2λz

This equation is satisfied for any value of z. Thus, z can take any real value.

Finally, plugging x = 2λ, y = 2λ, and z = z into the constraint equation, we have:

(2λ) + (2λ) + z^2 = 16

4λ + z^2 = 16

z^2 = 16 - 4λ

Since z can take any real value, we can choose z = ±sqrt(16 - 4λ).

Therefore, the maximum product xyz is obtained when x = 2λ, y = 2λ, and z = ±sqrt(16 - 4λ), where λ is any real number that satisfies the equation 0 ≤ λ ≤ 4.

Learn more about Lagrange multipliers here:

brainly.com/question/30776684

#SPJ11

ppose you buy 1 ticket for $1 out of a lottery of 1000 tickets where the prize for the one winning ticket is to be $. what is your expected value?

Answers

The expected value of buying one ticket in this lottery is 0$.

The expected value of buying one ticket for $1 out of a lottery of 1000 tickets, where the prize for the winning ticket is $, can be calculated by multiplying the probability of winning by the value of the prize, and subtracting the cost of the ticket.

In this case, the probability of winning is 1 in 1000, since there is only one winning ticket out of 1000. The value of the prize is $, and the cost of the ticket is $1.

Therefore, the expected value can be calculated as follows:

Expected value = (Probability of winning) * (Value of prize) - (Cost of ticket)

= (1/1000) * ($) - ($1)

= $ - $1

= 0 $

The expected value of buying one ticket in this lottery is $.

It's important to note that the expected value represents the average outcome over the long run and does not guarantee any specific outcome for an individual ticket purchase.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Use Green's Theorem to evaluate
∫c F · dr.
(Check the orientation of the curve before applying the theorem.)
F(x, y) = (y − cos y, x sin y), C is the circle (x − 3)^2 + (y + 5)^2 = 4 oriented clockwise

Answers

The value of the line integral ∫c F · dr, where F(x, y) = (y − cos y, x sin y), and C is the circle (x − 3)² + (y + 5)² = 4 oriented clockwise, is -4π.

What is Green's theorem?

One of the four calculus fundamental theorems, all four of which are closely related to one another, is the Green's theorem. Understanding the line integral and surface integral concepts will help you understand how the Stokes theorem is founded on the idea of connecting the macroscopic and microscopic circulations.

To use Green's Theorem to evaluate the line integral ∫c F · dr, we need to express the vector field F(x, y) = (y − cos y, x sin y) in terms of its components. Let's denote the components of F as P and Q:

P(x, y) = y − cos y

Q(x, y) = x sin y

Now, let's calculate the line integral using Green's Theorem:

∫c F · dr = ∬R (∂Q/∂x - ∂P/∂y) dA

Here, R represents the region enclosed by the curve C, and dA denotes the differential area element.

In this case, the curve C is a circle centered at (3, -5) with a radius of 2. Since the curve is oriented clockwise, we need to reverse the orientation by changing the sign of the line integral. We'll parameterize the curve C as follows:

x = 3 + 2cos(t)

y = -5 + 2sin(t)

where t varies from 0 to 2π.

Next, we need to calculate the partial derivatives of P and Q:

∂P/∂y = 1 + sin y

∂Q/∂x = sin y

Now, we can compute the line integral using Green's Theorem:

∫c F · dr = -∬R (sin y - (1 + sin y)) dA

            = -∬R (-1) dA

            = ∬R dA

Since the region R is the interior of the circle with a radius of 2, we can rewrite the integral as:

∫c F · dr = -∬R dA = -Area(R)

The area of a circle with radius 2 is given by πr², so in this case, it is π(2)² = 4π.

Therefore, the value of the line integral ∫c F · dr, where F(x, y) = (y − cos y, x sin y), and C is the circle (x − 3)² + (y + 5)² = 4 oriented clockwise, is -4π.

Learn more about Green's Theorem on:

https://brainly.com/question/23265902

#SPJ4

HW4: Problem 7 1 point) Solve the IVP dy + 16 = 8(t – kn), y(0) = 0,7(0) = -7 dt2 The Laplace transform of the solutions is L{y} = The general solution is y = Hote: You can earn partial credit on th

Answers

The given differential equation is dy/dt + 16 = 8(t-kn). The solution to this differential equation is y(t) = c1 + c2e^2t - t - 1/2t^2 - 2t^3, where c1 and c2 are constants.

The given differential equation is dy/dt + 16 = 8(t-kn). To solve this differential equation, you have to follow the steps given below.Step 1: Find the Laplace Transform of the given differential equationTaking the Laplace Transform of the given differential equation, we get:L{dy/dt} + L{16} = L{8(t-kn)}sY - y(0) + 16/s = 8/s [(1/s^2) - 2kn/s]sY = 8/s [(1/s^2) - 2kn/s] - 16/s + 0sY = 8/s^3 - 16/s^2 - 16/s + 16kn/sStep 2: Find the Inverse Laplace Transform of Y(s)To find the inverse Laplace Transform of Y(s), we will use the partial fraction method.Y(s) = 8/s^3 - 16/s^2 - 16/s + 16kn/sTaking the L.C.M, we getY(s) = [8s - 16s^2 - 16s^3 + 16kn] / s^3(s-2)^2Now, we apply partial fraction method. 1/ s^3(s-2)^2= A/s + B/s^2 + C/s^3 + D/(s-2) + E/(s-2)^2On solving, we get A = 2, B = 1, C = -1/2, D = -2 and E = -1/2Therefore, Y(s) = 2/s + 1/s^2 - 1/2s^3 - 2/(s-2) - 1/2(s-2)^2Taking the inverse Laplace Transform of Y(s), we gety(t) = L^-1{Y(s)} = 2 - t - 1/2t^2 + 2e^2t - (t-2)e^2tThe general solution is y(t) = c1 + c2e^2t - t - 1/2t^2 - 2t^3

learn more about differential here;

https://brainly.com/question/31430935?

#SPJ11

Find f'(x) using the rules for finding derivatives. f(x) = 6x - 7 X-7 f'(x) = '

Answers

To find the derivative of[tex]f(x) = 6x - 7x^(-7),[/tex] we can apply the power rule and the constant multiple rule.

The power rule states that if we have a term of the form x^n, the derivative is given by [tex]nx^(n-1).[/tex]

The constant multiple rule states that if we have a function of the form cf(x), where c is a constant, the derivative is given by c times the derivative of f(x).

Using these rules, we can differentiate term by term:

[tex]f'(x) = 6 - 7(-7)x^(-7-1) = 6 + 49x^(-8) = 6 + 49/x^8[/tex]

learn more about:- power rule here

https://brainly.com/question/30226066

#SPJ11








Use integration to find a general solution of the differential equation. (Use for the constant of integration.) dy dx sin 9x y = Manter i

Answers

The general solution of the given differential equation dy/dx = sin(9x)y is y = Ce^(1-cos(9x))/9, where C is the constant of integration.

This solution is obtained by integrating the given equation with respect to x and applying the initial condition. The integration involves using the chain rule and integrating the trigonometric function sin(9x). The constant C accounts for the family of solutions that satisfy the given differential equation. The exponential term e^(1-cos(9x))/9 indicates the growth or decay of the solution as x varies. Overall, the solution provides a mathematical expression that describes the relationship between y and x in the given differential equation.

Learn more about differential equation here:

https://brainly.com/question/25731911

#SPJ11

1. Verify that the function U(x,y; t) = e-a?k?cos ( x) sin(y) is a solution of the "Two-Dimensional Heat Equation": a'Uxx + a? Uyy = U, - XX

Answers

The two-dimensional heat equation aU_xx + aU_yy = U must be substituted into the equation and checked to see whether it still holds in order to prove that the function '(U(x,y;t) = e-aomega t'cos(x)sin(y)' is a solution.

The partial derivatives of (U) with respect to (x) and (y) are first calculated as follows:

\[U_x = -e-a-omega-t-sin(x,y)]

[U_y = e-a omega t cos(x,y)]

The second partial derivatives are then computed:

\[U_xx] is equal to -eaomega tcos(x)sin(y).

[U_yy] = e-a omega tcos(x), sin(y)

Now, when these derivatives are substituted into the heat equation, we get the following result: [a(-e-aomega tcos(x)sin(y)) + a(-e-aomega tcos(x)sin(y)) = e-aomega tcos(x)sin(y)]

We discover that the equation is valid after simplifying both sides.

learn more about dimensional here :

https://brainly.com/question/14481294

#SPJ11








2. Consider the definite integral *e* dx. (Provide the graph and show your work. Use your calculator to compute the answer. Refer to my video if you have questions) a. Using 4 rectangles, find the lef

Answers

The definite integral of *e* dx using 4 rectangles, with the left endpoints approximation method, is approximately equal to the sum of the areas of the 4 rectangles,

where the height of each rectangle is *e* and the width of each rectangle is the interval over which we are integrating, divided by the number of rectangles.

The left endpoints approximation method involves taking the leftmost point of each subinterval as the height of the rectangle. In this case, since we have 4 rectangles, the interval over which we are integrating will be divided into 4 equal subintervals.

To compute the approximation, we calculate the width of each rectangle by dividing the total interval over which we are integrating by the number of rectangles, which gives us the width of each subinterval. The height of each rectangle is *e*, the function we are integrating.

The sum of the areas of the 4 rectangles is then given by multiplying the width of each rectangle by its height and summing them up.

Now, if we evaluate this integral using a calculator, we obtain the approximate value.

Learn more about rectangles here:

https://brainly.com/question/29123947

#SPJ11


the
long way please no shortcuts
+ 7 1 2-3x Evaluate lim X→3 6-3x WI-- + 3

Answers

To evaluate the limit of the expression (6 - 3x) / (2 - 3x) as x approaches 3, we can substitute the value 3 into the expression and simplify it.

Substituting x = 3, we have (6 - 3(3)) / (2 - 3(3)), which simplifies to (6 - 9) / (2 - 9). Further simplifying, we get -3 / -7, which equals 3/7.

Therefore, the limit of (6 - 3x) / (2 - 3x) as x approaches 3 is 3/7. This means that as x gets arbitrarily close to 3, the expression approaches the value of 3/7.

The evaluation of this limit involves substituting the value of x and simplifying the expression. In this case, the denominator becomes 0 when x = 3, which suggests that there might be a vertical asymptote at x = 3. However, when evaluating the limit, we are concerned with the behavior of the expression as x approaches 3, rather than the actual value at x = 3. Since the limit exists and evaluates to 3/7, we can conclude that the expression approaches a finite value as x approaches 3.

Learn more about vertical asymptote here: brainly.com/question/4084552

#SPJ11

The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her $444 to drive 460 ml and in June it cost her $596 to drive 840 ml. (a) Express the monthly cost C as a function of the distance driven d, assuming that a linear relationship gives a suitable model. C(d) = (b) Use part (a) to predict the cost of driving 1200 milles per month. $ (c) Draw the graph of the linear function

Answers

(a) To express the monthly cost C as a function of the distance driven d, assuming a linear relationship, we can use the formula for a linear equation: C(d) = mx + b. Here, m represents the slope (rate of change) of the cost with respect to distance, and b represents the y-intercept (the cost when the distance is zero).

Given the data points (460, $444) and (840, $596), we can calculate the slope using the formula: m = (C2 - C1) / (d2 - d1), where C1 = $444, C2 = $596, d1 = 460 miles, and d2 = 840 miles.

Substituting the values into the formula, we have: m = ($596 - $444) / (840 - 460) = $152 / 380 ≈ $0.4 per mile.

Now, to find the y-intercept b, we can use one of the data points. Let's use (460, $444). Substituting the values into the linear equation, we have: $444 = ($0.4)(460) + b. Solving for b, we get: b = $444 - ($0.4)(460) = $444 - $184 = $260.

Therefore, the function expressing the monthly cost C as a function of the distance driven d is: C(d) = $0.4d + $260.

(b) To predict the cost of driving 1200 miles per month, we can substitute d = 1200 into the function: C(1200) = $0.4(1200) + $260 = $480 + $260 = $740.

The predicted cost of driving 1200 miles per month is $740.

(c) The graph of the linear function C(d) = $0.4d + $260 is a straight line with a slope of $0.4 and a y-intercept of $260. The x-axis represents the distance driven (d) in miles, and the y-axis represents the monthly cost (C) in dollars. The line starts at the point (0, $260) and has a positive slope, indicating that as the distance driven increases, the monthly cost also increases. The graph will be a diagonal line going upwards from left to right.

To learn more about linear equation : brainly.com/question/12974594

#SPJ11

Find the rate of change of an area of a rectangle when the sides
are 40 meters and 10 meters. If the length of the first side is
decreasing at a rate of 1 meter per hour and the second side is
decreas

Answers

The rate of change of the area of the rectangle is 18 square meters per hour.

How to calculate the rate of change of a rectangle

In this problem we must compute the rate of change of the area of a rectangle, whose area formula is shown below:

A = w · h

Where:

A - Area of the rectangle.w - Widthh - Height

Now we find the rate of change of the area of the rectangle:

A' = w' · h + w · h'

(w = 40 m, h = 10 m, w' = 1 m / h, h' = 0.2 m / h)

A' = (1 m / h) · (10 m) + (40 m) · (0.2 m / h)

A' = 10 m² / h + 8 m² / h

A' = 18 m² / h

Remark

The statement is incomplete, complete text is presented below:

Find the rate of change of an area of a rectangle when the sides are 40 meters and 10 meters. If the length of the first side is decreasing at a rate of 1 meter per hour and the second side is decreasing at a rate of 1 / 5 meters per hour.

To learn more on rates of change: https://brainly.com/question/21654530

#SPJ4

3. (30 %) Find an equation of the tangent line to the curve at the given point. (a) x = 2 cot 0 , y = 2sin²0,(-73) (b) r = 3 sin 20, at the pole

Answers

An equation of the tangent line (a) the equation of the tangent line is y = -(3√3/2)(x - 2√3).  (b) the equation of the tangent line to the curve r = 3sin(θ) at the pole is θ = π/2.

(a) The equation of the tangent line to the curve x = 2cot(θ), y = 2sin²(θ) at the point (θ = -π/3) is y = -(3√3/2)(x - 2√3).

To find the equation of the tangent line, we need to determine the slope of the tangent line and a point on the line.

First, let's find the derivative of y with respect to θ. Differentiating y = 2sin²(θ) using the chain rule, we get dy/dθ = 4sin(θ)cos(θ).

Next, we substitute θ = -π/3 into the derivative to find the slope of the tangent line at that point. dy/dθ = 4sin(-π/3)cos(-π/3) = -3√3/2.

Now, we need to find a point on the tangent line. Substitute θ = -π/3 into the equation x = 2cot(θ) to get x = 2cot(-π/3) = 2√3.

Therefore, the equation of the tangent line is y = -(3√3/2)(x - 2√3).

(b) The equation of the tangent line to the curve r = 3sin(θ) at the pole (θ = π/2) is θ = π/2.

When the curve is in polar form, the tangent line at the pole is a vertical line with an equation of the form θ = constant. The equation of the tangent line to the curve r = 3sin(θ) at the pole is θ = π/2.

To know more about tangent line, refer here:

https://brainly.com/question/23265136#

#SPJ11

Find the future value of this loan. $13,396 at 6.2% for 18 months The future value of the loan is $ (Round to the nearest cent as needed.)

Answers

The future value of a loan of $13,396 at an interest rate of 6.2% for 18 months is approximately $14,543.66.

To calculate the future value of a loan, we use the formula for compound interest:

Future Value = Principal * [tex](1 + Interest\, Rate)^{Time}[/tex]

In this case, the principal is $13,396, the interest rate is 6.2%, and the time is 18 months.

First, we need to convert the interest rate from a percentage to a decimal.

Dividing 6.2 by 100, we get 0.062.

Next, we substitute the values into the formula:

Future Value = $13,396 * (1 + 0.062)^18

Using a calculator or a spreadsheet, we can calculate the future value:

Future Value = $13,396 * (1.062)^18 ≈ $14,543.66

Therefore, the future value of the loan is approximately $14,543.66 (rounded to the nearest cent).

This means that after 18 months, including the interest, the total amount owed on the loan will be approximately $14,543.66.

Learn more about Compound interest here:

https://brainly.com/question/29008279

#SPJ11

op 1. Find the value of f'() given that f(x) = 4sinx – 2cosx + x2 a) 2 b)4-27 c)2 d) 0 e) 2 - 4 None of the above

Answers

The value of f'()  is 2. The derivative of a function represents the rate of change of the function with respect to its input variable. To find the derivative of f(x), we can apply the rules of differentiation.

The derivative of the function [tex]\( f(x) = 4\sin(x) - 2\cos(x) + x^2 \)[/tex] is calculated as follows:

[tex]\[\begin{align*}f'(x) &= \frac{d}{dx}(4\sin(x) - 2\cos(x) + x^2) \\&= 4\cos(x) + 2\sin(x) + 2x\end{align*}\][/tex][tex]f'(x) &= \frac{d}{dx}(4\sin(x) - 2\cos(x) + x^2) \\\\&= 4\cos(x) + 2\sin(x) + 2x[/tex]

To find f'() , we substitute an empty set of parentheses for x  in the derivative expression:

[tex]\[f'() = 4\cos() + 2\sin() + 2()\][/tex]

Since the cosine of an empty set of parentheses is 1 and the sine of an empty set of parentheses is 0, we can simplify the expression:

[tex]\[f'() = 4 + 0 + 0 = 4\][/tex]

Therefore, the value of f'()  is 4, which is not one of the options provided. So, the correct answer is "None of the above."

To learn more about derivative refer:

https://brainly.com/question/31399580

#SPJ11

Please show all work and no use of a calculator
please, thank you.
7. Let F= (4x, 1 - 6y, 2z2). (a) (4 points) Use curl F to determine if F is conservative. (b) (2 points) Find div F.

Answers

a) The curl of F is the zero vector (0, 0, 0) so we can conclude that F is conservative.

b)  The divergence of F is -2 + 4z.

a) To determine if the vector field F is conservative, we can calculate its curl.

The curl of a vector field F = (P, Q, R) is given by the following formula:

curl F = (∂R/∂y - ∂Q/∂z, ∂P/∂z - ∂R/∂x, ∂Q/∂x - ∂P/∂y)

In this case, F = (4x, 1 - 6y, 2z^2), so we have:

P = 4x

Q = 1 - 6y

R = 2z^2

Let's calculate the partial derivatives:

∂P/∂y = 0

∂P/∂z = 0

∂Q/∂x = 0

∂Q/∂z = 0

∂R/∂x = 0

∂R/∂y = 0

Now, we can calculate the curl:

curl F = (∂R/∂y - ∂Q/∂z, ∂P/∂z - ∂R/∂x, ∂Q/∂x - ∂P/∂y)

= (0 - 0, 0 - 0, 0 - 0)

= (0, 0, 0)

Since the curl of F is the zero vector (0, 0, 0), we can conclude that F is conservative.

(b) To find the divergence of F, we use the following formula:

div F = ∂P/∂x + ∂Q/∂y + ∂R/∂z

Using the given components of F:

P = 4x

Q = 1 - 6y

R = 2z^2

Let's calculate the partial derivatives:

∂P/∂x = 4

∂Q/∂y = -6

∂R/∂z = 4z

Now, we can calculate the divergence:

div F = ∂P/∂x + ∂Q/∂y + ∂R/∂z

= 4 + (-6) + 4z

= -2 + 4z

Therefore, the divergence of F is -2 + 4z.  

To know more about  zero vector refer to this link-

https://brainly.com/question/4595266#

#SPJ11

a committee of six people is formed by selecting members from a list of 10 people. how many different committees can be formed?

Answers

There are 210 different committees that can be formed by selecting 6 people from a list of 10 people.

What is the combination?

Combinations are a way to count the number of ways to choose a subset of objects from a larger set, where the order of the objects does not matter.

To calculate the number of different committees that can be formed, we can use the concept of combinations.

In this case, we want to select 6 people from a list of 10 people, and the order in which the committee members are selected does not matter.

The formula for combinations is given by:

C(n, r) = n! / (r! * (n - r)!)

where C(n, r) represents the number of combinations of selecting r items from a set of n items, and ! denotes factorial.

Using this formula, we can calculate the number of different committees that can be formed:

C(10, 6) = 10! / (6! * (10 - 6)!)

Simplifying:

C(10, 6) = 10! / (6! * 4!)

10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1

6! = 6 * 5 * 4 * 3 * 2 * 1

4! = 4 * 3 * 2 * 1

Substituting these values:

C(10, 6) = (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / ((6 * 5 * 4 * 3 * 2 * 1) * (4 * 3 * 2 * 1))

C(10, 6) = (10 * 9 * 8 * 7) / (4 * 3 * 2 * 1)

C(10, 6) = 210

Therefore, there are 210 different committees that can be formed by selecting 6 people from a list of 10 people.

To learn more about the combination visit:

https://brainly.com/question/11732255

#SPJ4

The depth of water in a tank oscillates sinusoidally once every 8 hours. If the smallest depth is 3.1 feet and the largest depth is 6.9 feet, find a possible formula for the depth in terms of time t in hours. Assume that at t=0 the water level is at the average of the depth and is rising. NOTE: Enter your answer in terms of a sine function. Enclose arguments of functions in parentheses. For example, sin(2t). Depth

Answers

The formula for depth of water in a tank oscillates sinusoidally possibly could be:

Depth(t) = 1.9 * sin((π/4) * t) + 5

The depth of water in the tank can be represented by a sinusoidal function of time t in hours. Given that the water level oscillates once every 8 hours, we can use the formula:

Depth(t) = A * sin(B * t + C) + D

Where:

A is the amplitude (half the difference between the largest and smallest depth), which is (6.9 - 3.1) / 2 = 1.9 feet.

B is the frequency (angular frequency) of the oscillation, which is 2π divided by the period of 8 hours. So, B = (2π) / 8 = π/4.

C represents any phase shift. Since the water level is at the average depth and rising at t = 0, we don't have a phase shift. Thus, C = 0.

D is the vertical shift or average depth, which is the average of the smallest and largest depths, (3.1 + 6.9) / 2 = 5 feet.

Putting it all together, the formula for the depth of water in terms of time t is:

Depth(t) = 1.9 * sin((π/4) * t) + 5

This formula represents a sinusoidal function that oscillates between 3.1 feet and 6.9 feet, with a period of 8 hours and no phase shift.

To know more about sinusoidal function refer here:

https://brainly.com/question/21008165?#

#SPJ11

Please answer in detail
Find the exact area of the surface obtained by rotating the parametric curve from t = 0 to t = 1 about the y-axis. x = In e-t +et , y= V16et = Y =

Answers

The exact area of the surface obtained by rotating the parametric curve [tex]x = ln(e^{-t} + e^t)[/tex] and [tex]y = \sqrt{ (16e^t)}[/tex] about the y-axis, from t = 0 to t = 1, is π*(9e - 1).

To calculate the exact area, we need to use the formula for the surface area of revolution for a parametric curve. The formula is given by:

A = 2π[tex]\int\limits[a,b] y(t) * \sqrt{[x'(t)^2 + y'(t)^2]} dt[/tex]

Where a and b are the limits of t (in this case, 0 and 1), y(t) is the y-coordinate of the curve, and x'(t) and y'(t) are the derivatives of x(t) and y(t) with respect to t, respectively.

In this case, y(t) = √(16e^t) and x(t) = ln(e^(-t) + e^t). Taking the derivatives, we get:

[tex]dy/dt = 8e^{t/2}\\dx/dt = (-e^{-t} + e^t) / (e^{-t} + e^t)[/tex]

Substituting these values into the formula and integrating over the given range, we have:

A = 2π[tex]\int\limits[0,1] \sqrt{(16e^t)} * \sqrt{[(e^{-t} - e^t)^2 / (e^{-t} + e^t)^2 + 64e^t]} dt[/tex]

Simplifying the integrand, we get:

A = 2π[tex]\int\limits[0,1] \sqrt{(16e^t) }* \sqrt{[(e^{-2t} - 2 + e^{2t}) / (e^{-2t} + 2 + e^{2t})]} dt[/tex]

Performing the integration and simplifying further, we find:

A = π(9e - 1)

Therefore, the exact area of the surface obtained by rotating the given parametric curve about the y-axis is π*(9e - 1).

Learn more about parametric curve here:

https://brainly.com/question/15585522

#SPJ11








14. The altitude (in feet) of a rocket t sec into flight is given by s = f(t) = -2t³ + 114t² + 480t +1 (t≥ 0) Find the time T, accurate to three decimal places, when the rocket hits the earth.

Answers

The rocket hits the earth approximately 9.455 seconds after the start of the flight.

To find the time T when the rocket hits the earth, we need to determine when the altitude (s) of the rocket is equal to 0. We can set up the equation as follows:

-2t³ + 114t² + 480t + 1 = 0

Since this is a cubic equation, we'll need to solve it using numerical methods or approximations. One common method is the Newton-Raphson method. However, to keep things simple, let's use an online calculator or software to solve the equation. Using an online calculator or software will allow us to find the root of the equation accurately to three decimal places.

Using an online calculator, the approximate time T when the rocket hits the earth is found to be T ≈ 9.455 seconds (rounded to three decimal places).

For more information on Altitude visit: brainly.com/question/31400692

#SPJ11

For the points P and Q, find (a) the distance d( PQ) and (b) the coordinates of the midpoint M of line segment PQ. P(9.1) and Q(2,4) a) The distance d(P, Q) is (Simplify your answer. Type an exact ans

Answers

To find the distance between points P and Q, we can use the distance formula, which calculates the length of a line segment in a coordinate plane. Using the coordinates of P(9,1) and Q(2,4).

we can substitute the values into the distance formula to determine the distance between P and Q. The midpoint of the line segment PQ can be found by averaging the x-coordinates and y-coordinates of P and Q separately.

a) Distance between P and Q:

The distance between two points P(x1, y1) and Q(x2, y2) in a coordinate plane can be calculated using the distance formula:

d(P, Q) = √((x2 - x1)^2 + (y2 - y1)^2)

Given that P(9,1) and Q(2,4), we can substitute the coordinates into the distance formula:

d(P, Q) = √((2 - 9)^2 + (4 - 1)^2)

= √((-7)^2 + (3)^2)

= √(49 + 9)

= √58

Therefore, the distance d(P, Q) between points P(9,1) and Q(2,4) is √58.

b) Midpoint of PQ:

To find the midpoint of a line segment PQ, we can average the x-coordinates and y-coordinates of P and Q separately. Let M(x, y) be the midpoint of PQ:

x-coordinate of M = (x-coordinate of P + x-coordinate of Q) / 2

= (9 + 2) / 2

= 11/2

y-coordinate of M = (y-coordinate of P + y-coordinate of Q) / 2

= (1 + 4) / 2

= 5/2

Therefore, the coordinates of the midpoint M of the line segment PQ are (11/2, 5/2).

To learn more about line segment: -brainly.com/question/28001060#SPJ11

5. [-/1 Points] DETAILS TANAPCALCBR10 4.2.030.EP. MY NOTES ASK YO Consider the following function. g(x) + x + 1 Find the first and second derivatives of the function 0Y) - -2x + 6 2 Determine where th

Answers

The given function, g(x) = x + 1, has no critical point and hence it is always increasing. Therefore, the given function, g(x) = x + 1, is always increasing for all values of x.

Given function, g(x) = x + 1

To find the first derivative of the given function, g(x),

we will differentiate it with respect to x.

Using the power rule, we get:

g'(x) = 1

The first derivative of the function is 1.

To find the second derivative of the given function, g(x), we will differentiate its first derivative, g'(x), with respect to x.

Using the power rule, we get:g''(x) = 0The second derivative of the function is 0.

Now, we need to determine where the function, g(x), is increasing or decreasing.

We can determine it by considering the sign of the first derivative of the function as follows:

If g'(x) > 0, then g(x) is increasing in that interval.

If g'(x) < 0, then g(x) is decreasing in that interval.

If g'(x) = 0, then it is a critical point and the function may have a local maxima or a local minima. Now, we will find the critical point of the function, g(x).To find the critical point, we will equate the first derivative to zero and solve for

x.g'(x) = 0⇒ 1 = 0

The above equation has no solution as 1 is not equal to 0.

To know more about function

https://brainly.com/question/11624077

#SPJ11

12. Given the parametric equations *=r? – 2t and y=3t+1 业 Without eliminating the parameter, calculate the slope of the tangent line to the curve, dx

Answers

The slope of the tangent line to the curve described by the parametric equations x = r - 2t and y = 3t + 1, without eliminating the parameter, is -3/2.

To calculate the slope of the tangent line to the curve without eliminating the parameter, we need to differentiate the parametric equations with respect to the parameter (t) and evaluate the derivative at a specific value of t.

Let's differentiate the equation x = r - 2t with respect to t:

dx/dt = -2

Since we're looking for the slope of the tangent line, we want to find dy/dx. We can use the chain rule to relate dy/dx to dy/dt and dx/dt:

dy/dx = (dy/dt) / (dx/dt)

Differentiating the equation y = 3t + 1 with respect to t:

dy/dt = 3

Now we can calculate the slope of the tangent line:

dy/dx = (dy/dt) / (dx/dt)  = 3 / (-2) = -3/2

Therefore, the slope of the tangent line to the curve described by the parametric equations x = r - 2t and y = 3t + 1, without eliminating the parameter, is -3/2.

To know more about slope of tangent : https://brainly.com/question/32067925

#SPJ11

True/False: if a data value is approximately equal to the median in a symmetrical distribution, then it is unlikely that it is an outlier.

Answers

In a symmetrical distribution, the median represents the middle value, dividing the data into two equal halves. True.

If a data value is approximately equal to the median, it suggests that the value falls within the central region of the distribution and is consistent with the majority of the data points.

It is unlikely to be considered an outlier.

In a symmetrical distribution, the values tend to cluster around the center, with equal numbers of data points on both sides.

This indicates a balanced distribution where extreme values are less common.

By definition, an outlier is an observation that significantly deviates from the overall pattern of the data.

A data value closely aligns with the median, it implies that it is near the central tendency of the dataset.

Furthermore, the median is less sensitive to extreme values compared to other measures such as the mean can be greatly influenced by outliers.

Since the median is resistant to extreme values, a data point close to it is less likely to be considered an outlier.

The notion of an outlier ultimately depends on the context and the specific criteria used to define it.

Different statistical techniques and domain knowledge may lead to variations in identifying outliers, but generally speaking, if a data value is approximately equal to the median in a symmetrical distribution, it is less likely to be considered an outlier.

For similar questions on median

https://brainly.com/question/26177250

#SPJ8

Bryce left an 18% tip on a 55$ dinner bill how much did he pay altogether for dinner

Answers

Bryce pays $64.9 altogether for dinner

How to determine how much he pays altogether for dinner

From the question, we have the following parameters that can be used in our computation:

Dinner = $55

Tip = 18%

Using the above as a guide, we have the following:

Amount = Dinner * (1 + Tip)

substitute the known values in the above equation, so, we have the following representation

Amount = 55 * (1 + 18%)

Evaluate

Amount = 64.9

Hence, he pays $64.9 altogether for dinner

Read more about percentage at

https://brainly.com/question/843074

#SPJ1

Other Questions
If f(x)=x^2-2x+1 and g(x)=x^2+3x-4, find (f/g)(x) What are the reasons that input prices remain fixed in the short-run? 6,7I beg you please write letters and symbols as clearly as possibleor make a key on the side so ik how to properly write out theproblemD 6) Find the derivative by using the Chain Rule. DO NOT SIMPLIFY! f(x) = (+9x4-3x) 7) Find the derivative by using the Product Rule. DO NOT SIMPLIFY! f(x) = -6x*(2x-1)5 Question 9 of 10During the Harding presidency, the Supreme Court acted: A missile is moving 1810 m/s at a 20.0 angle. It needs to hit a target 19,500 m away in a 32.0 direction in 9.20 s. What is the magnitude of the acceleration that the engine must produce? Repeat Exercise 7.1.2 For The Following Grammar: S A B Fff AAAB AB E A) Eliminate E-Productions. B) Eliminate Any Unit Productions In The Resulting Grammar. C) Eliminate Any Useless Symbols In The Resulting Grammar D) Put The Resulting Grammar Into Chomsky Normal Form, Which of the following is the researcher usually interested in supporting when he or she is engaging in hypothesis testing? The research hypothesis b. The null hypothesis c; Both the research and null hypothesis d. Neither the research or null hypothesis Find class boundaries, midpoint, and width for the class.14.7-18.1 in a dashboard, users can: group of answer choices view overall firm performance data. create their own reports based on custom queries. predict future outcomes according to changing circumstances. drill down to more finely grained information. view data according to different dimensions of the data. 1. If F(x, y) = C is a solution of the differential equation: [2y?(1 - sin x) 2x + y)dx + [2(1 + 4y) + 4y cos z]dy = 0 then F(0,2) = a) 4 b) o c) 8 d) 1 T/F : When identifying key assumptions about your venture, two key areas to consider are team formation and the decision-making unit. FILL THE BLANK. the original and flawed wireless security protocol is known as _____. Using Green's Theorem, evaluate , 2 Sa xy dx + xy xy dy C where c is the triangle vertices (0,0), (1,3), and (0,3). problem 4: Let f(x)=-x. Determine the fourier series of f(x)on[-1,1] and fourier cosine series on [0,1] (PLEASE HELP 30 POINTS ROMEO AND JULIET) write important historical context about the play romeo and juliet a shadow Julio, who is 1.8 meters tall walks towards a lare that is placed 3 meters high he to the light of the lomp is produced behind dulio, on the floor. If he walks towards the lomp at a speed of medical language allows health care professionals to communicate quickly because The largest investors in corporate bonds are state government agencies.a. Trueb. False work to earn ruil creait. Inis includes the piacing information given in propiem incorrect locations and labeling the sides just like we did in class connect)A ladder leans against a building, making a 70 angle of elevation with the ground.The top of the ladder reaches a point on the building that is 17 feet above theground. To the nearest tenth of a foot, what is the distance, x, between the base ofthe building and the base of the ladder? Use the correct abbreviation for the units. Ifthe answer does not have a tenths place then include a zero so that it does. Be sureto attach math work for creditYour Answer:Pollen tomorrow^ K12 Which item describes the attributes of a picture window layout? The use of a border around the edge gives the content an organized feel. A large image with a headline above the vertical layout, followed by the body copy It is characterized by its extensive range of design elements, which create an active and dynamic layout. Steam Workshop Downloader